Skip to content
Snippets Groups Projects
signal_flow_graph.py 54.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • """
    B-ASIC Signal Flow Graph Module.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    import itertools as it
    import re
    
    from collections import defaultdict, deque
    from io import StringIO
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from numbers import Number
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from typing import (
        DefaultDict,
    
        Deque,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        Dict,
        Iterable,
        List,
        MutableSet,
        Optional,
        Sequence,
    
        Set,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        Tuple,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        Union,
    
        cast,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from graphviz import Digraph
    
    from b_asic.graph_component import (
        GraphComponent,
        GraphID,
        GraphIDNumber,
        Name,
        TypeName,
    )
    from b_asic.operation import (
        AbstractOperation,
        MutableDelayMap,
        MutableResultMap,
        Operation,
        ResultKey,
    )
    
    from b_asic.port import InputPort, OutputPort, SignalSourceProvider
    
    from b_asic.signal import Signal
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.special_operations import Delay, Input, Output
    
    
    DelayQueue = List[Tuple[str, ResultKey, OutputPort]]
    
    
    class GraphIDGenerator:
        """Generates Graph IDs for objects."""
    
        _next_id_number: DefaultDict[TypeName, GraphIDNumber]
    
    
        def __init__(self, id_number_offset: GraphIDNumber = GraphIDNumber(0)):
    
            """Construct a GraphIDGenerator."""
            self._next_id_number = defaultdict(lambda: id_number_offset)
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def next_id(
            self, type_name: TypeName, used_ids: MutableSet = set()
        ) -> GraphID:
    
            """Get the next graph id for a certain graph id type."""
            self._next_id_number[type_name] += 1
    
            new_id = type_name + str(self._next_id_number[type_name])
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            while new_id in used_ids:
    
                self._next_id_number[type_name] += 1
                new_id = type_name + str(self._next_id_number[type_name])
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return GraphID(new_id)
    
    
        @property
        def id_number_offset(self) -> GraphIDNumber:
            """Get the graph id number offset of this generator."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return GraphIDNumber(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                self._next_id_number.default_factory()
            )  # pylint: disable=not-callable
    
    
    
    class SFG(AbstractOperation):
    
        Construct an SFG given its inputs and outputs.
    
    
        Contains a set of connected operations, forming a new operation.
        Used as a base for simulation, scheduling, etc.
    
    
        Inputs/outputs may be specified using either Input/Output operations
        directly with the *inputs*/*outputs* parameters, or using signals with the
        *input_signals*/*output_signals parameters*. If signals are used, the
        corresponding Input/Output operations will be created automatically.
    
        The *id_number_offset* parameter specifies what number graph IDs will be
        offset by for each new graph component type. IDs start at 1 by default,
        so the default offset of 0 will result in IDs like "c1", "c2", etc.
        while an offset of 3 will result in "c4", "c5", etc.
    
        Parameters
        ----------
        inputs : array of Input, optional
    
        outputs : array of Output, optional
    
        input_signals : array of Signal, optional
    
        output_signals : array of Signal, optional
    
        id_number_offset : GraphIDNumber, optional
    
        name : Name, optional
    
        input_sources :
    
    
        _components_by_id: Dict[GraphID, GraphComponent]
        _components_by_name: DefaultDict[Name, List[GraphComponent]]
        _components_dfs_order: List[GraphComponent]
        _operations_dfs_order: List[Operation]
        _operations_topological_order: List[Operation]
    
        _graph_id_generator: GraphIDGenerator
    
        _input_operations: List[Input]
        _output_operations: List[Output]
    
        _original_components_to_new: Dict[GraphComponent, GraphComponent]
    
        _original_input_signals_to_indices: Dict[Signal, int]
        _original_output_signals_to_indices: Dict[Signal, int]
        _precedence_list: Optional[List[List[OutputPort]]]
    
        _used_ids: Set[GraphID] = set()
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            inputs: Optional[Sequence[Input]] = None,
            outputs: Optional[Sequence[Output]] = None,
            input_signals: Optional[Sequence[Signal]] = None,
            output_signals: Optional[Sequence[Signal]] = None,
    
            id_number_offset: GraphIDNumber = GraphIDNumber(0),
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            input_sources: Optional[
                Sequence[Optional[SignalSourceProvider]]
            ] = None,
        ):
    
            input_signal_count = 0 if input_signals is None else len(input_signals)
            input_operation_count = 0 if inputs is None else len(inputs)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            output_signal_count = (
                0 if output_signals is None else len(output_signals)
            )
    
            output_operation_count = 0 if outputs is None else len(outputs)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=input_signal_count + input_operation_count,
                output_count=output_signal_count + output_operation_count,
                name=name,
                input_sources=input_sources,
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            self._components_by_id = {}
    
            self._used_ids = set()
    
            self._components_by_name = defaultdict(list)
            self._components_dfs_order = []
            self._operations_dfs_order = []
            self._operations_topological_order = []
    
            self._graph_id_generator = GraphIDGenerator(
                GraphIDNumber(id_number_offset)
            )
    
            self._input_operations = []
            self._output_operations = []
            self._original_components_to_new = {}
            self._original_input_signals_to_indices = {}
            self._original_output_signals_to_indices = {}
            self._precedence_list = None
    
            # Setup input signals.
            if input_signals is not None:
                for input_index, signal in enumerate(input_signals):
    
                    if signal in self._original_components_to_new:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        raise ValueError(
                            f"Duplicate input signal {signal!r} in SFG"
                        )
    
                    new_input_op = cast(
                        Input, self._add_component_unconnected_copy(Input())
                    )
                    new_signal = cast(
                        Signal, self._add_component_unconnected_copy(signal)
                    )
    
                    new_signal.set_source(new_input_op.output(0))
                    self._input_operations.append(new_input_op)
                    self._original_input_signals_to_indices[signal] = input_index
    
            # Setup input operations, starting from indices after input signals.
    
            if inputs is not None:
                for input_index, input_op in enumerate(inputs, input_signal_count):
    
                    if input_op in self._original_components_to_new:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        raise ValueError(
                            f"Duplicate input operation {input_op!r} in SFG"
                        )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    new_input_op = cast(
                        Input, self._add_component_unconnected_copy(input_op)
                    )
    
                        if signal in self._original_components_to_new:
                            raise ValueError(
                                "Duplicate input signals connected to input ports"
                                " supplied to SFG constructor."
                            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        new_signal = cast(
                            Signal, self._add_component_unconnected_copy(signal)
                        )
    
                        new_signal.set_source(new_input_op.output(0))
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        self._original_input_signals_to_indices[
                            signal
                        ] = input_index
    
                    self._input_operations.append(new_input_op)
    
            # Setup output signals.
            if output_signals is not None:
                for output_index, signal in enumerate(output_signals):
    
                    new_output_op = cast(
                        Output, self._add_component_unconnected_copy(Output())
                    )
    
                    if signal in self._original_components_to_new:
                        # Signal was already added when setting up inputs.
    
                        new_signal = cast(
                            Signal, self._original_components_to_new[signal]
                        )
    
                        new_signal.set_destination(new_output_op.input(0))
                    else:
                        # New signal has to be created.
    
                        new_signal = cast(
                            Signal, self._add_component_unconnected_copy(signal)
                        )
    
                        new_signal.set_destination(new_output_op.input(0))
    
                    self._output_operations.append(new_output_op)
                    self._original_output_signals_to_indices[signal] = output_index
    
            # Setup output operations, starting from indices after output signals.
            if outputs is not None:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                for output_index, output_op in enumerate(
                    outputs, output_signal_count
                ):
    
                    if output_op in self._original_components_to_new:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        raise ValueError(
                            f"Duplicate output operation {output_op!r} in SFG"
                        )
    
                    new_output_op = cast(
                        Output, self._add_component_unconnected_copy(output_op)
                    )
    
                    for signal in output_op.input(0).signals:
                        if signal in self._original_components_to_new:
                            # Signal was already added when setting up inputs.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            new_signal = cast(
                                Signal, self._original_components_to_new[signal]
                            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            new_signal = cast(
                                Signal,
                                self._add_component_unconnected_copy(signal),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            )
    
                        new_signal.set_destination(new_output_op.input(0))
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        self._original_output_signals_to_indices[
                            signal
                        ] = output_index
    
                    self._output_operations.append(new_output_op)
    
            output_operations_set = set(self._output_operations)
    
            # Search the graph inwards from each input signal.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for (
                signal,
                input_index,
            ) in self._original_input_signals_to_indices.items():
    
                new_signal = cast(Signal, self._original_components_to_new[signal])
    
                if new_signal.destination is None:
                    if signal.destination is None:
                        raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            f"Input signal #{input_index} is missing destination"
                            " in SFG"
                        )
                    if (
                        signal.destination.operation
                        not in self._original_components_to_new
                    ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            signal.destination.operation
                        )
    
                elif new_signal.destination.operation in output_operations_set:
                    # Add directly connected input to output to ordered list.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    source = cast(OutputPort, new_signal.source)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        [
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            source.operation,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            new_signal,
                            new_signal.destination.operation,
                        ]
                    )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        [
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            source.operation,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            new_signal.destination.operation,
                        ]
                    )
    
    
            # Search the graph inwards from each output signal.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for (
                signal,
                output_index,
            ) in self._original_output_signals_to_indices.items():
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                new_signal = cast(Signal, self._original_components_to_new[signal])
    
                if new_signal.source is None:
                    if signal.source is None:
                        raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            f"Output signal #{output_index} is missing source"
                            " in SFG"
                        )
                    if (
                        signal.source.operation
                        not in self._original_components_to_new
                    ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            signal.source.operation
                        )
    
            """Return a string representation of this SFG."""
    
            string_io = StringIO()
            string_io.write(super().__str__() + "\n")
            string_io.write("Internal Operations:\n")
            line = "-" * 100 + "\n"
            string_io.write(line)
    
            for operation in self.get_operations_topological_order():
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                string_io.write(f"{operation}\n")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __call__(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            self, *src: Optional[SignalSourceProvider], name: Name = Name("")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ) -> "SFG":
    
            Return a new independent SFG instance that is identical to this SFG
    
            except without any of its external connections.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return SFG(
                inputs=self._input_operations,
                outputs=self._output_operations,
                id_number_offset=self.id_number_offset,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=src if src else None,
            )
    
            # doc-string inherited.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("sfg")
    
    
        def evaluate(self, *args):
            result = self.evaluate_outputs(args)
            n = len(result)
            return None if n == 0 else result[0] if n == 1 else result
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_output(
            self,
            index: int,
            input_values: Sequence[Number],
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
            truncate: bool = True,
        ) -> Number:
    
            # doc-string inherited
    
            if index < 0 or index >= self.output_count:
                raise IndexError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Output index out of range (expected"
                    f" 0-{self.output_count - 1}, got {index})"
                )
    
            if len(input_values) != self.input_count:
                raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Wrong number of inputs supplied to SFG for evaluation"
                    f" (expected {self.input_count}, got {len(input_values)})"
                )
    
            if results is None:
                results = {}
            if delays is None:
                delays = {}
    
            # Set the values of our input operations to the given input values.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for op, arg in zip(
                self._input_operations,
                self.truncate_inputs(input_values, bits_override)
                if truncate
                else input_values,
            ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            value = self._evaluate_source(
                self._output_operations[index].input(0).signals[0].source,
                results,
                delays,
                prefix,
                bits_override,
                truncate,
                deferred_delays,
            )
    
            while deferred_delays:
                new_deferred_delays = []
                for key_base, key, src in deferred_delays:
                    self._do_evaluate_source(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        key_base,
                        key,
                        src,
                        results,
                        delays,
                        prefix,
                        bits_override,
                        truncate,
                        new_deferred_delays,
                    )
    
                deferred_delays = new_deferred_delays
            results[self.key(index, prefix)] = value
            return value
    
        def connect_external_signals_to_components(self) -> bool:
    
            """
            Connects any external signals to this SFG's internal operations.
            This SFG becomes unconnected to the SFG it is a component off,
            causing it to become invalid afterwards. Returns True if successful,
            False otherwise.
    
            if len(self.inputs) != len(self.input_operations):
                raise IndexError(
    
                    f"Number of inputs ({len(self.inputs)}) does not match the"
                    f" number of input_operations ({len(self.input_operations)})"
                    " in SFG."
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                )
    
            if len(self.outputs) != len(self.output_operations):
                raise IndexError(
    
                    f"Number of outputs ({len(self.outputs)}) does not match the"
                    f" number of output_operations ({len(self.output_operations)})"
                    " in SFG."
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                )
    
            if len(self.input_signals) == 0:
                return False
            if len(self.output_signals) == 0:
                return False
    
            # For each input_signal, connect it to the corresponding operation
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for input_port, input_operation in zip(
                self.inputs, self.input_operations
            ):
    
                dest = input_operation.output(0).signals[0].destination
    
                if dest is None:
                    raise ValueError("Missing destination in signal.")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_port.signals[0].set_destination(dest)
    
            # For each output_signal, connect it to the corresponding operation
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for output_port, output_operation in zip(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                self.outputs, self.output_operations
            ):
    
                src = output_operation.input(0).signals[0].source
    
                if src is None:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    raise ValueError("Missing source in signal.")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                output_port.signals[0].set_source(src)
    
        def input_operations(self) -> Sequence[Operation]:
    
            Get the internal input operations in the same order as their respective input
            ports.
    
        def output_operations(self) -> Sequence[Operation]:
    
            Get the internal output operations in the same order as their respective output
            ports.
    
            return self._output_operations
    
        def split(self) -> Iterable[Operation]:
            return self.operations
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def to_sfg(self) -> "SFG":
    
            return self
    
        def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
    
            """
            Return which inputs that the output depends on.
    
            Parameters
            ----------
            output_index : int
                The output index.
    
            Returns
            -------
    
                A  list of inputs that are required to compute the output with the given
                *output_index*.
    
            if output_index < 0 or output_index >= self.output_count:
                raise IndexError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Output index out of range (expected"
                    f" 0-{self.output_count - 1}, got {output_index})"
                )
    
    
            input_indexes_required = []
            sfg_input_operations_to_indexes = {
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_op: index
                for index, input_op in enumerate(self._input_operations)
            }
    
            output_op = self._output_operations[output_index]
    
            queue: Deque[Operation] = deque([output_op])
            visited: Set[Operation] = {output_op}
    
            while queue:
                op = queue.popleft()
                if isinstance(op, Input):
                    if op in sfg_input_operations_to_indexes:
                        input_indexes_required.append(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            sfg_input_operations_to_indexes[op]
                        )
    
                        del sfg_input_operations_to_indexes[op]
    
                for input_port in op.inputs:
                    for signal in input_port.signals:
                        if signal.source is not None:
                            new_op = signal.source.operation
                            if new_op not in visited:
                                queue.append(new_op)
                                visited.add(new_op)
    
            return input_indexes_required
    
        def copy_component(self, *args, **kwargs) -> GraphComponent:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return super().copy_component(
                *args,
                **kwargs,
                inputs=self._input_operations,
                outputs=self._output_operations,
                id_number_offset=self.id_number_offset,
                name=self.name,
            )
    
    
        @property
        def id_number_offset(self) -> GraphIDNumber:
    
            """
            Get the graph id number offset of the graph id generator for this SFG.
    
            return self._graph_id_generator.id_number_offset
    
        @property
    
        def components(self) -> List[GraphComponent]:
    
            """Get all components of this graph in depth-first order."""
            return self._components_dfs_order
    
        @property
    
        def operations(self) -> List[Operation]:
    
            """Get all operations of this graph in depth-first order."""
            return self._operations_dfs_order
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def find_by_type_name(
            self, type_name: TypeName
        ) -> Sequence[GraphComponent]:
    
            """
            Find all components in this graph with the specified type name.
    
            Returns an empty sequence if no components were found.
    
            Parameters
            ==========
            type_name : TypeName
                The TypeName of the desired components.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            reg = f"{type_name}[0-9]+"
    
            p = re.compile(reg)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            components = [
                val for key, val in self._components_by_id.items() if p.match(key)
            ]
    
    
        def find_by_id(self, graph_id: GraphID) -> Optional[GraphComponent]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Find the graph component with the specified ID.
    
            Returns None if the component was not found.
    
            Parameters
            ==========
    
            graph_id : GraphID
                Graph ID of the desired component.
    
            return self._components_by_id.get(graph_id, None)
    
        def find_by_name(self, name: Name) -> Sequence[GraphComponent]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Find all graph components with the specified name.
    
            Returns an empty sequence if no components were found.
    
            Parameters
            ==========
    
            name : Name
                Name of the desired component(s)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def find_result_keys_by_name(
            self, name: Name, output_index: int = 0
        ) -> Sequence[ResultKey]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Find all graph components with the specified name and
    
            return a sequence of the keys to use when fetching their results
            from a simulation.
    
            Parameters
            ==========
    
            name : Name
                Name of the desired component(s)
            output_index : int, default: 0
                The desired output index to get the result from
    
            keys = []
            for comp in self.find_by_name(name):
                if isinstance(comp, Operation):
                    keys.append(comp.key(output_index, comp.graph_id))
            return keys
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def replace_component(
            self, component: Operation, graph_id: GraphID
        ) -> "SFG":
    
            """
            Find and replace all components matching either on GraphID, Type or both.
    
            Then return a new deepcopy of the sfg with the replaced component.
    
    
            Parameters
            ==========
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            component : Operation
                The new component(s), e.g. Multiplication
            graph_id : GraphID
                The GraphID to match the component to replace.
    
            """
    
            sfg_copy = self()  # Copy to not mess with this SFG.
            component_copy = sfg_copy.find_by_id(graph_id)
    
    
            if component_copy is None or not isinstance(component_copy, Operation):
                raise ValueError("No operation matching the criteria found")
            if component_copy.output_count != component.output_count:
                raise TypeError(
                    "The output count may not differ between the operations"
                )
            if component_copy.input_count != component.input_count:
                raise TypeError(
                    "The input count may not differ between the operations"
                )
    
    
            for index_in, inp in enumerate(component_copy.inputs):
                for signal in inp.signals:
                    signal.remove_destination()
                    signal.set_destination(component.input(index_in))
    
            for index_out, outp in enumerate(component_copy.outputs):
                for signal in outp.signals:
                    signal.remove_source()
                    signal.set_source(component.output(index_out))
    
            return sfg_copy()  # Copy again to update IDs.
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def insert_operation(
            self, component: Operation, output_comp_id: GraphID
        ) -> Optional["SFG"]:
    
            """
            Insert an operation in the SFG after a given source operation.
    
            The source operation output count must match the input count of the operation
            as well as the output.
    
            Then return a new deepcopy of the sfg with the inserted component.
    
    
            Parameters
            ==========
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            component : Operation
                The new component, e.g. Multiplication.
            output_comp_id : GraphID
                The source operation GraphID to connect from.
    
            """
    
            # Preserve the original SFG by creating a copy.
            sfg_copy = self()
    
            output_comp = cast(Operation, sfg_copy.find_by_id(output_comp_id))
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            if isinstance(output_comp, Output):
    
                raise TypeError("Source operation cannot be an output operation.")
            if len(output_comp.output_signals) != component.input_count:
                raise TypeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Source operation output count"
                    f" ({len(output_comp.output_signals)}) does not match input"
                    f" count for component ({component.input_count})."
                )
    
            if len(output_comp.output_signals) != component.output_count:
                raise TypeError(
                    "Destination operation input count does not match output for"
                    " component."
                )
    
    
            for index, signal_in in enumerate(output_comp.output_signals):
    
                destination = cast(InputPort, signal_in.destination)
    
                signal_in.set_destination(component.input(index))
                destination.connect(component.output(index))
    
            # Recreate the newly coupled SFG so that all attributes are correct.
            return sfg_copy()
    
    
        def remove_operation(self, operation_id: GraphID) -> Union["SFG", None]:
    
            Returns a version of the SFG where the operation with the specified GraphID
            removed.
    
            The operation must have the same amount of input- and output ports or a
            ValueError is raised. If no operation with the entered operation_id is found
            then returns None and does nothing.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
            Parameters
            ==========
    
            operation_id : GraphID
                The GraphID of the operation to remove.
    
    
            operation = cast(Operation, sfg_copy.find_by_id(operation_id))
    
            if operation is None:
                return None
    
            if operation.input_count != operation.output_count:
                raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Different number of input and output ports of operation with"
                    " the specified id"
                )
    
    
            for i, outport in enumerate(operation.outputs):
                if outport.signal_count > 0:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    if (
                        operation.input(i).signal_count > 0
                        and operation.input(i).signals[0].source is not None
                    ):
    
                        source_port = cast(OutputPort, in_sig.source)
    
                        source_port.remove_signal(in_sig)
                        operation.input(i).remove_signal(in_sig)
                        for out_sig in outport.signals.copy():
                            out_sig.set_source(source_port)
                    else:
                        for out_sig in outport.signals.copy():
                            out_sig.remove_source()
                else:
                    if operation.input(i).signal_count > 0:
                        in_sig = operation.input(i).signals[0]
                        operation.input(i).remove_signal(in_sig)
    
            return sfg_copy()
    
        def get_precedence_list(self) -> Sequence[Sequence[OutputPort]]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Returns a precedence list of the SFG where each element in n:th the
            list consists of elements that are executed in the n:th step. If the
            precedence list already has been calculated for the current SFG then
            return the cached version.
            """
    
            if self._precedence_list:
                return self._precedence_list
    
            # Find all operations with only outputs and no inputs.
            no_input_ops = list(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                filter(lambda op: op.input_count == 0, self.operations)
            )
    
            delay_ops = self.find_by_type_name(Delay.type_name())
    
            # Find all first iter output ports for precedence
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            first_iter_ports = [
                op.output(i)
                for op in (no_input_ops + delay_ops)
                for i in range(op.output_count)
            ]
    
    
            self._precedence_list = self._traverse_for_precedence_list(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                first_iter_ports
            )
    
    Frans Skarman's avatar
    Frans Skarman committed
        def show_precedence_graph(self) -> None:
    
            self.precedence_graph().view()
    
        def precedence_graph(self) -> Digraph:
    
            p_list = self.get_precedence_list()
            pg = Digraph()
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            pg.attr(rankdir="LR")
    
    
            # Creates nodes for each output port in the precedence list
            for i in range(len(p_list)):
                ports = p_list[i]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                with pg.subgraph(name=f"cluster_{i}") as sub:
                    sub.attr(label=f"N{i+1}")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        portstr = f"{port.operation.graph_id}.{port.index}"
    
                        if port.operation.output_count > 1:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            sub.node(portstr)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            sub.node(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                                portstr,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                                label=port.operation.graph_id,
                            )
    
            # Creates edges for each output port and creates nodes for each operation
            # and edges for them as well
    
            for i in range(len(p_list)):
                ports = p_list[i]
                for port in ports:
                    for signal in port.signals:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        destination = cast(InputPort, signal.destination)
                        if destination.operation.type_name() == Delay.type_name():
                            dest_node = destination.operation.graph_id + "In"
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dest_node = destination.operation.graph_id
                        dest_label = destination.operation.graph_id
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        node_node = f"{port.operation.graph_id}.{port.index}"
    
                        pg.edge(node_node, dest_node)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        pg.node(dest_node, label=dest_label, shape="square")
    
                    if port.operation.type_name() == Delay.type_name():
                        source_node = port.operation.graph_id + "Out"
                    else:
                        source_node = port.operation.graph_id
                    source_label = port.operation.graph_id
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    node_node = f"{port.operation.graph_id}.{port.index}"
    
                    pg.edge(source_node, node_node)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    pg.node(source_node, label=source_label, shape="square")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Print a representation of the SFG's precedence list to the standard out.
            If the precedence list already has been calculated then it uses the
            cached version, otherwise it calculates the precedence list and then
            prints it.
            """
    
            precedence_list = self.get_precedence_list()
    
            line = "-" * 120
            out_str = StringIO()
            out_str.write(line)
    
            printed_ops = set()
    
            for iter_num, iter in enumerate(precedence_list, start=1):
                for outport_num, outport in enumerate(iter, start=1):
                    if outport not in printed_ops:
                        # Only print once per operation, even if it has multiple outports
                        out_str.write("\n")
                        out_str.write(str(iter_num))
                        out_str.write(".")
                        out_str.write(str(outport_num))
                        out_str.write(" \t")
                        out_str.write(str(outport.operation))
                        printed_ops.add(outport)
    
                out_str.write("\n")
                out_str.write(line)
    
            print(out_str.getvalue())
    
        def get_operations_topological_order(self) -> Iterable[Operation]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Return an Iterable of the Operations in the SFG in topological order.
            Feedback loops makes an absolutely correct topological order impossible,
            so an approximate topological Order is returned in such cases in this
            implementation.
    
            if self._operations_topological_order:
                return self._operations_topological_order
    
            no_inputs_queue = deque(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                list(filter(lambda op: op.input_count == 0, self.operations))
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                op: op.input_count for op in self.operations
            }
    
    
            # Maps number of input counts to a queue of seen objects with such a size.
    
            seen_with_inputs_dict: Dict[int, Deque] = defaultdict(deque)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            if len(no_inputs_queue) == 0:
                raise ValueError("Illegal SFG state, dangling signals in SFG.")
    
            visited = {first_op}
    
            p_queue = PriorityQueue()
            p_queue_entry_num = it.count()
            # Negative priority as max-heap popping is wanted
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            p_queue.put(
                (-first_op.output_count, -next(p_queue_entry_num), first_op)
            )
    
    
            operations_left = len(self.operations) - 1
    
            seen_but_not_visited_count = 0
    
            while operations_left > 0:
                while not p_queue.empty():
                    op = p_queue.get()[2]
    
                    operations_left -= 1
                    top_order.append(op)
                    visited.add(op)
    
                    for neighbor_op in op.subsequent_operations:
                        if neighbor_op not in visited:
                            remaining_inports_per_operation[neighbor_op] -= 1
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            remaining_inports = remaining_inports_per_operation[
                                neighbor_op
                            ]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                                    (
                                        -neighbor_op.output_count,
                                        -next(p_queue_entry_num),
                                        neighbor_op,
                                    )
                                )
    
    
                            elif remaining_inports > 0:
                                if neighbor_op in seen:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                                    seen_with_inputs_dict[
                                        remaining_inports + 1
                                    ].remove(neighbor_op)
    
                                else:
                                    seen.add(neighbor_op)
                                    seen_but_not_visited_count += 1
    
                                seen_with_inputs_dict[remaining_inports].append(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                                    neighbor_op
                                )
    
                # Check if have to fetch Operations from somewhere else since p_queue
                # is empty
    
                if operations_left > 0:
                    # First check if can fetch from Operations with no input ports
                    if no_inputs_queue:
                        new_op = no_inputs_queue.popleft()
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        p_queue.put(
                            (
                                -new_op.output_count,
                                -next(p_queue_entry_num),
                                new_op,
                            )
                        )
    
                    # Else fetch operation with the lowest input count that is not zero
    
                    elif seen_but_not_visited_count > 0:
                        for i in it.count(start=1):
                            seen_inputs_queue = seen_with_inputs_dict[i]
                            if seen_inputs_queue:
                                new_op = seen_inputs_queue.popleft()
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                                p_queue.put(
                                    (
                                        -new_op.output_count,
                                        -next(p_queue_entry_num),
                                        new_op,
                                    )
                                )
    
                        raise RuntimeError("Disallowed structure in SFG detected")
    
    
            self._operations_topological_order = top_order
            return self._operations_topological_order
    
        def set_latency_of_type(self, type_name: TypeName, latency: int) -> None:
    
            """
            Set the latency of all components with the given type name.
    
            Parameters
            ----------
            type_name : TypeName