Newer
Older
Angus Lothian
committed
Contains the schedule class for scheduling operations in an SFG.
from collections import defaultdict
from typing import Dict, List, Optional, Sequence, Tuple, Union, cast
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.patches import PathPatch, Polygon
from matplotlib.path import Path
Angus Lothian
committed
from b_asic._preferences import (
EXECUTION_TIME_COLOR,
LATENCY_COLOR,
SIGNAL_COLOR,
SIGNAL_LINEWIDTH,
Angus Lothian
committed
from b_asic.graph_component import GraphID
from b_asic.operation import Operation
from b_asic.port import InputPort, OutputPort
from b_asic.process import MemoryVariable, OperatorProcess
from b_asic.resources import ProcessCollection
from b_asic.special_operations import Delay, Input, Output
_EXECUTION_TIME_COLOR: Union[
Tuple[float, float, float], Tuple[float, float, float, float]
] = tuple(float(c / 255) for c in EXECUTION_TIME_COLOR)
_LATENCY_COLOR: Union[Tuple[float, float, float], Tuple[float, float, float, float]] = (
tuple(float(c / 255) for c in LATENCY_COLOR)
)
_SIGNAL_COLOR: Union[Tuple[float, float, float], Tuple[float, float, float, float]] = (
tuple(float(c / 255) for c in SIGNAL_COLOR)
)
def _laps_default():
"""Default value for _laps. Cannot use lambda."""
return 0
def _y_locations_default():
"""Default value for _y_locations. Cannot use lambda."""
return None
"""
Schedule of an SFG with scheduled Operations.
Parameters
----------
sfg : :class:`~b_asic.signal_flow_graph.SFG`
The signal flow graph to schedule.
schedule_time : int, optional
The schedule time. If not provided, it will be determined by the scheduling
algorithm.
cyclic : bool, default: False
If the schedule is cyclic.
algorithm : {'ASAP', 'ALAP', 'provided'}, default: 'ASAP'
The scheduling algorithm to use. The following algorithm are available:
* ``'ASAP'``: As-soon-as-possible scheduling.
* ``'ALAP'``: As-late-as-possible scheduling.
If 'provided', use provided *start_times* and *laps* dictionaries.
start_times : dict, optional
Dictionary with GraphIDs as keys and start times as values.
Used when *algorithm* is 'provided'.
laps : dict, optional
Dictionary with GraphIDs as keys and laps as values.
Used when *algorithm* is 'provided'.
max_resources : dict, optional
Dictionary like ``{Addition.type_name(): 2}`` denoting the maximum number of
resources for a given operation type if the scheduling algorithm considers
that. If not provided, or an operation type is not provided, at most one
resource is used.
Angus Lothian
committed
_sfg: SFG
_start_times: Dict[GraphID, int]
Angus Lothian
committed
_schedule_time: int
_cyclic: bool
_y_locations: Dict[GraphID, Optional[int]]
Angus Lothian
committed
def __init__(
self,
sfg: SFG,
schedule_time: Optional[int] = None,
cyclic: bool = False,
algorithm: str = "ASAP",
start_times: Optional[Dict[GraphID, int]] = None,
laps: Optional[Dict[GraphID, int]] = None,
max_resources: Optional[Dict[TypeName, int]] = None,
if not isinstance(sfg, SFG):
raise TypeError("An SFG must be provided")
Angus Lothian
committed
self._sfg = sfg
Angus Lothian
committed
self._cyclic = cyclic
self._y_locations = defaultdict(_y_locations_default)
self._schedule_time = schedule_time
if algorithm == "ASAP":
Angus Lothian
committed
self._schedule_asap()
elif algorithm == "ALAP":
self._schedule_alap()
elif algorithm == "provided":
if start_times is None:
raise ValueError("Must provide start_times when using 'provided'")
if laps is None:
raise ValueError("Must provide laps when using 'provided'")
self._start_times = start_times
self._laps.update(laps)
self._remove_delays_no_laps()
Angus Lothian
committed
else:
raise NotImplementedError(f"No algorithm with name: {algorithm} defined.")
Angus Lothian
committed
Angus Lothian
committed
if schedule_time is None:
self._schedule_time = max_end_time
elif schedule_time < max_end_time:
raise ValueError(f"Too short schedule time. Minimum is {max_end_time}.")
Angus Lothian
committed
def start_time_of_operation(self, graph_id: GraphID) -> int:
Return the start time of the operation with the specified by *graph_id*.
Parameters
----------
graph_id : GraphID
The graph id of the operation to get the start time for.
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
return self._start_times[graph_id]
Angus Lothian
committed
"""Return the current maximum end time among all operations."""
for graph_id, op_start_time in self._start_times.items():
operation = cast(Operation, self._sfg.find_by_id(graph_id))
for outport in operation.outputs:
max_end_time,
op_start_time + cast(int, outport.latency_offset),
def forward_slack(self, graph_id: GraphID) -> int:
Return how much an operation can be moved forward in time.
graph_id : GraphID
The graph id of the operation.
The number of time steps the operation with *graph_id* can be moved
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
output_slacks = self._forward_slacks(graph_id)
return cast(
int,
min(
sum(
(
list(signal_slacks.values())
for signal_slacks in output_slacks.values()
),
[sys.maxsize],
)
),
self, graph_id: GraphID
start_time = self._start_times[graph_id]
operation = cast(Operation, self._sfg.find_by_id(graph_id))
for output_port in operation.outputs:
ret[output_port] = self._output_slacks(output_port, start_time)
Angus Lothian
committed
def _output_slacks(
self, output_port: "OutputPort", start_time: Optional[int] = None
) -> Dict[Signal, int]:
if start_time is None:
start_time = self._start_times[output_port.operation.graph_id]
output_slacks = {}
available_time = start_time + cast(int, output_port.latency_offset)
if available_time > self._schedule_time:
available_time -= self._schedule_time
for signal in output_port.signals:
destination = cast(InputPort, signal.destination)
usage_time = (
cast(int, destination.latency_offset)
+ self._start_times[destination.operation.graph_id]
+ self._schedule_time * self._laps[signal.graph_id]
)
output_slacks[signal] = usage_time - available_time
return output_slacks
def backward_slack(self, graph_id: GraphID) -> int:
Return how much an operation can be moved backward in time.
graph_id : GraphID
The graph id of the operation.
The number of time steps the operation with *graph_id* can be moved
.. note:: The backward slack is positive, but a call to
:func:`move_operation` should be negative to move the operation
backward.
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
input_slacks = self._backward_slacks(graph_id)
return cast(
int,
min(
sum(
(
list(signal_slacks.values())
for signal_slacks in input_slacks.values()
),
[sys.maxsize],
)
),
def _backward_slacks(self, graph_id: GraphID) -> Dict[InputPort, Dict[Signal, int]]:
start_time = self._start_times[graph_id]
operation = cast(Operation, self._sfg.find_by_id(graph_id))
for input_port in operation.inputs:
ret[input_port] = self._input_slacks(input_port, start_time)
def _input_slacks(
self, input_port: InputPort, start_time: Optional[int] = None
) -> Dict[Signal, int]:
if start_time is None:
start_time = self._start_times[input_port.operation.graph_id]
input_slacks = {}
usage_time = start_time + cast(int, input_port.latency_offset)
for signal in input_port.signals:
source = cast(OutputPort, signal.source)
available_time = (
cast(int, source.latency_offset)
+ self._start_times[source.operation.graph_id]
- self._schedule_time * self._laps[signal.graph_id]
)
if available_time > self._schedule_time:
available_time -= self._schedule_time
input_slacks[signal] = usage_time - available_time
return input_slacks
def slacks(self, graph_id: GraphID) -> Tuple[int, int]:
Return the backward and forward slacks of operation *graph_id*.
That is, how much the operation can be moved backward and forward in time.
Parameters
----------
graph_id : GraphID
The graph id of the operation.
Returns
-------
tuple(int, int)
The backward and forward slacks, respectively.
.. note:: The backward slack is positive, but a call to :func:`move_operation`
should be negative to move the operation backward.
--------
backward_slack
forward_slack
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
return self.backward_slack(graph_id), self.forward_slack(graph_id)
Angus Lothian
committed
def print_slacks(self, order: int = 0) -> None:
"""
Print the slack times for all operations in the schedule.
Parameters
----------
order : int, default: 0
Sorting order.
* 0: alphabetical on Graph ID
* 1: backward slack
* 2: forward slack
"""
res: List[Tuple[GraphID, int, int]] = [
cast(int, self.backward_slack(op.graph_id)),
self.forward_slack(op.graph_id),
)
for op in self._sfg.operations
]
res.sort(key=lambda tup: tup[order])
res_str = [
(
r[0],
f"{r[1]}".rjust(8) if r[1] < sys.maxsize else "oo".rjust(8),
f"{r[2]}".rjust(8) if r[2] < sys.maxsize else "oo".rjust(8),
)
for r in res
]
print("Graph ID | Backward | Forward")
print("---------|----------|---------")
Angus Lothian
committed
def set_schedule_time(self, time: int) -> "Schedule":
"""
Set a new schedule time.
Parameters
----------
time : int
The new schedule time. If it is too short, a ValueError will be raised.
max_end_time = self.get_max_end_time()
if time < max_end_time:
f"New schedule time ({time}) too short, minimum: {max_end_time}."
self._schedule_time = time
return self
def swap_io_of_operation(self, operation_id: GraphID) -> None:
"""
Swap the inputs (and outputs) of operation.
Parameters
----------
operation_id : GraphID
The GraphID of the operation to swap.
"""
self._sfg.swap_io_of_operation(operation_id)
"""The SFG corresponding to the current schedule."""
reconstructed_sfg = self._reintroduce_delays()
simplified_sfg = reconstructed_sfg.simplify_delay_element_placement()
return simplified_sfg
"""The start times of the operations in the schedule."""
The number of laps for the start times of the operations in the schedule.
@property
def schedule_time(self) -> int:
"""The schedule time of the current schedule."""
"""If the current schedule is cyclic."""
def edit(self, inplace=False) -> "Schedule":
"""
Edit schedule in GUI and return new schedule.
Parameters
----------
inplace : bool, default: False
If True, replace the current schedule.
"""
from b_asic.scheduler_gui.main_window import start_scheduler
new_schedule = start_scheduler(self)
if inplace:
self._start_times = new_schedule._start_times
self._laps = new_schedule._laps
self._schedule_time = new_schedule._schedule_time
self._y_locations = new_schedule._y_locations
def increase_time_resolution(self, factor: int) -> "Schedule":
"""
Increase time resolution for a schedule.
Parameters
factor : int
The time resolution increment.
"""
self._start_times = {k: factor * v for k, v in self._start_times.items()}
for graph_id in self._start_times:
cast(Operation, self._sfg.find_by_id(graph_id))._increase_time_resolution(
factor
)
self._schedule_time *= factor
return self
def _get_all_times(self) -> List[int]:
"""
Return a list of all times for the schedule.
Used to check how the resolution can be modified.
"""
# Local values
ret = [self._schedule_time, *self._start_times.values()]
# Loop over operations
for graph_id in self._start_times:
operation = cast(Operation, self._sfg.find_by_id(graph_id))
ret += [
cast(int, operation.execution_time),
*operation.latency_offsets.values(),
]
# Remove not set values (None)
ret = [v for v in ret if v is not None]
return ret
def get_possible_time_resolution_decrements(self) -> List[int]:
"""Return a list with possible factors to reduce time resolution."""
vals = self._get_all_times()
max_loop = min(val for val in vals if val)
if max_loop <= 1:
for candidate in range(2, max_loop + 1):
if not any(val % candidate for val in vals):
ret.append(candidate)
return ret
def decrease_time_resolution(self, factor: int) -> "Schedule":
"""
Decrease time resolution for a schedule.
Parameters
factor : int
The time resolution decrement.
get_possible_time_resolution_decrements
"""
possible_values = self.get_possible_time_resolution_decrements()
if factor not in possible_values:
raise ValueError(
f"Not possible to decrease resolution with {factor}. Possible"
f" values are {possible_values}"
)
self._start_times = {k: v // factor for k, v in self._start_times.items()}
for graph_id in self._start_times:
cast(Operation, self._sfg.find_by_id(graph_id))._decrease_time_resolution(
factor
)
self._schedule_time = self._schedule_time // factor
return self
def set_execution_time_of_type(
self, type_name: TypeName, execution_time: int
) -> None:
"""
Set the execution time of all operations with the given type name.
Parameters
----------
type_name : TypeName
The type name of the operation. For example, obtained as
``Addition.type_name()``.
execution_time : int
The execution time of the operation.
"""
self._sfg.set_execution_time_of_type(type_name, execution_time)
def move_y_location(
self, graph_id: GraphID, new_y: int, insert: bool = False
) -> None:
"""
Move operation in y-direction and remove any empty rows.
Parameters
----------
graph_id : GraphID
The GraphID of the operation to move.
new_y : int
The new y-position of the operation.
insert : bool, optional
If True, all operations on that y-position will be moved one position.
The default is False.
"""
if insert:
for gid in self._y_locations:
if self.get_y_location(gid) >= new_y:
self.set_y_location(gid, self.get_y_location(gid) + 1)
self.set_y_location(graph_id, new_y)
used_locations = {*self._y_locations.values()}
possible_locations = set(range(round(max(used_locations)) + 1))
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
if not possible_locations - used_locations:
return
remapping = {}
offset = 0
for loc in possible_locations:
if loc in used_locations:
remapping[loc] = loc - offset
else:
offset += 1
for gid, y_location in self._y_locations.items():
self._y_locations[gid] = remapping[self._y_locations[gid]]
def get_y_location(self, graph_id: GraphID) -> int:
"""
Get the y-position of the Operation with GraphID *graph_id*.
Parameters
----------
graph_id : GraphID
The GraphID of the operation.
Returns
-------
int
The y-position of the operation.
"""
return self._y_locations[graph_id]
def set_y_location(self, graph_id: GraphID, y_location: int) -> None:
"""
Set the y-position of the Operation with GraphID *graph_id* to *y_location*.
Parameters
----------
graph_id : GraphID
The GraphID of the operation to move.
y_location : int
The new y-position of the operation.
"""
self._y_locations[graph_id] = y_location
def _get_minimum_height(
self, operation_height: float = 1.0, operation_gap: float = OPERATION_GAP
):
max_pos_graph_id = max(self._y_locations, key=self._y_locations.get)
return self._get_y_position(max_pos_graph_id, operation_height, operation_gap)
def move_operation(self, graph_id: GraphID, time: int) -> "Schedule":
"""
Move an operation in the schedule.
Parameters
----------
graph_id : GraphID
The graph id of the operation to move.
time : int
The time to move. If positive move forward, if negative move backward.
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
(backward_slack, forward_slack) = self.slacks(graph_id)
if not -backward_slack <= time <= forward_slack:
raise ValueError(
f"Operation {graph_id!r} got incorrect move: {time}. Must be"
f" between {-backward_slack} and {forward_slack}."
)
old_start = self._start_times[graph_id]
tmp_start = old_start + time
new_start = tmp_start % self._schedule_time
# Update input laps
input_slacks = self._backward_slacks(graph_id)
for in_port, signal_slacks in input_slacks.items():
tmp_usage = tmp_start + cast(int, in_port.latency_offset)
new_usage = tmp_usage % self._schedule_time
for signal, signal_slack in signal_slacks.items():
# Compute a lower limit on laps
laps = new_slack // self._schedule_time
# Compensate for cases where above is not correct
tmp_prev_available = tmp_usage - new_slack
prev_available = tmp_prev_available % self._schedule_time
# If prev_available == 0 it will come from previous lap, unless it comes
# from an Input
source_op = signal.source_operation
if prev_available == 0 and not isinstance(source_op, Input):
prev_available = self._schedule_time
# Usage time (new_usage) < available time (prev_available) within a
# schedule period
if new_usage < prev_available:
laps += 1
self._laps[signal.graph_id] = laps
# Update output laps
output_slacks = self._forward_slacks(graph_id)
for out_port, signal_slacks in output_slacks.items():
tmp_available = tmp_start + cast(int, out_port.latency_offset)
new_available = tmp_available % self._schedule_time
for signal, signal_slack in signal_slacks.items():
# Compute a lower limit on laps
laps = new_slack // self._schedule_time
# Compensate for cases where above is not correct
tmp_next_usage = tmp_available + new_slack
next_usage = tmp_next_usage % self._schedule_time
# Usage time (new_usage) < available time (prev_available) within a
# schedule period
if new_available == 0 and (new_slack > 0 or next_usage == 0):
if (
next_usage < new_available
and self._start_times[signal.destination_operation.graph_id]
!= self.schedule_time
):
laps += 1
self._laps[signal.graph_id] = laps
# Outputs should not start at 0, but at schedule time
op = self._sfg.find_by_id(graph_id)
if (
new_start == 0
and isinstance(op, Output)
and self._laps[op.input(0).signals[0].graph_id] != 0
):
new_start = self._schedule_time
self._laps[op.input(0).signals[0].graph_id] -= 1
self._start_times[graph_id] = new_start
def move_operation_alap(self, graph_id: GraphID) -> "Schedule":
"""
Move an operation as late as possible in the schedule.
This is basically the same as::
schedule.move_operation(graph_id, schedule.forward_slack(graph_id))
but operations with no succeeding operation (Outputs) will only move to the end
of the schedule.
Parameters
----------
graph_id : GraphID
The graph id of the operation to move.
"""
forward_slack = self.forward_slack(graph_id)
if forward_slack == sys.maxsize:
self.move_operation(
graph_id, self.schedule_time - self._start_times[graph_id]
)
else:
self.move_operation(graph_id, forward_slack)
return self
def move_operation_asap(self, graph_id: GraphID) -> "Schedule":
"""
Move an operation as soon as possible in the schedule.
This is basically the same as::
schedule.move_operation(graph_id, -schedule.backward_slack(graph_id))
but operations that do not have a preceding operation (Inputs and Constants)
will only move to the start of the schedule.
Parameters
----------
graph_id : GraphID
The graph id of the operation to move.
"""
backward_slack = self.backward_slack(graph_id)
if backward_slack == sys.maxsize:
self.move_operation(graph_id, -self._start_times[graph_id])
else:
self.move_operation(graph_id, -backward_slack)
def _remove_delays_no_laps(self) -> None:
"""Remove delay elements without updating laps. Used when loading schedule."""
delay_list = self._sfg.find_by_type_name(Delay.type_name())
while delay_list:
delay_op = cast(Delay, delay_list[0])
self._sfg = cast(SFG, self._sfg.remove_operation(delay_op.graph_id))
delay_list = self._sfg.find_by_type_name(Delay.type_name())
def _remove_delays(self) -> None:
"""Remove delay elements and update laps. Used after scheduling algorithm."""
delay_list = self._sfg.find_by_type_name(Delay.type_name())
while delay_list:
delay_input_id = delay_op.input(0).signals[0].graph_id
delay_output_ids = [sig.graph_id for sig in delay_op.output(0).signals]
self._sfg = cast(SFG, self._sfg.remove_operation(delay_op.graph_id))
for output_id in delay_output_ids:
self._laps[output_id] += 1 + self._laps[delay_input_id]
del self._laps[delay_input_id]
delay_list = self._sfg.find_by_type_name(Delay.type_name())
def _reintroduce_delays(self) -> SFG:
"""
Reintroduce delay elements to each signal according to the ``_laps`` variable.
"""
new_sfg = self._sfg()
Hugo Winbladh
committed
destination_laps = []
Hugo Winbladh
committed
port = new_sfg.find_by_id(signal_id).destination
destination_laps.append((port.operation.graph_id, port.index, lap))
Hugo Winbladh
committed
new_sfg = new_sfg.insert_operation_before(op, Delay(), port)
def _schedule_alap(self) -> None:
"""Schedule the operations using as-late-as-possible scheduling."""
precedence_list = self._sfg.get_precedence_list()
self._schedule_asap()
max_end_time = self.get_max_end_time()
if self.schedule_time is None:
self._schedule_time = max_end_time
elif self.schedule_time < max_end_time:
raise ValueError(f"Too short schedule time. Minimum is {max_end_time}.")
for output in self._sfg.find_by_type_name(Output.type_name()):
output = cast(Output, output)
self.move_operation_alap(output.graph_id)
for step in reversed(precedence_list):
graph_ids = {
outport.operation.graph_id
for outport in step
if not isinstance(outport.operation, Delay)
}
for graph_id in graph_ids:
self.move_operation_alap(graph_id)
Angus Lothian
committed
def _schedule_asap(self) -> None:
"""Schedule the operations using as-soon-as-possible scheduling."""
precedence_list = self._sfg.get_precedence_list()
Angus Lothian
committed
if len(precedence_list) < 2:
raise ValueError("Empty signal flow graph cannot be scheduled.")
Angus Lothian
committed
for outport in precedence_list[0]:
operation = outport.operation
if operation.type_name() not in [Delay.type_name()]:
if operation.graph_id not in self._start_times:
# Set start time of all operations in the first iter to 0
self._start_times[operation.graph_id] = 0
non_schedulable_ops.add(operation.graph_id)
Angus Lothian
committed
for outport in precedence_list[1]:
operation = outport.operation
if operation.graph_id not in self._start_times:
Angus Lothian
committed
# Set start time of all operations in the first iter to 0
self._start_times[operation.graph_id] = 0
Angus Lothian
committed
for outports in precedence_list[2:]:
Angus Lothian
committed
for outport in outports:
operation = outport.operation
if operation.graph_id not in self._start_times:
# Schedule the operation if it does not have a start time yet.
Angus Lothian
committed
op_start_time = 0
for current_input in operation.inputs:
if len(current_input.signals) != 1:
if current_input.signals[0].source is None:
source_port = current_input.signals[0].source
Angus Lothian
committed
if source_port.operation.graph_id in non_schedulable_ops:
Angus Lothian
committed
source_end_time = 0
else:
source_op_time = self._start_times[
source_port.operation.graph_id
]
if source_port.latency_offset is None:
raise ValueError(
f"Output port {source_port.index} of"
" operation"
f" {source_port.operation.graph_id} has no"
" latency-offset."
)
source_end_time = (
source_op_time + source_port.latency_offset
)
if current_input.latency_offset is None:
f"Input port {current_input.index} of operation"
f" {current_input.operation.graph_id} has no"
op_start_time_from_in = (
source_end_time - current_input.latency_offset
)
op_start_time = max(op_start_time, op_start_time_from_in)
self._start_times[operation.graph_id] = op_start_time
for output in self._sfg.find_by_type_name(Output.type_name()):
output = cast(Output, output)
source_port = cast(OutputPort, output.inputs[0].signals[0].source)
if source_port.operation.graph_id in non_schedulable_ops:
self._start_times[output.graph_id] = 0
else:
if source_port.latency_offset is None:
raise ValueError(
f"Output port {source_port.index} of operation"
f" {source_port.operation.graph_id} has no"
" latency-offset."
)
self._start_times[output.graph_id] = self._start_times[
source_port.operation.graph_id
] + cast(int, source_port.latency_offset)
def _get_memory_variables_list(self) -> List[MemoryVariable]:
ret: List[MemoryVariable] = []
for graph_id, start_time in self._start_times.items():
slacks = self._forward_slacks(graph_id)
for outport, signals in slacks.items():
reads = {
for signal, slack in signals.items()
}
ret.append(
MemoryVariable(
(start_time + cast(int, outport.latency_offset))
% self.schedule_time,
def get_memory_variables(self) -> ProcessCollection:
"""
Return a ProcessCollection containing all memory variables.
"""
return ProcessCollection(
set(self._get_memory_variables_list()), self.schedule_time
)
def get_operations(self) -> ProcessCollection:
"""
Return a ProcessCollection containing all operations.
OperatorProcess(
start_time, cast(Operation, self._sfg.find_by_id(graph_id))
)
for graph_id, start_time in self._start_times.items()
},
self.schedule_time,
self.cyclic,
)
def get_used_type_names(self) -> List[TypeName]:
"""Get a list of all TypeNames used in the Schedule."""
return self._sfg.get_used_type_names()
def _get_y_position(
self, graph_id, operation_height=1.0, operation_gap=OPERATION_GAP
y_location = self._y_locations[graph_id]
# Assign the lowest row number not yet in use
used = {loc for loc in self._y_locations.values() if loc is not None}
possible = set(range(len(self._start_times))) - used
y_location = min(possible)
self._y_locations[graph_id] = y_location
return operation_gap + y_location * (operation_height + operation_gap)
def _plot_schedule(self, ax: Axes, operation_gap: float = OPERATION_GAP) -> None:
start: Sequence[float], end: Sequence[float], name: str = "", laps: int = 0
) -> None:
"""Draw an arrow from *start* to *end*."""
if start not in line_cache:
line = Line2D(
[start[0], self._schedule_time + SCHEDULE_OFFSET],
color=_SIGNAL_COLOR,
lw=SIGNAL_LINEWIDTH,
ax.add_line(line)
ax.text(
self._schedule_time + SCHEDULE_OFFSET,
start[1],
name,
verticalalignment="center",
)
line = Line2D(
[-SCHEDULE_OFFSET, end[0]],
[end[1], end[1]],
color=_SIGNAL_COLOR,
lw=SIGNAL_LINEWIDTH,
verticalalignment="center",
horizontalalignment="right",
)
line_cache.append(start)
if end[0] == start[0]:
path = Path(
[
start,
[start[0] + SPLINE_OFFSET, start[1]],
[start[0] + SPLINE_OFFSET, (start[1] + end[1]) / 2],
[start[0], (start[1] + end[1]) / 2],