Newer
Older
Angus Lothian
committed
Contains the schedule class for scheduling operations in an SFG.
from collections import defaultdict
from typing import Dict, List, Optional, Tuple
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import PathPatch
from matplotlib.path import Path
Angus Lothian
committed
Angus Lothian
committed
from b_asic.graph_component import GraphID
from b_asic.special_operations import Delay, Output
class Schedule:
"""Schedule of an SFG with scheduled Operations."""
Angus Lothian
committed
_sfg: SFG
_start_times: Dict[GraphID, int]
_laps: Dict[GraphID, List[int]]
_schedule_time: int
_cyclic: bool
_resolution: int
def __init__(
self,
sfg: SFG,
schedule_time: Optional[int] = None,
cyclic: bool = False,
resolution: int = 1,
scheduling_alg: str = "ASAP",
):
Angus Lothian
committed
self._sfg = sfg
self._laps = defaultdict(lambda: 0)
Angus Lothian
committed
self._cyclic = cyclic
self._resolution = resolution
if scheduling_alg == "ASAP":
self._schedule_asap()
else:
raise NotImplementedError(
f"No algorithm with name: {scheduling_alg} defined."
)
Angus Lothian
committed
Angus Lothian
committed
if schedule_time is None:
self._schedule_time = max_end_time
elif schedule_time < max_end_time:
raise ValueError(
f"Too short schedule time. Minimum is {max_end_time}."
)
else:
self._schedule_time = schedule_time
Angus Lothian
committed
def start_time_of_operation(self, op_id: GraphID) -> int:
"""Get the start time of the operation with the specified by the op_id.
"""
assert (
op_id in self._start_times
), "No operation with the specified op_id in this schedule."
Angus Lothian
committed
return self._start_times[op_id]
def get_max_end_time(self) -> int:
"""Returnes the current maximum end time among all operations."""
max_end_time = 0
for op_id, op_start_time in self._start_times.items():
op = self._sfg.find_by_id(op_id)
for outport in op.outputs:
max_end_time = max(
max_end_time, op_start_time + outport.latency_offset
)
Angus Lothian
committed
def forward_slack(self, op_id: GraphID) -> int:
assert (
op_id in self._start_times
), "No operation with the specified op_id in this schedule."
slack = sys.maxsize
output_slacks = self._forward_slacks(op_id)
# Make more pythonic
for signal_slacks in output_slacks.values():
for signal_slack in signal_slacks.values():
slack = min(slack, signal_slack)
return slack
def _forward_slacks(
self, op_id: GraphID
) -> Dict["OutputPort", Dict["Signal", int]]:
start_time = self._start_times[op_id]
op = self._sfg.find_by_id(op_id)
for output_port in op.outputs:
available_time = start_time + output_port.latency_offset
for signal in output_port.signals:
usage_time = (
signal.destination.latency_offset
+ self._start_times[signal.destination.operation.graph_id]
+ self._schedule_time * self._laps[signal.graph_id]
)
output_slacks[signal] = usage_time - available_time
ret[output_port] = output_slacks
return ret
Angus Lothian
committed
def backward_slack(self, op_id: GraphID) -> int:
assert (
op_id in self._start_times
), "No operation with the specified op_id in this schedule."
slack = sys.maxsize
input_slacks = self._backward_slacks(op_id)
# Make more pythonic
for signal_slacks in input_slacks.values():
for signal_slack in signal_slacks.values():
slack = min(slack, signal_slack)
return slack
def _backward_slacks(
self, op_id: GraphID
) -> Dict["OutputPort", Dict["Signal", int]]:
start_time = self._start_times[op_id]
op = self._sfg.find_by_id(op_id)
for input_port in op.inputs:
usage_time = start_time + input_port.latency_offset
for signal in input_port.signals:
available_time = (
signal.source.latency_offset
+ self._start_times[signal.source.operation.graph_id]
- self._schedule_time * self._laps[signal.graph_id]
)
input_slacks[signal] = usage_time - available_time
ret[input_port] = input_slacks
return ret
def slacks(self, op_id: GraphID) -> Tuple[int, int]:
assert (
op_id in self._start_times
), "No operation with the specified op_id in this schedule."
return (self.backward_slack(op_id), self.forward_slack(op_id))
Angus Lothian
committed
def print_slacks(self) -> None:
raise NotImplementedError
def set_schedule_time(self, time: int) -> "Schedule":
assert self.get_max_end_time() <= time, "New schedule time to short."
self._schedule_time = time
return self
@property
def sfg(self) -> SFG:
return self._sfg
@property
def laps(self) -> Dict[GraphID, List[int]]:
return self._laps
@property
def schedule_time(self) -> int:
return self._schedule_time
@property
def cyclic(self) -> bool:
return self._cyclic
@property
def resolution(self) -> int:
return self._resolution
def increase_time_resolution(self, factor: int) -> "Schedule":
def decrease_time_resolution(self, factor: int) -> "Schedule":
def move_operation(self, op_id: GraphID, time: int) -> "Schedule":
assert (
op_id in self._start_times
), "No operation with the specified op_id in this schedule."
(backward_slack, forward_slack) = self.slacks(op_id)
if time < 0:
if -time > backward_slack:
raise ValueError
else:
if time > forward_slack:
raise ValueError
tmp_start = self._start_times[op_id] + time
new_start = tmp_start % self._schedule_time
# Update input laps
input_slacks = self._backward_slacks(op_id)
for in_port, signal_slacks in input_slacks.items():
tmp_usage = tmp_start + in_port.latency_offset
new_usage = tmp_usage % self._schedule_time
for signal, signal_slack in signal_slacks.items():
new_slack = signal_slack + time
old_laps = self._laps[signal.graph_id]
tmp_prev_available = tmp_usage - new_slack
prev_available = tmp_prev_available % self._schedule_time
laps = new_slack // self._schedule_time
if new_usage < prev_available:
laps += 1
print(
[
signal_slack,
new_slack,
old_laps,
laps,
new_usage,
prev_available,
tmp_usage,
tmp_prev_available,
]
)
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
self._laps[signal.graph_id] = laps
# Update output laps
output_slacks = self._forward_slacks(op_id)
for out_port, signal_slacks in output_slacks.items():
tmp_available = tmp_start + out_port.latency_offset
new_available = tmp_available % self._schedule_time
for signal, signal_slack in signal_slacks.items():
new_slack = signal_slack - time
tmp_next_usage = tmp_available + new_slack
next_usage = tmp_next_usage % self._schedule_time
laps = new_slack // self._schedule_time
if next_usage < new_available:
laps += 1
if new_available == 0 and new_slack > 0:
laps += 1
self._laps[signal.graph_id] = laps
# Set new start time
self._start_times[op_id] = new_start
return self
def _remove_delays(self) -> None:
delay_list = self._sfg.find_by_type_name(Delay.type_name())
while delay_list:
delay_op = delay_list[0]
delay_input_id = delay_op.input(0).signals[0].graph_id
delay_output_ids = [
sig.graph_id for sig in delay_op.output(0).signals
]
self._sfg = self._sfg.remove_operation(delay_op.graph_id)
for output_id in delay_output_ids:
self._laps[output_id] += 1 + self._laps[delay_input_id]
del self._laps[delay_input_id]
delay_list = self._sfg.find_by_type_name(Delay.type_name())
Angus Lothian
committed
def _schedule_asap(self) -> None:
pl = self._sfg.get_precedence_list()
if len(pl) < 2:
print("Empty signal flow graph cannot be scheduled.")
return
non_schedulable_ops = set()
for outport in pl[0]:
op = outport.operation
if op.graph_id not in self._start_times:
# Set start time of all operations in the first iter to 0
self._start_times[op.graph_id] = 0
else:
non_schedulable_ops.add(op.graph_id)
Angus Lothian
committed
for outport in pl[1]:
op = outport.operation
if op.graph_id not in self._start_times:
Angus Lothian
committed
# Set start time of all operations in the first iter to 0
self._start_times[op.graph_id] = 0
for outports in pl[2:]:
for outport in outports:
op = outport.operation
if op.graph_id not in self._start_times:
# Schedule the operation if it doesn't have a start time yet.
op_start_time = 0
for inport in op.inputs:
assert (
len(inport.signals) == 1
), "Error in scheduling, dangling input port detected."
assert inport.signals[0].source is not None, (
"Error in scheduling, signal with no source"
" detected."
)
Angus Lothian
committed
source_port = inport.signals[0].source
source_end_time = None
if (
source_port.operation.graph_id
in non_schedulable_ops
):
Angus Lothian
committed
source_end_time = 0
else:
source_op_time = self._start_times[
source_port.operation.graph_id
]
assert source_port.latency_offset is not None, (
f"Output port: {source_port.index} of"
" operation: "
f" {source_port.operation.graph_id} has no"
" latency-offset."
)
assert inport.latency_offset is not None, (
f"Input port: {inport.index} of operation: "
" "
f" {inport.operation.graph_id} has no"
" latency-offset."
)
source_end_time = (
source_op_time + source_port.latency_offset
)
op_start_time_from_in = (
source_end_time - inport.latency_offset
)
Angus Lothian
committed
op_start_time = max(
Angus Lothian
committed
self._start_times[op.graph_id] = op_start_time
for output in self._sfg.find_by_type_name(Output.type_name()):
source_port = output.inputs[0].signals[0].source
if source_port.operation.graph_id in non_schedulable_ops:
self._start_times[output.graph_id] = 0
else:
self._start_times[output.graph_id] = (
self._start_times[source_port.operation.graph_id]
+ source_port.latency_offset
)
def _plot_schedule(self, ax):
ax.plot([start[0], self._schedule_time], [start[1], start[1]])
ax.plot([0, end[0]], [end[1], end[1]])
[
start[0],
start[0] + 0.2,
start[0] + 0.2,
start[0] - 0.2,
start[0] - 0.2,
start[0],
],
[
start[1],
start[1],
(start[1] + end[1]) / 2,
(start[1] + end[1]) / 2,
end[1],
end[1],
],
)
[
start[0],
(start[0] + end[0]) / 2,
(start[0] + end[0]) / 2,
end[0],
],
[start[1], start[1], end[1], end[1]],
)
def _draw_arrow(start, end, name="", laps=0):
[start[0], self._schedule_time + 0.2],
[start[1], start[1]],
color="black",
)
ax.plot([-0.2, end[0]], [end[1], end[1]], color="black")
ax.text(
self._schedule_time + 0.2,
start[1],
name,
verticalalignment="center",
)
-0.2,
end[1],
"{}: {}".format(name, laps),
verticalalignment="center",
horizontalalignment="right",
)
start,
[start[0] + 0.2, start[1]],
[start[0] + 0.2, (start[1] + end[1]) / 2],
[start[0], (start[1] + end[1]) / 2],
[start[0] - 0.2, (start[1] + end[1]) / 2],
[start[0] - 0.2, end[1]],
end,
],
[
Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
pp = PathPatch(p, fc='none')
ax.add_patch(pp)
start,
[(start[0] + end[0]) / 2, start[1]],
[(start[0] + end[0]) / 2, end[1]],
end,
pp = PathPatch(p, fc='none')
ax.add_patch(pp)
def _draw_offset_arrow(
start, end, start_offset, end_offset, name="", laps=0
):
_draw_arrow(
[start[0] + start_offset[0], start[1] + start_offset[1]],
[end[0] + end_offset[0], end[1] + end_offset[1]],
name=name,
laps=laps,
)
ypos = 0.5
ytickpositions = []
yticklabels = []
for op_id, op_start_time in self._start_times.items():
op = self._sfg.find_by_id(op_id)
latency_coords, execution_time_coords = op.get_plot_coordinates()
_x, _y = zip(*latency_coords)
x = np.array(_x)
y = np.array(_y)
ax.fill(x + op_start_time, y + ypos)
if execution_time_coords:
_x, _y = zip(*execution_time_coords)
x = np.array(_x)
y = np.array(_y)
x + op_start_time,
y + ypos,
color="black",
linewidth=3,
alpha=0.5,
)
ytickpositions.append(ypos + 0.5)
yticklabels.append(self._sfg.find_by_id(op_id).name)
ypositions[op_id] = ypos
ypos += 1.5
for op_id, op_start_time in self._start_times.items():
op = self._sfg.find_by_id(op_id)
_, out_coords = op.get_io_coordinates()
source_ypos = ypositions[op_id]
for output_port in op.outputs:
for output_signal in output_port.signals:
dest_op = output_signal.destination.operation
dest_start_time = self._start_times[dest_op.graph_id]
dest_ypos = ypositions[dest_op.graph_id]
(
dest_in_coords,
_,
) = (
output_signal.destination.operation.get_io_coordinates()
)
_draw_offset_arrow(
out_coords[output_port.index],
dest_in_coords[output_signal.destination.index],
[op_start_time, source_ypos],
[dest_start_time, dest_ypos],
name=op_id,
laps=self._laps[output_signal.graph_id],
)
ax.set_yticks(ytickpositions)
ax.set_yticklabels(yticklabels)
ax.axis([-1, self._schedule_time + 1, 0, ypos])
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.plot([0, 0], [0, ypos], linestyle="--", color="black")
ax.plot(
[self._schedule_time, self._schedule_time],
[0, ypos],
linestyle="--",
color="black",
)
def plot_schedule(self) -> None:
fig, ax = plt.subplots()
self._plot_schedule(ax)
fig.show()
fig, ax = plt.subplots()
self._plot_schedule(ax)
fig.savefig(f, format="svg")