Newer
Older
Angus Lothian
committed
"""B-ASIC Signal Flow Graph Module.
Contains the signal flow graph operation.
Angus Lothian
committed
from typing import List, Iterable, Sequence, Dict, Optional, DefaultDict, MutableSet, Tuple
from numbers import Number
from collections import defaultdict, deque
from io import StringIO
from queue import PriorityQueue
import itertools as it
from graphviz import Digraph
Angus Lothian
committed
from b_asic.port import SignalSourceProvider, OutputPort
from b_asic.operation import Operation, AbstractOperation, ResultKey, DelayMap, MutableResultMap, MutableDelayMap
Angus Lothian
committed
from b_asic.graph_component import GraphID, GraphIDNumber, GraphComponent, Name, TypeName
from b_asic.special_operations import Input, Output, Delay
DelayQueue = List[Tuple[str, ResultKey, OutputPort]]
class GraphIDGenerator:
"""Generates Graph IDs for objects."""
_next_id_number: DefaultDict[TypeName, GraphIDNumber]
def __init__(self, id_number_offset: GraphIDNumber = 0):
"""Construct a GraphIDGenerator."""
self._next_id_number = defaultdict(lambda: id_number_offset)
def next_id(self, type_name: TypeName) -> GraphID:
"""Get the next graph id for a certain graph id type."""
self._next_id_number[type_name] += 1
return type_name + str(self._next_id_number[type_name])
@property
def id_number_offset(self) -> GraphIDNumber:
"""Get the graph id number offset of this generator."""
return self._next_id_number.default_factory() # pylint: disable=not-callable
class SFG(AbstractOperation):
"""Signal flow graph.
Angus Lothian
committed
Contains a set of connected operations, forming a new operation.
Used as a base for simulation, scheduling, etc.
Angus Lothian
committed
_components_by_id: Dict[GraphID, GraphComponent]
_components_by_name: DefaultDict[Name, List[GraphComponent]]
_components_dfs_order: List[GraphComponent]
_operations_dfs_order: List[Operation]
_operations_topological_order: List[Operation]
Angus Lothian
committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
_input_operations: List[Input]
_output_operations: List[Output]
_original_components_to_new: MutableSet[GraphComponent]
_original_input_signals_to_indices: Dict[Signal, int]
_original_output_signals_to_indices: Dict[Signal, int]
_precedence_list: Optional[List[List[OutputPort]]]
def __init__(self, inputs: Optional[Sequence[Input]] = None, outputs: Optional[Sequence[Output]] = None,
input_signals: Optional[Sequence[Signal]] = None, output_signals: Optional[Sequence[Signal]] = None,
id_number_offset: GraphIDNumber = 0, name: Name = "",
input_sources: Optional[Sequence[Optional[SignalSourceProvider]]] = None):
"""Construct an SFG given its inputs and outputs.
Inputs/outputs may be specified using either Input/Output operations
directly with the inputs/outputs parameters, or using signals with the
input_signals/output_signals parameters. If signals are used, the
corresponding Input/Output operations will be created automatically.
The id_number_offset parameter specifies what number graph IDs will be
offset by for each new graph component type. IDs start at 1 by default,
so the default offset of 0 will result in IDs like "c1", "c2", etc.
while an offset of 3 will result in "c4", "c5", etc.
"""
input_signal_count = 0 if input_signals is None else len(input_signals)
input_operation_count = 0 if inputs is None else len(inputs)
output_signal_count = 0 if output_signals is None else len(
output_signals)
output_operation_count = 0 if outputs is None else len(outputs)
super().__init__(input_count=input_signal_count + input_operation_count,
output_count=output_signal_count + output_operation_count,
name=name, input_sources=input_sources)
self._components_by_id = dict()
self._components_by_name = defaultdict(list)
self._components_dfs_order = []
self._operations_dfs_order = []
self._operations_topological_order = []
self._graph_id_generator = GraphIDGenerator(id_number_offset)
self._input_operations = []
self._output_operations = []
self._original_components_to_new = {}
self._original_input_signals_to_indices = {}
self._original_output_signals_to_indices = {}
self._precedence_list = None
# Setup input signals.
if input_signals is not None:
for input_index, signal in enumerate(input_signals):
assert signal not in self._original_components_to_new, "Duplicate input signals supplied to SFG construcctor."
new_input_op = self._add_component_unconnected_copy(Input())
new_signal = self._add_component_unconnected_copy(signal)
new_signal.set_source(new_input_op.output(0))
self._input_operations.append(new_input_op)
self._original_input_signals_to_indices[signal] = input_index
Angus Lothian
committed
# Setup input operations, starting from indices ater input signals.
if inputs is not None:
for input_index, input_op in enumerate(inputs, input_signal_count):
assert input_op not in self._original_components_to_new, "Duplicate input operations supplied to SFG constructor."
new_input_op = self._add_component_unconnected_copy(input_op)
for signal in input_op.output(0).signals:
assert signal not in self._original_components_to_new, "Duplicate input signals connected to input ports supplied to SFG construcctor."
new_signal = self._add_component_unconnected_copy(signal)
new_signal.set_source(new_input_op.output(0))
self._original_input_signals_to_indices[signal] = input_index
Angus Lothian
committed
self._input_operations.append(new_input_op)
Angus Lothian
committed
# Setup output signals.
if output_signals is not None:
for output_index, signal in enumerate(output_signals):
new_output_op = self._add_component_unconnected_copy(Output())
if signal in self._original_components_to_new:
# Signal was already added when setting up inputs.
new_signal = self._original_components_to_new[signal]
new_signal.set_destination(new_output_op.input(0))
else:
# New signal has to be created.
new_signal = self._add_component_unconnected_copy(signal)
new_signal.set_destination(new_output_op.input(0))
Angus Lothian
committed
self._output_operations.append(new_output_op)
self._original_output_signals_to_indices[signal] = output_index
Angus Lothian
committed
# Setup output operations, starting from indices after output signals.
if outputs is not None:
for output_index, output_op in enumerate(outputs, output_signal_count):
assert output_op not in self._original_components_to_new, "Duplicate output operations supplied to SFG constructor."
new_output_op = self._add_component_unconnected_copy(output_op)
for signal in output_op.input(0).signals:
new_signal = None
if signal in self._original_components_to_new:
# Signal was already added when setting up inputs.
new_signal = self._original_components_to_new[signal]
else:
# New signal has to be created.
new_signal = self._add_component_unconnected_copy(
signal)
Angus Lothian
committed
new_signal.set_destination(new_output_op.input(0))
self._original_output_signals_to_indices[signal] = output_index
Angus Lothian
committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
self._output_operations.append(new_output_op)
output_operations_set = set(self._output_operations)
# Search the graph inwards from each input signal.
for signal, input_index in self._original_input_signals_to_indices.items():
# Check if already added destination.
new_signal = self._original_components_to_new[signal]
if new_signal.destination is None:
if signal.destination is None:
raise ValueError(
f"Input signal #{input_index} is missing destination in SFG")
if signal.destination.operation not in self._original_components_to_new:
self._add_operation_connected_tree_copy(
signal.destination.operation)
elif new_signal.destination.operation in output_operations_set:
# Add directly connected input to output to ordered list.
self._components_dfs_order.extend(
[new_signal.source.operation, new_signal, new_signal.destination.operation])
self._operations_dfs_order.extend(
[new_signal.source.operation, new_signal.destination.operation])
# Search the graph inwards from each output signal.
for signal, output_index in self._original_output_signals_to_indices.items():
# Check if already added source.
new_signal = self._original_components_to_new[signal]
if new_signal.source is None:
if signal.source is None:
raise ValueError(
f"Output signal #{output_index} is missing source in SFG")
if signal.source.operation not in self._original_components_to_new:
self._add_operation_connected_tree_copy(
signal.source.operation)
def __str__(self) -> str:
"""Get a string representation of this SFG."""
string_io = StringIO()
string_io.write(super().__str__() + "\n")
string_io.write("Internal Operations:\n")
line = "-" * 100 + "\n"
string_io.write(line)
for operation in self.get_operations_topological_order():
string_io.write(str(operation) + "\n")
string_io.write(line)
return string_io.getvalue()
def __call__(self, *src: Optional[SignalSourceProvider], name: Name = "") -> "SFG":
"""Get a new independent SFG instance that is identical to this SFG except without any of its external connections."""
return SFG(inputs=self._input_operations, outputs=self._output_operations,
id_number_offset=self.id_number_offset, name=name, input_sources=src if src else None)
@classmethod
def type_name(cls) -> TypeName:
return "sfg"
def evaluate(self, *args):
result = self.evaluate_outputs(args)
n = len(result)
return None if n == 0 else result[0] if n == 1 else result
def evaluate_output(self, index: int, input_values: Sequence[Number], results: Optional[MutableResultMap] = None, delays: Optional[MutableDelayMap] = None, prefix: str = "", bits_override: Optional[int] = None, truncate: bool = True) -> Number:
if index < 0 or index >= self.output_count:
raise IndexError(
f"Output index out of range (expected 0-{self.output_count - 1}, got {index})")
if len(input_values) != self.input_count:
raise ValueError(
f"Wrong number of inputs supplied to SFG for evaluation (expected {self.input_count}, got {len(input_values)})")
if results is None:
results = {}
if delays is None:
delays = {}
# Set the values of our input operations to the given input values.
for op, arg in zip(self._input_operations, self.truncate_inputs(input_values, bits_override) if truncate else input_values):
op.value = arg
deferred_delays = []
value = self._evaluate_source(self._output_operations[index].input(
0).signals[0].source, results, delays, prefix, bits_override, truncate, deferred_delays)
while deferred_delays:
new_deferred_delays = []
for key_base, key, src in deferred_delays:
self._do_evaluate_source(
key_base, key, src, results, delays, prefix, bits_override, truncate, new_deferred_delays)
deferred_delays = new_deferred_delays
results[self.key(index, prefix)] = value
return value
def connect_external_signals_to_components(self) -> bool:
""" Connects any external signals to this SFG's internal operations. This SFG becomes unconnected to the SFG
it is a component off, causing it to become invalid afterwards. Returns True if succesful, False otherwise. """
if len(self.inputs) != len(self.input_operations):
raise IndexError(
f"Number of inputs does not match the number of input_operations in SFG.")
if len(self.outputs) != len(self.output_operations):
raise IndexError(
f"Number of outputs does not match the number of output_operations SFG.")
if len(self.input_signals) == 0:
return False
if len(self.output_signals) == 0:
return False
# For each input_signal, connect it to the corresponding operation
for port, input_operation in zip(self.inputs, self.input_operations):
dest = input_operation.output(0).signals[0].destination
dest.clear()
port.signals[0].set_destination(dest)
# For each output_signal, connect it to the corresponding operation
for port, output_operation in zip(self.outputs, self.output_operations):
src = output_operation.input(0).signals[0].source
src.clear()
port.signals[0].set_source(src)
return True
@property
def input_operations(self) -> Sequence[Operation]:
"""Get the internal input operations in the same order as their respective input ports."""
return self._input_operations
@property
def output_operations(self) -> Sequence[Operation]:
"""Get the internal output operations in the same order as their respective output ports."""
return self._output_operations
def split(self) -> Iterable[Operation]:
return self.operations
def to_sfg(self) -> 'SFG':
return self
def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
if output_index < 0 or output_index >= self.output_count:
raise IndexError(
f"Output index out of range (expected 0-{self.output_count - 1}, got {output_index})")
input_indexes_required = []
sfg_input_operations_to_indexes = {
input_op: index for index, input_op in enumerate(self._input_operations)}
output_op = self._output_operations[output_index]
queue = deque([output_op])
visited = set([output_op])
while queue:
op = queue.popleft()
if isinstance(op, Input):
if op in sfg_input_operations_to_indexes:
input_indexes_required.append(
sfg_input_operations_to_indexes[op])
del sfg_input_operations_to_indexes[op]
for input_port in op.inputs:
for signal in input_port.signals:
if signal.source is not None:
new_op = signal.source.operation
if new_op not in visited:
queue.append(new_op)
visited.add(new_op)
return input_indexes_required
def copy_component(self, *args, **kwargs) -> GraphComponent:
return super().copy_component(*args, **kwargs, inputs=self._input_operations, outputs=self._output_operations,
id_number_offset=self.id_number_offset, name=self.name)
@property
def id_number_offset(self) -> GraphIDNumber:
"""Get the graph id number offset of the graph id generator for this SFG."""
return self._graph_id_generator.id_number_offset
@property
def components(self) -> Iterable[GraphComponent]:
"""Get all components of this graph in depth-first order."""
return self._components_dfs_order
@property
def operations(self) -> Iterable[Operation]:
"""Get all operations of this graph in depth-first order."""
return self._operations_dfs_order
def find_by_type_name(self, type_name: TypeName) -> Sequence[GraphComponent]:
"""Find all components in this graph with the specified type name.
Returns an empty sequence if no components were found.
Angus Lothian
committed
type_name: The type_name of the desired components.
Angus Lothian
committed
i = self.id_number_offset + 1
components = []
found_comp = self.find_by_id(type_name + str(i))
while found_comp is not None:
components.append(found_comp)
i += 1
found_comp = self.find_by_id(type_name + str(i))
Angus Lothian
committed
return components
def find_by_id(self, graph_id: GraphID) -> Optional[GraphComponent]:
Angus Lothian
committed
"""Find the graph component with the specified ID.
Returns None if the component was not found.
Angus Lothian
committed
graph_id: Graph ID of the desired component.
Angus Lothian
committed
return self._components_by_id.get(graph_id, None)
Angus Lothian
committed
def find_by_name(self, name: Name) -> Sequence[GraphComponent]:
"""Find all graph components with the specified name.
Returns an empty sequence if no components were found.
Angus Lothian
committed
Keyword arguments:
name: Name of the desired component(s)
"""
return self._components_by_name.get(name, [])
def find_result_keys_by_name(self, name: Name, output_index: int = 0) -> Sequence[ResultKey]:
"""Find all graph components with the specified name and
return a sequence of the keys to use when fetching their results
from a simulation.
Angus Lothian
committed
name: Name of the desired component(s)
output_index: The desired output index to get the result from
Angus Lothian
committed
keys = []
for comp in self.find_by_name(name):
if isinstance(comp, Operation):
keys.append(comp.key(output_index, comp.graph_id))
return keys
Angus Lothian
committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def replace_component(self, component: Operation, graph_id: GraphID) -> "SFG":
"""Find and replace all components matching either on GraphID, Type or both.
Then return a new deepcopy of the sfg with the replaced component.
Arguments:
component: The new component(s), e.g Multiplication
graph_id: The GraphID to match the component to replace.
"""
sfg_copy = self() # Copy to not mess with this SFG.
component_copy = sfg_copy.find_by_id(graph_id)
assert component_copy is not None and isinstance(component_copy, Operation), \
"No operation matching the criteria found"
assert component_copy.output_count == component.output_count, \
"The output count may not differ between the operations"
assert component_copy.input_count == component.input_count, \
"The input count may not differ between the operations"
for index_in, inp in enumerate(component_copy.inputs):
for signal in inp.signals:
signal.remove_destination()
signal.set_destination(component.input(index_in))
for index_out, outp in enumerate(component_copy.outputs):
for signal in outp.signals:
signal.remove_source()
signal.set_source(component.output(index_out))
return sfg_copy() # Copy again to update IDs.
def insert_operation(self, component: Operation, output_comp_id: GraphID) -> Optional["SFG"]:
"""Insert an operation in the SFG after a given source operation.
The source operation output count must match the input count of the operation as well as the output
Then return a new deepcopy of the sfg with the inserted component.
Arguments:
component: The new component, e.g Multiplication.
output_comp_id: The source operation GraphID to connect from.
"""
# Preserve the original SFG by creating a copy.
sfg_copy = self()
output_comp = sfg_copy.find_by_id(output_comp_id)
if output_comp is None:
return None
assert not isinstance(output_comp, Output), \
"Source operation can not be an output operation."
assert len(output_comp.output_signals) == component.input_count, \
"Source operation output count does not match input count for component."
assert len(output_comp.output_signals) == component.output_count, \
"Destination operation input count does not match output for component."
for index, signal_in in enumerate(output_comp.output_signals):
destination = signal_in.destination
signal_in.set_destination(component.input(index))
destination.connect(component.output(index))
# Recreate the newly coupled SFG so that all attributes are correct.
return sfg_copy()
def remove_operation(self, operation_id: GraphID) -> "SFG":
"""Returns a version of the SFG where the operation with the specified GraphID removed.
The operation has to have the same amount of input- and output ports or a ValueError will
be raised. If no operation with the entered operation_id is found then returns None and does nothing."""
sfg_copy = self()
operation = sfg_copy.find_by_id(operation_id)
if operation is None:
return None
if operation.input_count != operation.output_count:
raise ValueError(
"Different number of input and output ports of operation with the specified id")
for i, outport in enumerate(operation.outputs):
if outport.signal_count > 0:
if operation.input(i).signal_count > 0 and operation.input(i).signals[0].source is not None:
in_sig = operation.input(i).signals[0]
source_port = in_sig.source
source_port.remove_signal(in_sig)
operation.input(i).remove_signal(in_sig)
for out_sig in outport.signals.copy():
out_sig.set_source(source_port)
else:
for out_sig in outport.signals.copy():
out_sig.remove_source()
else:
if operation.input(i).signal_count > 0:
in_sig = operation.input(i).signals[0]
operation.input(i).remove_signal(in_sig)
return sfg_copy()
def get_precedence_list(self) -> Sequence[Sequence[OutputPort]]:
"""Returns a Precedence list of the SFG where each element in n:th the list consists
of elements that are executed in the n:th step. If the precedence list already has been
calculated for the current SFG then returns the cached version."""
if self._precedence_list:
return self._precedence_list
# Find all operations with only outputs and no inputs.
no_input_ops = list(
filter(lambda op: op.input_count == 0, self.operations))
delay_ops = self.find_by_type_name(Delay.type_name())
# Find all first iter output ports for precedence
first_iter_ports = [op.output(i) for op in (
no_input_ops + delay_ops) for i in range(op.output_count)]
self._precedence_list = self._traverse_for_precedence_list(
first_iter_ports)
return self._precedence_list
def show_precedence_graph(self) -> None:
p_list = self.get_precedence_list()
pg = Digraph()
pg.attr(rankdir='LR')
# Creates nodes for each output port in the precedence list
for i in range(len(p_list)):
ports = p_list[i]
with pg.subgraph(name='cluster_' + str(i)) as sub:
sub.attr(label='N' + str(i + 1))
for port in ports:
sub.node(port.operation.graph_id + '.' + str(port.index))
# Creates edges for each output port and creates nodes for each operation and edges for them as well
for i in range(len(p_list)):
ports = p_list[i]
for port in ports:
for signal in port.signals:
pg.edge(port.operation.graph_id + '.' + str(port.index),
signal.destination.operation.graph_id)
pg.node(signal.destination.operation.graph_id,
shape='square')
pg.edge(port.operation.graph_id,
port.operation.graph_id + '.' + str(port.index))
pg.node(port.operation.graph_id, shape='square')
pg.view()
def print_precedence_graph(self) -> None:
"""Prints a representation of the SFG's precedence list to the standard out.
If the precedence list already has been calculated then it uses the cached version,
otherwise it calculates the precedence list and then prints it."""
precedence_list = self.get_precedence_list()
line = "-" * 120
out_str = StringIO()
out_str.write(line)
printed_ops = set()
for iter_num, iter in enumerate(precedence_list, start=1):
for outport_num, outport in enumerate(iter, start=1):
if outport not in printed_ops:
# Only print once per operation, even if it has multiple outports
out_str.write("\n")
out_str.write(str(iter_num))
out_str.write(".")
out_str.write(str(outport_num))
out_str.write(" \t")
out_str.write(str(outport.operation))
printed_ops.add(outport)
out_str.write("\n")
out_str.write(line)
print(out_str.getvalue())
def get_operations_topological_order(self) -> Iterable[Operation]:
"""Returns an Iterable of the Operations in the SFG in Topological Order.
Feedback loops makes an absolutely correct Topological order impossible, so an
approximative Topological Order is returned in such cases in this implementation."""
if self._operations_topological_order:
return self._operations_topological_order
no_inputs_queue = deque(
list(filter(lambda op: op.input_count == 0, self.operations)))
remaining_inports_per_operation = {
op: op.input_count for op in self.operations}
# Maps number of input counts to a queue of seen objects with such a size.
seen_with_inputs_dict = defaultdict(deque)
seen = set()
top_order = []
assert len(
no_inputs_queue) > 0, "Illegal SFG state, dangling signals in SFG."
first_op = no_inputs_queue.popleft()
visited = set([first_op])
p_queue = PriorityQueue()
p_queue_entry_num = it.count()
# Negative priority as max-heap popping is wanted
p_queue.put((-first_op.output_count, -
next(p_queue_entry_num), first_op))
operations_left = len(self.operations) - 1
seen_but_not_visited_count = 0
while operations_left > 0:
while not p_queue.empty():
op = p_queue.get()[2]
operations_left -= 1
top_order.append(op)
visited.add(op)
for neighbor_op in op.subsequent_operations:
if neighbor_op not in visited:
remaining_inports_per_operation[neighbor_op] -= 1
remaining_inports = remaining_inports_per_operation[neighbor_op]
if remaining_inports == 0:
p_queue.put(
(-neighbor_op.output_count, -next(p_queue_entry_num), neighbor_op))
elif remaining_inports > 0:
if neighbor_op in seen:
seen_with_inputs_dict[remaining_inports +
1].remove(neighbor_op)
else:
seen.add(neighbor_op)
seen_but_not_visited_count += 1
seen_with_inputs_dict[remaining_inports].append(
neighbor_op)
# Check if have to fetch Operations from somewhere else since p_queue is empty
if operations_left > 0:
# First check if can fetch from Operations with no input ports
if no_inputs_queue:
new_op = no_inputs_queue.popleft()
p_queue.put((-new_op.output_count, -
next(p_queue_entry_num), new_op))
# Else fetch operation with lowest input count that is not zero
elif seen_but_not_visited_count > 0:
for i in it.count(start=1):
seen_inputs_queue = seen_with_inputs_dict[i]
if seen_inputs_queue:
new_op = seen_inputs_queue.popleft()
p_queue.put((-new_op.output_count, -
next(p_queue_entry_num), new_op))
seen_but_not_visited_count -= 1
break
else:
raise RuntimeError("Unallowed structure in SFG detected")
self._operations_topological_order = top_order
return self._operations_topological_order
def set_latency_of_type(self, type_name: TypeName, latency: int) -> None:
"""Set the latency of all components with the given type name."""
for op in self.find_by_type_name(type_name):
op.set_latency(latency)
def set_latency_offsets_of_type(self, type_name: TypeName, latency_offsets: Dict[str, int]) -> None:
"""Set the latency offset of all components with the given type name."""
for op in self.find_by_type_name(type_name):
op.set_latency_offsets(latency_offsets)
def _traverse_for_precedence_list(self, first_iter_ports: List[OutputPort]) -> List[List[OutputPort]]:
# Find dependencies of output ports and input ports.
remaining_inports_per_operation = {
op: op.input_count for op in self.operations}
# Traverse output ports for precedence
curr_iter_ports = first_iter_ports
precedence_list = []
while curr_iter_ports:
# Add the found ports to the current iter
precedence_list.append(curr_iter_ports)
next_iter_ports = []
for outport in curr_iter_ports:
for signal in outport.signals:
new_inport = signal.destination
# Don't traverse over delays.
if new_inport is not None and not isinstance(new_inport.operation, Delay):
new_op = new_inport.operation
remaining_inports_per_operation[new_op] -= 1
if remaining_inports_per_operation[new_op] == 0:
next_iter_ports.extend(new_op.outputs)
curr_iter_ports = next_iter_ports
return precedence_list
def _add_component_unconnected_copy(self, original_component: GraphComponent) -> GraphComponent:
assert original_component not in self._original_components_to_new, "Tried to add duplicate SFG component"
new_component = original_component.copy_component()
self._original_components_to_new[original_component] = new_component
new_id = self._graph_id_generator.next_id(new_component.type_name())
new_component.graph_id = new_id
self._components_by_id[new_id] = new_component
self._components_by_name[new_component.name].append(new_component)
return new_component
def _add_operation_connected_tree_copy(self, start_op: Operation) -> None:
op_stack = deque([start_op])
while op_stack:
original_op = op_stack.pop()
# Add or get the new copy of the operation.
new_op = None
if original_op not in self._original_components_to_new:
new_op = self._add_component_unconnected_copy(original_op)
self._components_dfs_order.append(new_op)
self._operations_dfs_order.append(new_op)
else:
new_op = self._original_components_to_new[original_op]
# Connect input ports to new signals.
for original_input_port in original_op.inputs:
if original_input_port.signal_count < 1:
raise ValueError("Unconnected input port in SFG")
for original_signal in original_input_port.signals:
# Check if the signal is one of the SFG's input signals.
if original_signal in self._original_input_signals_to_indices:
# New signal already created during first step of constructor.
new_signal = self._original_components_to_new[original_signal]
new_signal.set_destination(
new_op.input(original_input_port.index))
self._components_dfs_order.extend(
[new_signal, new_signal.source.operation])
self._operations_dfs_order.append(
new_signal.source.operation)
# Check if the signal has not been added before.
elif original_signal not in self._original_components_to_new:
if original_signal.source is None:
raise ValueError(
"Dangling signal without source in SFG")
new_signal = self._add_component_unconnected_copy(
original_signal)
new_signal.set_destination(
new_op.input(original_input_port.index))
self._components_dfs_order.append(new_signal)
original_connected_op = original_signal.source.operation
# Check if connected Operation has been added before.
if original_connected_op in self._original_components_to_new:
# Set source to the already added operations port.
new_signal.set_source(self._original_components_to_new[original_connected_op].output(
original_signal.source.index))
else:
# Create new operation, set signal source to it.
new_connected_op = self._add_component_unconnected_copy(
original_connected_op)
new_signal.set_source(new_connected_op.output(
original_signal.source.index))
self._components_dfs_order.append(new_connected_op)
self._operations_dfs_order.append(new_connected_op)
# Add connected operation to queue of operations to visit.
op_stack.append(original_connected_op)
# Connect output ports.
for original_output_port in original_op.outputs:
for original_signal in original_output_port.signals:
# Check if the signal is one of the SFG's output signals.
if original_signal in self._original_output_signals_to_indices:
# New signal already created during first step of constructor.
new_signal = self._original_components_to_new[original_signal]
new_signal.set_source(
new_op.output(original_output_port.index))
self._components_dfs_order.extend(
[new_signal, new_signal.destination.operation])
self._operations_dfs_order.append(
new_signal.destination.operation)
# Check if signal has not been added before.
elif original_signal not in self._original_components_to_new:
if original_signal.source is None:
raise ValueError(
"Dangling signal without source in SFG")
new_signal = self._add_component_unconnected_copy(
original_signal)
new_signal.set_source(
new_op.output(original_output_port.index))
self._components_dfs_order.append(new_signal)
original_connected_op = original_signal.destination.operation
# Check if connected operation has been added.
if original_connected_op in self._original_components_to_new:
# Set destination to the already connected operations port.
new_signal.set_destination(self._original_components_to_new[original_connected_op].input(
original_signal.destination.index))
else:
# Create new operation, set destination to it.
new_connected_op = self._add_component_unconnected_copy(
original_connected_op)
new_signal.set_destination(new_connected_op.input(
original_signal.destination.index))
self._components_dfs_order.append(new_connected_op)
self._operations_dfs_order.append(new_connected_op)
# Add connected operation to the queue of operations to visit.
op_stack.append(original_connected_op)
def _evaluate_source(self, src: OutputPort, results: MutableResultMap, delays: MutableDelayMap, prefix: str, bits_override: Optional[int], truncate: bool, deferred_delays: DelayQueue) -> Number:
key_base = (
prefix + "." + src.operation.graph_id) if prefix else src.operation.graph_id
key = src.operation.key(src.index, key_base)
if key in results:
value = results[key]
if value is None:
raise RuntimeError(
"Direct feedback loop detected when evaluating operation.")
return value
value = src.operation.current_output(src.index, delays, key_base)
results[key] = value
if value is None:
value = self._do_evaluate_source(
key_base, key, src, results, delays, prefix, bits_override, truncate, deferred_delays)
else:
# Evaluate later. Use current value for now.
deferred_delays.append((key_base, key, src))
return value
def _do_evaluate_source(self, key_base: str, key: ResultKey, src: OutputPort, results: MutableResultMap, delays: MutableDelayMap, prefix: str, bits_override: Optional[int], truncate: bool, deferred_delays: DelayQueue) -> Number:
input_values = [self._evaluate_source(input_port.signals[0].source, results, delays, prefix,
bits_override, truncate, deferred_delays) for input_port in src.operation.inputs]
value = src.operation.evaluate_output(
src.index, input_values, results, delays, key_base, bits_override, truncate)
results[key] = value
return value