Newer
Older
Angus Lothian
committed
Contains the signal flow graph operation.
Angus Lothian
committed
from collections import defaultdict, deque
from io import StringIO
Angus Lothian
committed
from queue import PriorityQueue
Dict,
Iterable,
List,
MutableSet,
Optional,
Sequence,
from b_asic.graph_component import GraphComponent
from b_asic.operation import (
AbstractOperation,
MutableDelayMap,
MutableResultMap,
Operation,
ResultKey,
)
from b_asic.port import InputPort, OutputPort, SignalSourceProvider
from b_asic.special_operations import Delay, Input, Output
from b_asic.types import GraphID, GraphIDNumber, Name, Num, TypeName
Angus Lothian
committed
DelayQueue = List[Tuple[str, ResultKey, OutputPort]]
_OPERATION_SHAPE: DefaultDict[TypeName, str] = defaultdict(lambda: "ellipse")
_OPERATION_SHAPE.update(
{
Input.type_name(): "cds",
Output.type_name(): "cds",
Delay.type_name(): "square",
}
)
Angus Lothian
committed
class GraphIDGenerator:
"""Generates Graph IDs for objects."""
_next_id_number: DefaultDict[TypeName, GraphIDNumber]
def __init__(self, id_number_offset: GraphIDNumber = GraphIDNumber(0)):
Angus Lothian
committed
"""Construct a GraphIDGenerator."""
self._next_id_number = defaultdict(lambda: id_number_offset)
def next_id(self, type_name: TypeName, used_ids: MutableSet = set()) -> GraphID:
Angus Lothian
committed
"""Get the next graph id for a certain graph id type."""
self._next_id_number[type_name] += 1
new_id = type_name + str(self._next_id_number[type_name])
self._next_id_number[type_name] += 1
new_id = type_name + str(self._next_id_number[type_name])
Angus Lothian
committed
@property
def id_number_offset(self) -> GraphIDNumber:
"""Get the graph id number offset of this generator."""
self._next_id_number.default_factory()
) # pylint: disable=not-callable
Construct an SFG given its inputs and outputs.
Angus Lothian
committed
Contains a set of connected operations, forming a new operation.
Used as a base for simulation, scheduling, etc.
Inputs/outputs may be specified using either Input/Output operations
directly with the *inputs*/*outputs* parameters, or using signals with the
*input_signals*/*output_signals parameters*. If signals are used, the
corresponding Input/Output operations will be created automatically.
The *id_number_offset* parameter specifies what number graph IDs will be
offset by for each new graph component type. IDs start at 1 by default,
so the default offset of 0 will result in IDs like "c1", "c2", etc.
while an offset of 3 will result in "c4", "c5", etc.
Parameters
----------
inputs : array of Input, optional
outputs : array of Output, optional
input_signals : array of Signal, optional
output_signals : array of Signal, optional
id_number_offset : GraphIDNumber, optional
name : Name, optional
input_sources :
Angus Lothian
committed
_components_by_id: Dict[GraphID, GraphComponent]
_components_by_name: DefaultDict[Name, List[GraphComponent]]
_components_dfs_order: List[GraphComponent]
_operations_dfs_order: List[Operation]
_operations_topological_order: List[Operation]
Angus Lothian
committed
_input_operations: List[Input]
_output_operations: List[Output]
_original_components_to_new: Dict[GraphComponent, GraphComponent]
Angus Lothian
committed
_original_input_signals_to_indices: Dict[Signal, int]
_original_output_signals_to_indices: Dict[Signal, int]
_precedence_list: Optional[List[List[OutputPort]]]
Angus Lothian
committed
def __init__(
self,
inputs: Optional[Sequence[Input]] = None,
outputs: Optional[Sequence[Output]] = None,
input_signals: Optional[Sequence[Signal]] = None,
output_signals: Optional[Sequence[Signal]] = None,
id_number_offset: GraphIDNumber = GraphIDNumber(0),
name: Name = Name(""),
input_sources: Optional[Sequence[Optional[SignalSourceProvider]]] = None,
Angus Lothian
committed
input_signal_count = 0 if input_signals is None else len(input_signals)
input_operation_count = 0 if inputs is None else len(inputs)
output_signal_count = 0 if output_signals is None else len(output_signals)
Angus Lothian
committed
output_operation_count = 0 if outputs is None else len(outputs)
super().__init__(
input_count=input_signal_count + input_operation_count,
output_count=output_signal_count + output_operation_count,
name=name,
input_sources=input_sources,
)
Angus Lothian
committed
Angus Lothian
committed
self._components_by_name = defaultdict(list)
self._components_dfs_order = []
self._operations_dfs_order = []
self._operations_topological_order = []
self._graph_id_generator = GraphIDGenerator(GraphIDNumber(id_number_offset))
Angus Lothian
committed
self._input_operations = []
self._output_operations = []
self._original_components_to_new = {}
self._original_input_signals_to_indices = {}
self._original_output_signals_to_indices = {}
self._precedence_list = None
# Setup input signals.
if input_signals is not None:
for input_index, signal in enumerate(input_signals):
if signal in self._original_components_to_new:
raise ValueError(f"Duplicate input signal {signal!r} in SFG")
new_input_op = cast(
Input, self._add_component_unconnected_copy(Input())
)
new_signal = cast(Signal, self._add_component_unconnected_copy(signal))
Angus Lothian
committed
new_signal.set_source(new_input_op.output(0))
self._input_operations.append(new_input_op)
self._original_input_signals_to_indices[signal] = input_index
# Setup input operations, starting from indices after input signals.
Angus Lothian
committed
if inputs is not None:
for input_index, input_op in enumerate(inputs, input_signal_count):
if input_op in self._original_components_to_new:
raise ValueError(f"Duplicate input operation {input_op!r} in SFG")
new_input_op = cast(
Input, self._add_component_unconnected_copy(input_op)
)
Angus Lothian
committed
for signal in input_op.output(0).signals:
if signal in self._original_components_to_new:
raise ValueError(
"Duplicate input signals connected to input ports"
" supplied to SFG constructor."
)
new_signal = cast(
Signal, self._add_component_unconnected_copy(signal)
)
Angus Lothian
committed
new_signal.set_source(new_input_op.output(0))
self._original_input_signals_to_indices[signal] = input_index
Angus Lothian
committed
self._input_operations.append(new_input_op)
Angus Lothian
committed
# Setup output signals.
if output_signals is not None:
for output_index, signal in enumerate(output_signals):
new_output_op = cast(
Output, self._add_component_unconnected_copy(Output())
)
Angus Lothian
committed
if signal in self._original_components_to_new:
# Signal was already added when setting up inputs.
new_signal = cast(Signal, self._original_components_to_new[signal])
Angus Lothian
committed
new_signal.set_destination(new_output_op.input(0))
else:
# New signal has to be created.
new_signal = cast(
Signal, self._add_component_unconnected_copy(signal)
)
Angus Lothian
committed
new_signal.set_destination(new_output_op.input(0))
Angus Lothian
committed
self._output_operations.append(new_output_op)
self._original_output_signals_to_indices[signal] = output_index
Angus Lothian
committed
# Setup output operations, starting from indices after output signals.
if outputs is not None:
for output_index, output_op in enumerate(outputs, output_signal_count):
if output_op in self._original_components_to_new:
raise ValueError(f"Duplicate output operation {output_op!r} in SFG")
new_output_op = cast(
Output, self._add_component_unconnected_copy(output_op)
)
Angus Lothian
committed
for signal in output_op.input(0).signals:
if signal in self._original_components_to_new:
# Signal was already added when setting up inputs.
new_signal = cast(
Signal, self._original_components_to_new[signal]
)
Angus Lothian
committed
else:
# New signal has to be created.
new_signal = cast(
Signal,
self._add_component_unconnected_copy(signal),
Angus Lothian
committed
new_signal.set_destination(new_output_op.input(0))
self._original_output_signals_to_indices[signal] = output_index
Angus Lothian
committed
self._output_operations.append(new_output_op)
output_operations_set = set(self._output_operations)
# Search the graph inwards from each input signal.
for (
signal,
input_index,
) in self._original_input_signals_to_indices.items():
Angus Lothian
committed
# Check if already added destination.
new_signal = cast(Signal, self._original_components_to_new[signal])
Angus Lothian
committed
if new_signal.destination is None:
if signal.destination is None:
raise ValueError(
f"Input signal #{input_index} is missing destination in SFG"
if signal.destination.operation not in self._original_components_to_new:
Angus Lothian
committed
self._add_operation_connected_tree_copy(
Angus Lothian
committed
elif new_signal.destination.operation in output_operations_set:
# Add directly connected input to output to ordered list.
Angus Lothian
committed
self._components_dfs_order.extend(
new_signal,
new_signal.destination.operation,
]
)
Angus Lothian
committed
self._operations_dfs_order.extend(
Angus Lothian
committed
# Search the graph inwards from each output signal.
for (
signal,
output_index,
) in self._original_output_signals_to_indices.items():
Angus Lothian
committed
# Check if already added source.
new_signal = cast(Signal, self._original_components_to_new[signal])
Angus Lothian
committed
if new_signal.source is None:
if signal.source is None:
raise ValueError(
f"Output signal #{output_index} is missing source in SFG"
if signal.source.operation not in self._original_components_to_new:
self._add_operation_connected_tree_copy(signal.source.operation)
Angus Lothian
committed
def __str__(self) -> str:
"""Return a string representation of this SFG."""
Angus Lothian
committed
string_io = StringIO()
string_io.write(super().__str__() + "\n")
string_io.write("Internal Operations:\n")
line = "-" * 100 + "\n"
string_io.write(line)
for operation in self.get_operations_topological_order():
Angus Lothian
committed
string_io.write(line)
return string_io.getvalue()
self, *src: Optional[SignalSourceProvider], name: Name = Name("")
Return a new independent SFG instance that is identical to this SFG
except without any of its external connections.
return SFG(
inputs=self._input_operations,
outputs=self._output_operations,
id_number_offset=self.id_number_offset,
Angus Lothian
committed
@classmethod
def type_name(cls) -> TypeName:
Angus Lothian
committed
def evaluate(self, *args):
result = self.evaluate_outputs(args)
n = len(result)
return None if n == 0 else result[0] if n == 1 else result
results: Optional[MutableResultMap] = None,
delays: Optional[MutableDelayMap] = None,
prefix: str = "",
bits_override: Optional[int] = None,
truncate: bool = True,
) -> Number:
Angus Lothian
committed
if index < 0 or index >= self.output_count:
raise IndexError(
"Output index out of range (expected"
f" 0-{self.output_count - 1}, got {index})"
)
Angus Lothian
committed
if len(input_values) != self.input_count:
raise ValueError(
"Wrong number of inputs supplied to SFG for evaluation"
f" (expected {self.input_count}, got {len(input_values)})"
)
Angus Lothian
committed
if results is None:
results = {}
if delays is None:
delays = {}
# Set the values of our input operations to the given input values.
for op, arg in zip(
self._input_operations,
self.truncate_inputs(input_values, bits_override)
if truncate
else input_values,
):
Angus Lothian
committed
op.value = arg
deferred_delays = []
value = self._evaluate_source(
self._output_operations[index].input(0).signals[0].source,
results,
delays,
prefix,
bits_override,
truncate,
deferred_delays,
)
Angus Lothian
committed
while deferred_delays:
new_deferred_delays = []
for key_base, key, src in deferred_delays:
self._do_evaluate_source(
key_base,
key,
src,
results,
delays,
prefix,
bits_override,
truncate,
new_deferred_delays,
)
Angus Lothian
committed
deferred_delays = new_deferred_delays
results[self.key(index, prefix)] = value
return value
def connect_external_signals_to_components(self) -> bool:
"""
Connects any external signals to this SFG's internal operations.
This SFG becomes unconnected to the SFG it is a component off,
causing it to become invalid afterwards. Returns True if successful,
False otherwise.
Angus Lothian
committed
if len(self.inputs) != len(self.input_operations):
raise IndexError(
f"Number of inputs ({len(self.inputs)}) does not match the"
f" number of input_operations ({len(self.input_operations)})"
" in SFG."
Angus Lothian
committed
if len(self.outputs) != len(self.output_operations):
raise IndexError(
f"Number of outputs ({len(self.outputs)}) does not match the"
f" number of output_operations ({len(self.output_operations)})"
" in SFG."
Angus Lothian
committed
if len(self.input_signals) == 0:
return False
if len(self.output_signals) == 0:
return False
# For each input_signal, connect it to the corresponding operation
for input_port, input_operation in zip(self.inputs, self.input_operations):
destination = input_operation.output(0).signals[0].destination
if destination is None:
raise ValueError("Missing destination in signal.")
destination.clear()
input_port.signals[0].set_destination(destination)
Angus Lothian
committed
# For each output_signal, connect it to the corresponding operation
for output_port, output_operation in zip(self.outputs, self.output_operations):
Angus Lothian
committed
src = output_operation.input(0).signals[0].source
Angus Lothian
committed
src.clear()
Angus Lothian
committed
return True
@property
def input_operations(self) -> Sequence[Operation]:
Get the internal input operations in the same order as their respective input
ports.
Angus Lothian
committed
return self._input_operations
@property
def output_operations(self) -> Sequence[Operation]:
Get the internal output operations in the same order as their respective output
ports.
Angus Lothian
committed
return self._output_operations
def split(self) -> Iterable[Operation]:
return self.operations
Angus Lothian
committed
return self
def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
"""
Return which inputs that the output depends on.
Parameters
----------
output_index : int
The output index.
Returns
-------
A list of inputs that are required to compute the output with the given
*output_index*.
Angus Lothian
committed
if output_index < 0 or output_index >= self.output_count:
raise IndexError(
"Output index out of range (expected"
f" 0-{self.output_count - 1}, got {output_index})"
)
Angus Lothian
committed
input_indexes_required = []
sfg_input_operations_to_indexes = {
input_op: index for index, input_op in enumerate(self._input_operations)
Angus Lothian
committed
output_op = self._output_operations[output_index]
queue: Deque[Operation] = deque([output_op])
visited: Set[Operation] = {output_op}
Angus Lothian
committed
while queue:
op = queue.popleft()
if isinstance(op, Input):
if op in sfg_input_operations_to_indexes:
input_indexes_required.append(sfg_input_operations_to_indexes[op])
Angus Lothian
committed
del sfg_input_operations_to_indexes[op]
for input_port in op.inputs:
for signal in input_port.signals:
if signal.source is not None:
new_op = signal.source.operation
if new_op not in visited:
queue.append(new_op)
visited.add(new_op)
return input_indexes_required
def copy_component(self, *args, **kwargs) -> GraphComponent:
return super().copy_component(
*args,
**kwargs,
inputs=self._input_operations,
outputs=self._output_operations,
id_number_offset=self.id_number_offset,
name=self.name,
)
Angus Lothian
committed
@property
def id_number_offset(self) -> GraphIDNumber:
"""
Get the graph id number offset of the graph id generator for this SFG.
Angus Lothian
committed
return self._graph_id_generator.id_number_offset
@property
Angus Lothian
committed
"""Get all components of this graph in depth-first order."""
return self._components_dfs_order
@property
Angus Lothian
committed
"""Get all operations of this graph in depth-first order."""
return list(self._operations_dfs_order)
Angus Lothian
committed
def find_by_type_name(self, type_name: TypeName) -> Sequence[GraphComponent]:
"""
Find all components in this graph with the specified type name.
Angus Lothian
committed
Returns an empty sequence if no components were found.
type_name : TypeName
The TypeName of the desired components.
components = [
val for key, val in self._components_by_id.items() if p.match(key)
]
Angus Lothian
committed
return components
def find_by_id(self, graph_id: GraphID) -> Optional[GraphComponent]:
"""
Find the graph component with the specified ID.
Angus Lothian
committed
Returns None if the component was not found.
graph_id : GraphID
Graph ID of the desired component.
Angus Lothian
committed
return self._components_by_id.get(graph_id, None)
Angus Lothian
committed
def find_by_name(self, name: Name) -> Sequence[GraphComponent]:
"""
Find all graph components with the specified name.
Angus Lothian
committed
Returns an empty sequence if no components were found.
name : Name
Name of the desired component(s)
Angus Lothian
committed
"""
return self._components_by_name.get(name, [])
def find_result_keys_by_name(
self, name: Name, output_index: int = 0
) -> Sequence[ResultKey]:
"""
Find all graph components with the specified name and
Angus Lothian
committed
return a sequence of the keys to use when fetching their results
from a simulation.
name : Name
Name of the desired component(s)
output_index : int, default: 0
The desired output index to get the result from
Angus Lothian
committed
keys = []
for comp in self.find_by_name(name):
if isinstance(comp, Operation):
keys.append(comp.key(output_index, comp.graph_id))
return keys
def replace_component(self, component: Operation, graph_id: GraphID) -> "SFG":
"""
Find and replace all components matching either on GraphID, Type or both.
Angus Lothian
committed
Then return a new deepcopy of the sfg with the replaced component.
component : Operation
The new component(s), e.g. Multiplication
graph_id : GraphID
The GraphID to match the component to replace.
Angus Lothian
committed
"""
sfg_copy = self() # Copy to not mess with this SFG.
component_copy = sfg_copy.find_by_id(graph_id)
if component_copy is None or not isinstance(component_copy, Operation):
raise ValueError("No operation matching the criteria found")
if component_copy.output_count != component.output_count:
raise TypeError("The output count may not differ between the operations")
if component_copy.input_count != component.input_count:
raise TypeError("The input count may not differ between the operations")
Angus Lothian
committed
for index_in, inp in enumerate(component_copy.inputs):
for signal in inp.signals:
signal.remove_destination()
signal.set_destination(component.input(index_in))
for index_out, outp in enumerate(component_copy.outputs):
for signal in outp.signals:
signal.remove_source()
signal.set_source(component.output(index_out))
return sfg_copy() # Copy again to update IDs.
def insert_operation(
self, component: Operation, output_comp_id: GraphID
) -> Optional["SFG"]:
"""
Insert an operation in the SFG after a given source operation.
The source operation output count must match the input count of the operation
as well as the output.
Angus Lothian
committed
Then return a new deepcopy of the sfg with the inserted component.
component : Operation
The new component, e.g. Multiplication.
output_comp_id : GraphID
The source operation GraphID to connect from.
Angus Lothian
committed
"""
# Preserve the original SFG by creating a copy.
sfg_copy = self()
output_comp = cast(Operation, sfg_copy.find_by_id(output_comp_id))
Angus Lothian
committed
if output_comp is None:
return None
raise TypeError("Source operation cannot be an output operation.")
if len(output_comp.output_signals) != component.input_count:
raise TypeError(
"Source operation output count"
f" ({len(output_comp.output_signals)}) does not match input"
f" count for component ({component.input_count})."
)
if len(output_comp.output_signals) != component.output_count:
raise TypeError(
"Destination operation input count does not match output for component."
Angus Lothian
committed
for index, signal_in in enumerate(output_comp.output_signals):
destination = cast(InputPort, signal_in.destination)
Angus Lothian
committed
signal_in.set_destination(component.input(index))
destination.connect(component.output(index))
# Recreate the newly coupled SFG so that all attributes are correct.
return sfg_copy()
def remove_operation(self, operation_id: GraphID) -> Union["SFG", None]:
Returns a version of the SFG where the operation with the specified GraphID
removed.
The operation must have the same amount of input- and output ports or a
ValueError is raised. If no operation with the entered operation_id is found
then returns None and does nothing.
operation_id : GraphID
The GraphID of the operation to remove.
Angus Lothian
committed
sfg_copy = self()
operation = cast(Operation, sfg_copy.find_by_id(operation_id))
Angus Lothian
committed
if operation is None:
return None
if operation.input_count != operation.output_count:
raise ValueError(
"Different number of input and output ports of operation with"
" the specified id"
)
Angus Lothian
committed
for i, outport in enumerate(operation.outputs):
if outport.signal_count > 0:
if (
operation.input(i).signal_count > 0
and operation.input(i).signals[0].source is not None
):
Angus Lothian
committed
in_sig = operation.input(i).signals[0]
Angus Lothian
committed
source_port.remove_signal(in_sig)
operation.input(i).remove_signal(in_sig)
for out_sig in outport.signals.copy():
out_sig.set_source(source_port)
else:
for out_sig in outport.signals.copy():
out_sig.remove_source()
else:
if operation.input(i).signal_count > 0:
in_sig = operation.input(i).signals[0]
operation.input(i).remove_signal(in_sig)
return sfg_copy()
def get_precedence_list(self) -> Sequence[Sequence[OutputPort]]:
"""
Returns a precedence list of the SFG where each element in n:th the
list consists of elements that are executed in the n:th step. If the
precedence list already has been calculated for the current SFG then
return the cached version.
"""
Angus Lothian
committed
if self._precedence_list:
return self._precedence_list
# Find all operations with only outputs and no inputs.
no_input_ops = list(filter(lambda op: op.input_count == 0, self.operations))
Angus Lothian
committed
delay_ops = self.find_by_type_name(Delay.type_name())
# Find all first iter output ports for precedence
first_iter_ports = [
op.output(i)
for op in (no_input_ops + delay_ops)
for i in range(op.output_count)
]
Angus Lothian
committed
self._precedence_list = self._traverse_for_precedence_list(first_iter_ports)
Angus Lothian
committed
return self._precedence_list
self.precedence_graph().view()
def precedence_graph(self) -> Digraph:
Angus Lothian
committed
p_list = self.get_precedence_list()
pg = Digraph()
Angus Lothian
committed
# Creates nodes for each output port in the precedence list
for i in range(len(p_list)):
ports = p_list[i]
sub.attr(label=f"N{i}")
Angus Lothian
committed
for port in ports:
if port.operation.output_count > 1:
sub.node(
port_string,
shape='rectangle',
height="0.1",
width="0.1",
)
shape='rectangle',
height="0.1",
width="0.1",
# Creates edges for each output port and creates nodes for each operation
# and edges for them as well
Angus Lothian
committed
for i in range(len(p_list)):
ports = p_list[i]
for port in ports:
source_label = port.operation.graph_id
Angus Lothian
committed
for signal in port.signals:
destination_label = destination.operation.graph_id
destination_node = (
destination_label + "In"
if isinstance(destination.operation, Delay)
else destination_label
)
pg.edge(node_node, destination_node)
destination_node,
label=destination_label,
shape=_OPERATION_SHAPE[destination.operation.type_name()],
source_node = (
source_label + "Out"
if port.operation.type_name() == Delay.type_name()
else source_label
)
pg.edge(source_node, node_node)
pg.node(
source_node,
label=source_label,
shape=_OPERATION_SHAPE[port.operation.type_name()],
)
Angus Lothian
committed
Angus Lothian
committed
def print_precedence_graph(self) -> None:
"""
Print a representation of the SFG's precedence list to the standard out.
If the precedence list already has been calculated then it uses the
cached version, otherwise it calculates the precedence list and then
prints it.
"""
Angus Lothian
committed
precedence_list = self.get_precedence_list()
line = "-" * 120
out_str = StringIO()
out_str.write(line)
printed_ops = set()
for iter_num, iterable in enumerate(precedence_list, start=1):
for outport_num, outport in enumerate(iterable, start=1):
Angus Lothian
committed
if outport not in printed_ops:
# Only print once per operation, even if it has multiple outports
out_str.write("\n")
out_str.write(str(iter_num))
out_str.write(".")
out_str.write(str(outport_num))
out_str.write(" \t")
out_str.write(str(outport.operation))
printed_ops.add(outport)
out_str.write("\n")
out_str.write(line)
print(out_str.getvalue())
def get_operations_topological_order(self) -> Iterable[Operation]:
"""
Return an Iterable of the Operations in the SFG in topological order.
Feedback loops makes an absolutely correct topological order impossible,
so an approximate topological Order is returned in such cases in this
implementation.
Angus Lothian
committed
if self._operations_topological_order:
return self._operations_topological_order
no_inputs_queue = deque(
list(filter(lambda op: op.input_count == 0, self.operations))
)
remaining_inports_per_operation = {op: op.input_count for op in self.operations}
Angus Lothian
committed
# Maps number of input counts to a queue of seen objects with such a size.
seen_with_inputs_dict: Dict[int, Deque] = defaultdict(deque)
Angus Lothian
committed
seen = set()
top_order = []
if len(no_inputs_queue) == 0:
raise ValueError("Illegal SFG state, dangling signals in SFG.")
Angus Lothian
committed
first_op = no_inputs_queue.popleft()
Angus Lothian
committed
p_queue = PriorityQueue()
p_queue_entry_num = it.count()
# Negative priority as max-heap popping is wanted
p_queue.put((-first_op.output_count, -next(p_queue_entry_num), first_op))
Angus Lothian
committed
operations_left = len(self.operations) - 1
seen_but_not_visited_count = 0
while operations_left > 0:
while not p_queue.empty():
op = p_queue.get()[2]
operations_left -= 1
top_order.append(op)
visited.add(op)
for neighbor_op in op.subsequent_operations:
if neighbor_op not in visited:
remaining_inports_per_operation[neighbor_op] -= 1
remaining_inports = remaining_inports_per_operation[neighbor_op]
Angus Lothian
committed
if remaining_inports == 0:
p_queue.put(
(
-neighbor_op.output_count,
-next(p_queue_entry_num),
neighbor_op,
)
)
Angus Lothian
committed
elif remaining_inports > 0:
if neighbor_op in seen:
seen_with_inputs_dict[remaining_inports + 1].remove(
neighbor_op
)
Angus Lothian
committed
else:
seen.add(neighbor_op)
seen_but_not_visited_count += 1
seen_with_inputs_dict[remaining_inports].append(neighbor_op)
Angus Lothian
committed
# Check if have to fetch Operations from somewhere else since p_queue
# is empty
Angus Lothian
committed
if operations_left > 0:
# First check if can fetch from Operations with no input ports
if no_inputs_queue:
new_op = no_inputs_queue.popleft()
p_queue.put(
(
-new_op.output_count,
-next(p_queue_entry_num),
new_op,
)
)
Angus Lothian
committed
# Else fetch operation with the lowest input count that is not zero
Angus Lothian
committed
elif seen_but_not_visited_count > 0:
for i in it.count(start=1):
seen_inputs_queue = seen_with_inputs_dict[i]
if seen_inputs_queue:
new_op = seen_inputs_queue.popleft()
p_queue.put(
(
-new_op.output_count,
-next(p_queue_entry_num),
new_op,
)
)
Angus Lothian
committed
seen_but_not_visited_count -= 1
break
else:
raise RuntimeError("Disallowed structure in SFG detected")
Angus Lothian
committed
self._operations_topological_order = top_order
return self._operations_topological_order
def set_latency_of_type(self, type_name: TypeName, latency: int) -> None:
"""
Set the latency of all components with the given type name.
Parameters
----------
type_name : TypeName
The type name of the operation. For example, obtained as
``Addition.type_name()``.
latency : int
The latency of the operation.
"""
Angus Lothian
committed
for op in self.find_by_type_name(type_name):
Angus Lothian
committed
def set_execution_time_of_type(
self, type_name: TypeName, execution_time: int
) -> None:
"""
Set the execution time of all operations with the given type name.
Parameters
----------
type_name : TypeName
The type name of the operation. For example, obtained as
``Addition.type_name()``.
execution_time : int
The execution time of the operation.
for op in self.find_by_type_name(type_name):
cast(Operation, op).execution_time = execution_time
def set_latency_offsets_of_type(
self, type_name: TypeName, latency_offsets: Dict[str, int]
) -> None:
"""
Set the latency offsets of all operations with the given type name.
Parameters
----------
type_name : TypeName
The type name of the operation. For example, obtained as
``Addition.type_name()``.
latency_offsets : {"in1": int, ...}
The latency offsets of the inputs and outputs.
Angus Lothian
committed
for op in self.find_by_type_name(type_name):
cast(Operation, op).set_latency_offsets(latency_offsets)
Angus Lothian
committed
def _traverse_for_precedence_list(
self, first_iter_ports: List[OutputPort]