Newer
Older
Angus Lothian
committed
"""B-ASIC Signal Flow Graph Module.
Contains the signal flow graph operation.
Angus Lothian
committed
from collections import defaultdict, deque
from io import StringIO
Angus Lothian
committed
from queue import PriorityQueue
from typing import (
DefaultDict,
Dict,
Iterable,
List,
MutableSet,
Optional,
Sequence,
Tuple,
)
from graphviz import Digraph
from b_asic.graph_component import (
GraphComponent,
GraphID,
GraphIDNumber,
Name,
TypeName,
)
from b_asic.operation import (
AbstractOperation,
MutableDelayMap,
MutableResultMap,
Operation,
ResultKey,
)
from b_asic.port import OutputPort, SignalSourceProvider
from b_asic.special_operations import Delay, Input, Output
Angus Lothian
committed
DelayQueue = List[Tuple[str, ResultKey, OutputPort]]
class GraphIDGenerator:
"""Generates Graph IDs for objects."""
_next_id_number: DefaultDict[TypeName, GraphIDNumber]
def __init__(self, id_number_offset: GraphIDNumber = 0):
"""Construct a GraphIDGenerator."""
self._next_id_number = defaultdict(lambda: id_number_offset)
def next_id(
self, type_name: TypeName, used_ids: MutableSet = set()
) -> GraphID:
Angus Lothian
committed
"""Get the next graph id for a certain graph id type."""
self._next_id_number[type_name] += 1
new_id = type_name + str(self._next_id_number[type_name])
self._next_id_number[type_name] += 1
new_id = type_name + str(self._next_id_number[type_name])
return new_id
Angus Lothian
committed
@property
def id_number_offset(self) -> GraphIDNumber:
"""Get the graph id number offset of this generator."""
return (
self._next_id_number.default_factory()
) # pylint: disable=not-callable
class SFG(AbstractOperation):
"""Signal flow graph.
Angus Lothian
committed
Contains a set of connected operations, forming a new operation.
Used as a base for simulation, scheduling, etc.
Angus Lothian
committed
_components_by_id: Dict[GraphID, GraphComponent]
_components_by_name: DefaultDict[Name, List[GraphComponent]]
_components_dfs_order: List[GraphComponent]
_operations_dfs_order: List[Operation]
_operations_topological_order: List[Operation]
Angus Lothian
committed
_input_operations: List[Input]
_output_operations: List[Output]
_original_components_to_new: MutableSet[GraphComponent]
_original_input_signals_to_indices: Dict[Signal, int]
_original_output_signals_to_indices: Dict[Signal, int]
_precedence_list: Optional[List[List[OutputPort]]]
def __init__(
self,
inputs: Optional[Sequence[Input]] = None,
outputs: Optional[Sequence[Output]] = None,
input_signals: Optional[Sequence[Signal]] = None,
output_signals: Optional[Sequence[Signal]] = None,
id_number_offset: GraphIDNumber = 0,
name: Name = "",
input_sources: Optional[
Sequence[Optional[SignalSourceProvider]]
] = None,
):
Angus Lothian
committed
"""Construct an SFG given its inputs and outputs.
Inputs/outputs may be specified using either Input/Output operations
directly with the inputs/outputs parameters, or using signals with the
input_signals/output_signals parameters. If signals are used, the
corresponding Input/Output operations will be created automatically.
The id_number_offset parameter specifies what number graph IDs will be
offset by for each new graph component type. IDs start at 1 by default,
so the default offset of 0 will result in IDs like "c1", "c2", etc.
while an offset of 3 will result in "c4", "c5", etc.
"""
input_signal_count = 0 if input_signals is None else len(input_signals)
input_operation_count = 0 if inputs is None else len(inputs)
output_signal_count = (
0 if output_signals is None else len(output_signals)
)
Angus Lothian
committed
output_operation_count = 0 if outputs is None else len(outputs)
super().__init__(
input_count=input_signal_count + input_operation_count,
output_count=output_signal_count + output_operation_count,
name=name,
input_sources=input_sources,
)
Angus Lothian
committed
Angus Lothian
committed
self._components_by_name = defaultdict(list)
self._components_dfs_order = []
self._operations_dfs_order = []
self._operations_topological_order = []
self._graph_id_generator = GraphIDGenerator(id_number_offset)
self._input_operations = []
self._output_operations = []
self._original_components_to_new = {}
self._original_input_signals_to_indices = {}
self._original_output_signals_to_indices = {}
self._precedence_list = None
# Setup input signals.
if input_signals is not None:
for input_index, signal in enumerate(input_signals):
assert (
signal not in self._original_components_to_new
), "Duplicate input signals supplied to SFG construcctor."
Angus Lothian
committed
new_input_op = self._add_component_unconnected_copy(Input())
new_signal = self._add_component_unconnected_copy(signal)
new_signal.set_source(new_input_op.output(0))
self._input_operations.append(new_input_op)
self._original_input_signals_to_indices[signal] = input_index
Angus Lothian
committed
# Setup input operations, starting from indices ater input signals.
if inputs is not None:
for input_index, input_op in enumerate(inputs, input_signal_count):
assert (
input_op not in self._original_components_to_new
), "Duplicate input operations supplied to SFG constructor."
Angus Lothian
committed
new_input_op = self._add_component_unconnected_copy(input_op)
for signal in input_op.output(0).signals:
assert signal not in self._original_components_to_new, (
"Duplicate input signals connected to input ports"
" supplied to SFG construcctor."
)
Angus Lothian
committed
new_signal = self._add_component_unconnected_copy(signal)
new_signal.set_source(new_input_op.output(0))
self._original_input_signals_to_indices[
signal
] = input_index
Angus Lothian
committed
self._input_operations.append(new_input_op)
Angus Lothian
committed
# Setup output signals.
if output_signals is not None:
for output_index, signal in enumerate(output_signals):
new_output_op = self._add_component_unconnected_copy(Output())
if signal in self._original_components_to_new:
# Signal was already added when setting up inputs.
new_signal = self._original_components_to_new[signal]
new_signal.set_destination(new_output_op.input(0))
else:
# New signal has to be created.
new_signal = self._add_component_unconnected_copy(signal)
new_signal.set_destination(new_output_op.input(0))
Angus Lothian
committed
self._output_operations.append(new_output_op)
self._original_output_signals_to_indices[signal] = output_index
Angus Lothian
committed
# Setup output operations, starting from indices after output signals.
if outputs is not None:
for output_index, output_op in enumerate(
outputs, output_signal_count
):
assert (
output_op not in self._original_components_to_new
), "Duplicate output operations supplied to SFG constructor."
Angus Lothian
committed
new_output_op = self._add_component_unconnected_copy(output_op)
for signal in output_op.input(0).signals:
new_signal = None
if signal in self._original_components_to_new:
# Signal was already added when setting up inputs.
new_signal = self._original_components_to_new[signal]
else:
# New signal has to be created.
new_signal = self._add_component_unconnected_copy(
Angus Lothian
committed
new_signal.set_destination(new_output_op.input(0))
self._original_output_signals_to_indices[
signal
] = output_index
Angus Lothian
committed
self._output_operations.append(new_output_op)
output_operations_set = set(self._output_operations)
# Search the graph inwards from each input signal.
for (
signal,
input_index,
) in self._original_input_signals_to_indices.items():
Angus Lothian
committed
# Check if already added destination.
new_signal = self._original_components_to_new[signal]
if new_signal.destination is None:
if signal.destination is None:
raise ValueError(
f"Input signal #{input_index} is missing destination"
" in SFG"
)
if (
signal.destination.operation
not in self._original_components_to_new
):
Angus Lothian
committed
self._add_operation_connected_tree_copy(
Angus Lothian
committed
elif new_signal.destination.operation in output_operations_set:
# Add directly connected input to output to ordered list.
self._components_dfs_order.extend(
[
new_signal.source.operation,
new_signal,
new_signal.destination.operation,
]
)
Angus Lothian
committed
self._operations_dfs_order.extend(
[
new_signal.source.operation,
new_signal.destination.operation,
]
)
Angus Lothian
committed
# Search the graph inwards from each output signal.
for (
signal,
output_index,
) in self._original_output_signals_to_indices.items():
Angus Lothian
committed
# Check if already added source.
new_signal = self._original_components_to_new[signal]
if new_signal.source is None:
if signal.source is None:
raise ValueError(
f"Output signal #{output_index} is missing source"
" in SFG"
)
if (
signal.source.operation
not in self._original_components_to_new
):
Angus Lothian
committed
self._add_operation_connected_tree_copy(
Angus Lothian
committed
def __str__(self) -> str:
"""Get a string representation of this SFG."""
string_io = StringIO()
string_io.write(super().__str__() + "\n")
string_io.write("Internal Operations:\n")
line = "-" * 100 + "\n"
string_io.write(line)
for operation in self.get_operations_topological_order():
string_io.write(str(operation) + "\n")
string_io.write(line)
return string_io.getvalue()
def __call__(
self, *src: Optional[SignalSourceProvider], name: Name = ""
) -> "SFG":
"""Get a new independent SFG instance that is identical to this SFG except without any of its external connections.
"""
return SFG(
inputs=self._input_operations,
outputs=self._output_operations,
id_number_offset=self.id_number_offset,
name=name,
input_sources=src if src else None,
)
Angus Lothian
committed
@classmethod
def type_name(cls) -> TypeName:
return "sfg"
def evaluate(self, *args):
result = self.evaluate_outputs(args)
n = len(result)
return None if n == 0 else result[0] if n == 1 else result
def evaluate_output(
self,
index: int,
input_values: Sequence[Number],
results: Optional[MutableResultMap] = None,
delays: Optional[MutableDelayMap] = None,
prefix: str = "",
bits_override: Optional[int] = None,
truncate: bool = True,
) -> Number:
Angus Lothian
committed
if index < 0 or index >= self.output_count:
raise IndexError(
"Output index out of range (expected"
f" 0-{self.output_count - 1}, got {index})"
)
Angus Lothian
committed
if len(input_values) != self.input_count:
raise ValueError(
"Wrong number of inputs supplied to SFG for evaluation"
f" (expected {self.input_count}, got {len(input_values)})"
)
Angus Lothian
committed
if results is None:
results = {}
if delays is None:
delays = {}
# Set the values of our input operations to the given input values.
for op, arg in zip(
self._input_operations,
self.truncate_inputs(input_values, bits_override)
if truncate
else input_values,
):
Angus Lothian
committed
op.value = arg
deferred_delays = []
value = self._evaluate_source(
self._output_operations[index].input(0).signals[0].source,
results,
delays,
prefix,
bits_override,
truncate,
deferred_delays,
)
Angus Lothian
committed
while deferred_delays:
new_deferred_delays = []
for key_base, key, src in deferred_delays:
self._do_evaluate_source(
key_base,
key,
src,
results,
delays,
prefix,
bits_override,
truncate,
new_deferred_delays,
)
Angus Lothian
committed
deferred_delays = new_deferred_delays
results[self.key(index, prefix)] = value
return value
def connect_external_signals_to_components(self) -> bool:
"""Connects any external signals to this SFG's internal operations. This SFG becomes unconnected to the SFG
it is a component off, causing it to become invalid afterwards. Returns True if succesful, False otherwise.
"""
Angus Lothian
committed
if len(self.inputs) != len(self.input_operations):
raise IndexError(
f"Number of inputs does not match the number of"
f" input_operations in SFG."
)
Angus Lothian
committed
if len(self.outputs) != len(self.output_operations):
raise IndexError(
f"Number of outputs does not match the number of"
f" output_operations SFG."
)
Angus Lothian
committed
if len(self.input_signals) == 0:
return False
if len(self.output_signals) == 0:
return False
# For each input_signal, connect it to the corresponding operation
for port, input_operation in zip(self.inputs, self.input_operations):
dest = input_operation.output(0).signals[0].destination
dest.clear()
port.signals[0].set_destination(dest)
# For each output_signal, connect it to the corresponding operation
for port, output_operation in zip(
self.outputs, self.output_operations
):
Angus Lothian
committed
src = output_operation.input(0).signals[0].source
src.clear()
port.signals[0].set_source(src)
return True
@property
def input_operations(self) -> Sequence[Operation]:
"""Get the internal input operations in the same order as their respective input ports.
"""
Angus Lothian
committed
return self._input_operations
@property
def output_operations(self) -> Sequence[Operation]:
"""Get the internal output operations in the same order as their respective output ports.
"""
Angus Lothian
committed
return self._output_operations
def split(self) -> Iterable[Operation]:
return self.operations
Angus Lothian
committed
return self
def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
if output_index < 0 or output_index >= self.output_count:
raise IndexError(
"Output index out of range (expected"
f" 0-{self.output_count - 1}, got {output_index})"
)
Angus Lothian
committed
input_indexes_required = []
sfg_input_operations_to_indexes = {
input_op: index
for index, input_op in enumerate(self._input_operations)
}
Angus Lothian
committed
output_op = self._output_operations[output_index]
queue = deque([output_op])
Angus Lothian
committed
while queue:
op = queue.popleft()
if isinstance(op, Input):
if op in sfg_input_operations_to_indexes:
input_indexes_required.append(
Angus Lothian
committed
del sfg_input_operations_to_indexes[op]
for input_port in op.inputs:
for signal in input_port.signals:
if signal.source is not None:
new_op = signal.source.operation
if new_op not in visited:
queue.append(new_op)
visited.add(new_op)
return input_indexes_required
def copy_component(self, *args, **kwargs) -> GraphComponent:
return super().copy_component(
*args,
**kwargs,
inputs=self._input_operations,
outputs=self._output_operations,
id_number_offset=self.id_number_offset,
name=self.name,
)
Angus Lothian
committed
@property
def id_number_offset(self) -> GraphIDNumber:
"""Get the graph id number offset of the graph id generator for this SFG.
"""
Angus Lothian
committed
return self._graph_id_generator.id_number_offset
@property
def components(self) -> Iterable[GraphComponent]:
"""Get all components of this graph in depth-first order."""
return self._components_dfs_order
@property
def operations(self) -> Iterable[Operation]:
"""Get all operations of this graph in depth-first order."""
return self._operations_dfs_order
def find_by_type_name(
self, type_name: TypeName
) -> Sequence[GraphComponent]:
Angus Lothian
committed
"""Find all components in this graph with the specified type name.
Returns an empty sequence if no components were found.
Angus Lothian
committed
type_name: The type_name of the desired components.
components = [
val for key, val in self._components_by_id.items() if p.match(key)
]
Angus Lothian
committed
return components
def find_by_id(self, graph_id: GraphID) -> Optional[GraphComponent]:
Angus Lothian
committed
"""Find the graph component with the specified ID.
Returns None if the component was not found.
Angus Lothian
committed
graph_id: Graph ID of the desired component.
Angus Lothian
committed
return self._components_by_id.get(graph_id, None)
Angus Lothian
committed
def find_by_name(self, name: Name) -> Sequence[GraphComponent]:
"""Find all graph components with the specified name.
Returns an empty sequence if no components were found.
Angus Lothian
committed
Keyword arguments:
name: Name of the desired component(s)
"""
return self._components_by_name.get(name, [])
def find_result_keys_by_name(
self, name: Name, output_index: int = 0
) -> Sequence[ResultKey]:
Angus Lothian
committed
"""Find all graph components with the specified name and
return a sequence of the keys to use when fetching their results
from a simulation.
Angus Lothian
committed
name: Name of the desired component(s)
output_index: The desired output index to get the result from
Angus Lothian
committed
keys = []
for comp in self.find_by_name(name):
if isinstance(comp, Operation):
keys.append(comp.key(output_index, comp.graph_id))
return keys
def replace_component(
self, component: Operation, graph_id: GraphID
) -> "SFG":
Angus Lothian
committed
"""Find and replace all components matching either on GraphID, Type or both.
Then return a new deepcopy of the sfg with the replaced component.
Arguments:
component: The new component(s), e.g Multiplication
graph_id: The GraphID to match the component to replace.
"""
sfg_copy = self() # Copy to not mess with this SFG.
component_copy = sfg_copy.find_by_id(graph_id)
assert component_copy is not None and isinstance(
component_copy, Operation
), "No operation matching the criteria found"
assert (
component_copy.output_count == component.output_count
), "The output count may not differ between the operations"
assert (
component_copy.input_count == component.input_count
), "The input count may not differ between the operations"
Angus Lothian
committed
for index_in, inp in enumerate(component_copy.inputs):
for signal in inp.signals:
signal.remove_destination()
signal.set_destination(component.input(index_in))
for index_out, outp in enumerate(component_copy.outputs):
for signal in outp.signals:
signal.remove_source()
signal.set_source(component.output(index_out))
return sfg_copy() # Copy again to update IDs.
def insert_operation(
self, component: Operation, output_comp_id: GraphID
) -> Optional["SFG"]:
Angus Lothian
committed
"""Insert an operation in the SFG after a given source operation.
The source operation output count must match the input count of the operation as well as the output
Then return a new deepcopy of the sfg with the inserted component.
Arguments:
component: The new component, e.g Multiplication.
output_comp_id: The source operation GraphID to connect from.
"""
# Preserve the original SFG by creating a copy.
sfg_copy = self()
output_comp = sfg_copy.find_by_id(output_comp_id)
if output_comp is None:
return None
assert not isinstance(
output_comp, Output
), "Source operation can not be an output operation."
assert len(output_comp.output_signals) == component.input_count, (
"Source operation output count does not match input count for"
" component."
)
assert len(output_comp.output_signals) == component.output_count, (
"Destination operation input count does not match output for"
" component."
)
Angus Lothian
committed
for index, signal_in in enumerate(output_comp.output_signals):
destination = signal_in.destination
signal_in.set_destination(component.input(index))
destination.connect(component.output(index))
# Recreate the newly coupled SFG so that all attributes are correct.
return sfg_copy()
def remove_operation(self, operation_id: GraphID) -> "SFG":
"""Returns a version of the SFG where the operation with the specified GraphID removed.
The operation has to have the same amount of input- and output ports or a ValueError will
be raised. If no operation with the entered operation_id is found then returns None and does nothing.
"""
Angus Lothian
committed
sfg_copy = self()
operation = sfg_copy.find_by_id(operation_id)
if operation is None:
return None
if operation.input_count != operation.output_count:
raise ValueError(
"Different number of input and output ports of operation with"
" the specified id"
)
Angus Lothian
committed
for i, outport in enumerate(operation.outputs):
if outport.signal_count > 0:
if (
operation.input(i).signal_count > 0
and operation.input(i).signals[0].source is not None
):
Angus Lothian
committed
in_sig = operation.input(i).signals[0]
source_port = in_sig.source
source_port.remove_signal(in_sig)
operation.input(i).remove_signal(in_sig)
for out_sig in outport.signals.copy():
out_sig.set_source(source_port)
else:
for out_sig in outport.signals.copy():
out_sig.remove_source()
else:
if operation.input(i).signal_count > 0:
in_sig = operation.input(i).signals[0]
operation.input(i).remove_signal(in_sig)
return sfg_copy()
def get_precedence_list(self) -> Sequence[Sequence[OutputPort]]:
"""Returns a Precedence list of the SFG where each element in n:th the list consists
of elements that are executed in the n:th step. If the precedence list already has been
calculated for the current SFG then returns the cached version."""
if self._precedence_list:
return self._precedence_list
# Find all operations with only outputs and no inputs.
no_input_ops = list(
filter(lambda op: op.input_count == 0, self.operations)
)
Angus Lothian
committed
delay_ops = self.find_by_type_name(Delay.type_name())
# Find all first iter output ports for precedence
first_iter_ports = [
op.output(i)
for op in (no_input_ops + delay_ops)
for i in range(op.output_count)
]
Angus Lothian
committed
self._precedence_list = self._traverse_for_precedence_list(
Angus Lothian
committed
return self._precedence_list
def show_precedence_graph(self) -> None:
self.precedence_graph().view()
def precedence_graph(self) -> Digraph:
Angus Lothian
committed
p_list = self.get_precedence_list()
pg = Digraph()
Angus Lothian
committed
# Creates nodes for each output port in the precedence list
for i in range(len(p_list)):
ports = p_list[i]
with pg.subgraph(name="cluster_" + str(i)) as sub:
sub.attr(label="N" + str(i + 1))
Angus Lothian
committed
for port in ports:
if port.operation.output_count > 1:
sub.node(
port.operation.graph_id + "." + str(port.index)
)
sub.node(
port.operation.graph_id + "." + str(port.index),
label=port.operation.graph_id,
)
Angus Lothian
committed
# Creates edges for each output port and creates nodes for each operation and edges for them as well
for i in range(len(p_list)):
ports = p_list[i]
for port in ports:
for signal in port.signals:
if (
signal.destination.operation.type_name()
== Delay.type_name()
):
dest_node = (
signal.destination.operation.graph_id + "In"
)
else:
dest_node = signal.destination.operation.graph_id
dest_label = signal.destination.operation.graph_id
node_node = port.operation.graph_id + "." + str(port.index)
pg.edge(node_node, dest_node)
if port.operation.type_name() == Delay.type_name():
source_node = port.operation.graph_id + "Out"
else:
source_node = port.operation.graph_id
source_label = port.operation.graph_id
node_node = port.operation.graph_id + "." + str(port.index)
pg.edge(source_node, node_node)
pg.node(source_node, label=source_label, shape="square")
Angus Lothian
committed
Angus Lothian
committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
def print_precedence_graph(self) -> None:
"""Prints a representation of the SFG's precedence list to the standard out.
If the precedence list already has been calculated then it uses the cached version,
otherwise it calculates the precedence list and then prints it."""
precedence_list = self.get_precedence_list()
line = "-" * 120
out_str = StringIO()
out_str.write(line)
printed_ops = set()
for iter_num, iter in enumerate(precedence_list, start=1):
for outport_num, outport in enumerate(iter, start=1):
if outport not in printed_ops:
# Only print once per operation, even if it has multiple outports
out_str.write("\n")
out_str.write(str(iter_num))
out_str.write(".")
out_str.write(str(outport_num))
out_str.write(" \t")
out_str.write(str(outport.operation))
printed_ops.add(outport)
out_str.write("\n")
out_str.write(line)
print(out_str.getvalue())
def get_operations_topological_order(self) -> Iterable[Operation]:
"""Returns an Iterable of the Operations in the SFG in Topological Order.
Feedback loops makes an absolutely correct Topological order impossible, so an
approximative Topological Order is returned in such cases in this implementation.
"""
Angus Lothian
committed
if self._operations_topological_order:
return self._operations_topological_order
no_inputs_queue = deque(
list(filter(lambda op: op.input_count == 0, self.operations))
)
Angus Lothian
committed
remaining_inports_per_operation = {
Angus Lothian
committed
# Maps number of input counts to a queue of seen objects with such a size.
seen_with_inputs_dict = defaultdict(deque)
seen = set()
top_order = []
assert (
len(no_inputs_queue) > 0
), "Illegal SFG state, dangling signals in SFG."
Angus Lothian
committed
first_op = no_inputs_queue.popleft()
Angus Lothian
committed
p_queue = PriorityQueue()
p_queue_entry_num = it.count()
# Negative priority as max-heap popping is wanted
p_queue.put(
(-first_op.output_count, -next(p_queue_entry_num), first_op)
)
Angus Lothian
committed
operations_left = len(self.operations) - 1
seen_but_not_visited_count = 0
while operations_left > 0:
while not p_queue.empty():
op = p_queue.get()[2]
operations_left -= 1
top_order.append(op)
visited.add(op)
for neighbor_op in op.subsequent_operations:
if neighbor_op not in visited:
remaining_inports_per_operation[neighbor_op] -= 1
remaining_inports = remaining_inports_per_operation[
neighbor_op
]
Angus Lothian
committed
if remaining_inports == 0:
p_queue.put(
(
-neighbor_op.output_count,
-next(p_queue_entry_num),
neighbor_op,
)
)
Angus Lothian
committed
elif remaining_inports > 0:
if neighbor_op in seen:
seen_with_inputs_dict[
remaining_inports + 1
].remove(neighbor_op)
Angus Lothian
committed
else:
seen.add(neighbor_op)
seen_but_not_visited_count += 1
seen_with_inputs_dict[remaining_inports].append(
Angus Lothian
committed
# Check if have to fetch Operations from somewhere else since p_queue is empty
if operations_left > 0:
# First check if can fetch from Operations with no input ports
if no_inputs_queue:
new_op = no_inputs_queue.popleft()
p_queue.put(
(
-new_op.output_count,
-next(p_queue_entry_num),
new_op,
)
)
Angus Lothian
committed
# Else fetch operation with lowest input count that is not zero
elif seen_but_not_visited_count > 0:
for i in it.count(start=1):
seen_inputs_queue = seen_with_inputs_dict[i]
if seen_inputs_queue:
new_op = seen_inputs_queue.popleft()
p_queue.put(
(
-new_op.output_count,
-next(p_queue_entry_num),
new_op,
)
)
Angus Lothian
committed
seen_but_not_visited_count -= 1
break
else:
raise RuntimeError("Unallowed structure in SFG detected")
self._operations_topological_order = top_order
return self._operations_topological_order
def set_latency_of_type(self, type_name: TypeName, latency: int) -> None:
"""Set the latency of all components with the given type name."""
for op in self.find_by_type_name(type_name):
op.set_latency(latency)
def set_execution_time_of_type(
self, type_name: TypeName, execution_time: int
) -> None:
"""Set the execution time of all components with the given type name.
"""
for op in self.find_by_type_name(type_name):
op.execution_time = execution_time
def set_latency_offsets_of_type(
self, type_name: TypeName, latency_offsets: Dict[str, int]
) -> None:
"""Set the latency offset of all components with the given type name.
"""
Angus Lothian
committed
for op in self.find_by_type_name(type_name):
op.set_latency_offsets(latency_offsets)
def _traverse_for_precedence_list(
self, first_iter_ports: List[OutputPort]
) -> List[List[OutputPort]]:
Angus Lothian
committed
# Find dependencies of output ports and input ports.
remaining_inports_per_operation = {
Angus Lothian
committed
# Traverse output ports for precedence
curr_iter_ports = first_iter_ports
precedence_list = []
while curr_iter_ports:
# Add the found ports to the current iter
precedence_list.append(curr_iter_ports)
next_iter_ports = []
for outport in curr_iter_ports:
for signal in outport.signals:
new_inport = signal.destination
# Don't traverse over delays.
if new_inport is not None and not isinstance(
new_inport.operation, Delay
):
Angus Lothian
committed
new_op = new_inport.operation
remaining_inports_per_operation[new_op] -= 1
if remaining_inports_per_operation[new_op] == 0:
next_iter_ports.extend(new_op.outputs)
curr_iter_ports = next_iter_ports
return precedence_list
def _add_component_unconnected_copy(
self, original_component: GraphComponent
) -> GraphComponent:
assert (
original_component not in self._original_components_to_new
), "Tried to add duplicate SFG component"
Angus Lothian
committed
new_component = original_component.copy_component()
self._original_components_to_new[original_component] = new_component
if (
not new_component.graph_id
or new_component.graph_id in self._used_ids
):
new_id = self._graph_id_generator.next_id(
new_component.type_name(), self._used_ids
)
new_component.graph_id = new_id
self._used_ids.add(new_component.graph_id)
self._components_by_id[new_component.graph_id] = new_component
Angus Lothian
committed
self._components_by_name[new_component.name].append(new_component)
return new_component
def _add_operation_connected_tree_copy(self, start_op: Operation) -> None:
op_stack = deque([start_op])
while op_stack:
original_op = op_stack.pop()
# Add or get the new copy of the operation.
new_op = None
if original_op not in self._original_components_to_new:
new_op = self._add_component_unconnected_copy(original_op)
self._components_dfs_order.append(new_op)
self._operations_dfs_order.append(new_op)
else:
new_op = self._original_components_to_new[original_op]
# Connect input ports to new signals.
for original_input_port in original_op.inputs:
if original_input_port.signal_count < 1:
raise ValueError("Unconnected input port in SFG")
for original_signal in original_input_port.signals:
# Check if the signal is one of the SFG's input signals.
if (
original_signal
in self._original_input_signals_to_indices
):
Angus Lothian
committed
# New signal already created during first step of constructor.
new_signal = self._original_components_to_new[
original_signal
]
Angus Lothian
committed
new_signal.set_destination(
Angus Lothian
committed
self._components_dfs_order.extend(
Angus Lothian
committed
self._operations_dfs_order.append(
Angus Lothian
committed
# Check if the signal has not been added before.
elif (
original_signal not in self._original_components_to_new
):
Angus Lothian
committed
if original_signal.source is None:
raise ValueError(
Angus Lothian
committed
new_signal = self._add_component_unconnected_copy(
Angus Lothian
committed
new_signal.set_destination(
Angus Lothian
committed
self._components_dfs_order.append(new_signal)