Newer
Older
Angus Lothian
committed
Contains the schedule class for scheduling operations in an SFG.
from collections import defaultdict
from typing import Dict, List, Optional, Tuple
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import numpy as np
from scipy import interpolate
import sys
import io
Angus Lothian
committed
from b_asic.signal_flow_graph import SFG
from b_asic.graph_component import GraphID
from b_asic.special_operations import Delay, Output
from b_asic import OutputPort, Signal
class Schedule:
"""Schedule of an SFG with scheduled Operations."""
Angus Lothian
committed
_sfg: SFG
_start_times: Dict[GraphID, int]
_laps: Dict[GraphID, List[int]]
_schedule_time: int
_cyclic: bool
_resolution: int
def __init__(self, sfg: SFG, schedule_time: Optional[int] = None, cyclic: bool = False, resolution: int = 1, scheduling_alg: str = "ASAP"):
Angus Lothian
committed
self._sfg = sfg
self._laps = defaultdict(lambda: 0)
Angus Lothian
committed
self._cyclic = cyclic
self._resolution = resolution
if scheduling_alg == "ASAP":
self._schedule_asap()
else:
raise NotImplementedError(
f"No algorithm with name: {scheduling_alg} defined.")
max_end_time = self._get_max_end_time()
Angus Lothian
committed
if schedule_time is None:
self._schedule_time = max_end_time
elif schedule_time < max_end_time:
raise ValueError(
f"Too short schedule time. Minimum is {max_end_time}.")
else:
self._schedule_time = schedule_time
Angus Lothian
committed
def start_time_of_operation(self, op_id: GraphID) -> int:
"""Get the start time of the operation with the specified by the op_id."""
assert op_id in self._start_times, "No operation with the specified op_id in this schedule."
Angus Lothian
committed
return self._start_times[op_id]
def _get_max_end_time(self) -> int:
max_end_time = 0
for op_id, op_start_time in self._start_times.items():
op = self._sfg.find_by_id(op_id)
for outport in op.outputs:
max_end_time = max(
max_end_time, op_start_time + outport.latency_offset)
return max_end_time
Angus Lothian
committed
def forward_slack(self, op_id: GraphID) -> int:
assert op_id in self._start_times, "No operation with the specified op_id in this schedule."
slack = sys.maxsize
output_slacks = self._forward_slacks(op_id)
# Make more pythonic
for signal_slacks in output_slacks.values():
for signal_slack in signal_slacks.values():
slack = min(slack, signal_slack)
return slack
def _forward_slacks(self, op_id: GraphID) -> Dict["OutputPort", Dict["Signal", int]]:
start_time = self._start_times[op_id]
op = self._sfg.find_by_id(op_id)
for output_port in op.outputs:
available_time = start_time + output_port.latency_offset
for signal in output_port.signals:
usage_time = (signal.destination.latency_offset +
self._start_times[signal.destination.operation.graph_id] +
self._schedule_time*self._laps[signal.graph_id])
output_slacks[signal] = usage_time - available_time
ret[output_port] = output_slacks
return ret
Angus Lothian
committed
def backward_slack(self, op_id: GraphID) -> int:
assert op_id in self._start_times, "No operation with the specified op_id in this schedule."
slack = sys.maxsize
input_slacks = self._backward_slacks(op_id)
# Make more pythonic
for signal_slacks in input_slacks.values():
for signal_slack in signal_slacks.values():
slack = min(slack, signal_slack)
return slack
def _backward_slacks(self, op_id: GraphID) -> Dict["OutputPort", Dict["Signal", int]]:
start_time = self._start_times[op_id]
op = self._sfg.find_by_id(op_id)
for input_port in op.inputs:
usage_time = start_time + input_port.latency_offset
for signal in input_port.signals:
available_time = (signal.source.latency_offset +
self._start_times[signal.source.operation.graph_id] -
self._schedule_time*self._laps[signal.graph_id])
input_slacks[signal] = usage_time - available_time
ret[input_port] = input_slacks
return ret
def slacks(self, op_id: GraphID) -> Tuple[int, int]:
assert op_id in self._start_times, "No operation with the specified op_id in this schedule."
return (self.backward_slack(op_id), self.forward_slack(op_id))
Angus Lothian
committed
def print_slacks(self) -> None:
raise NotImplementedError
def set_schedule_time(self, time: int) -> "Schedule":
assert self._get_max_end_time() < time, "New schedule time to short."
self._schedule_time = time
return self
@property
def schedule_time(self) -> int:
return self._schedule_time
def increase_time_resolution(self, factor: int) -> "Schedule":
def decrease_time_resolution(self, factor: int) -> "Schedule":
def move_operation(self, op_id: GraphID, time: int) -> "Schedule":
assert op_id in self._start_times, "No operation with the specified op_id in this schedule."
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
(backward_slack, forward_slack) = self.slacks(op_id)
if time < 0:
if -time > backward_slack:
raise ValueError
else:
if time > forward_slack:
raise ValueError
tmp_start = self._start_times[op_id] + time
new_start = tmp_start % self._schedule_time
# Update input laps
input_slacks = self._backward_slacks(op_id)
for in_port, signal_slacks in input_slacks.items():
tmp_usage = tmp_start + in_port.latency_offset
new_usage = tmp_usage % self._schedule_time
for signal, signal_slack in signal_slacks.items():
new_slack = signal_slack + time
old_laps = self._laps[signal.graph_id]
tmp_prev_available = tmp_usage - new_slack
prev_available = tmp_prev_available % self._schedule_time
laps = new_slack // self._schedule_time
if new_usage < prev_available:
laps += 1
print([signal_slack, new_slack, old_laps, laps, new_usage, prev_available, tmp_usage, tmp_prev_available])
self._laps[signal.graph_id] = laps
# Update output laps
output_slacks = self._forward_slacks(op_id)
for out_port, signal_slacks in output_slacks.items():
tmp_available = tmp_start + out_port.latency_offset
new_available = tmp_available % self._schedule_time
for signal, signal_slack in signal_slacks.items():
new_slack = signal_slack - time
tmp_next_usage = tmp_available + new_slack
next_usage = tmp_next_usage % self._schedule_time
laps = new_slack // self._schedule_time
if next_usage < new_available:
laps += 1
if new_available == 0 and new_slack > 0:
laps += 1
self._laps[signal.graph_id] = laps
# Set new start time
self._start_times[op_id] = new_start
return self
def _remove_delays(self) -> None:
delay_list = self._sfg.find_by_type_name(Delay.type_name())
while delay_list:
delay_op = delay_list[0]
delay_input_id = delay_op.input(0).signals[0].graph_id
delay_output_ids = [sig.graph_id for sig in delay_op.output(0).signals]
self._sfg = self._sfg.remove_operation(delay_op.graph_id)
for output_id in delay_output_ids:
self._laps[output_id] += 1 + self._laps[delay_input_id]
del self._laps[delay_input_id]
delay_list = self._sfg.find_by_type_name(Delay.type_name())
Angus Lothian
committed
def _schedule_asap(self) -> None:
pl = self._sfg.get_precedence_list()
if len(pl) < 2:
print("Empty signal flow graph cannot be scheduled.")
return
non_schedulable_ops = set()
for outport in pl[0]:
op = outport.operation
if op.type_name() not in [Delay.type_name()]:
if op.graph_id not in self._start_times:
# Set start time of all operations in the first iter to 0
self._start_times[op.graph_id] = 0
else:
non_schedulable_ops.add(op.graph_id)
Angus Lothian
committed
for outport in pl[1]:
op = outport.operation
if op.graph_id not in self._start_times:
Angus Lothian
committed
# Set start time of all operations in the first iter to 0
self._start_times[op.graph_id] = 0
for outports in pl[2:]:
for outport in outports:
op = outport.operation
if op.graph_id not in self._start_times:
# Schedule the operation if it doesn't have a start time yet.
op_start_time = 0
for inport in op.inputs:
assert len(
inport.signals) == 1, "Error in scheduling, dangling input port detected."
assert inport.signals[0].source is not None, "Error in scheduling, signal with no source detected."
source_port = inport.signals[0].source
source_end_time = None
if source_port.operation.graph_id in non_schedulable_ops:
source_end_time = 0
else:
source_op_time = self._start_times[source_port.operation.graph_id]
assert source_port.latency_offset is not None, f"Output port: {source_port.index} of operation: \
{source_port.operation.graph_id} has no latency-offset."
assert inport.latency_offset is not None, f"Input port: {inport.index} of operation: \
{inport.operation.graph_id} has no latency-offset."
Angus Lothian
committed
source_end_time = source_op_time + source_port.latency_offset
Angus Lothian
committed
op_start_time_from_in = source_end_time - inport.latency_offset
op_start_time = max(
op_start_time, op_start_time_from_in)
Angus Lothian
committed
self._start_times[op.graph_id] = op_start_time
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
for output in self._sfg.find_by_type_name(Output.type_name()):
source_port = output.inputs[0].signals[0].source
if source_port.operation.graph_id in non_schedulable_ops:
self._start_times[output.graph_id] = 0
else:
self._start_times[output.graph_id] = self._start_times[source_port.operation.graph_id] + source_port.latency_offset
self._remove_delays()
def _plot_schedule(self):
def _draw_arrow2(start, end):
if end[0] < start[0]: # Wrap around
plt.plot([start[0], self._schedule_time], [start[1], start[1]])
plt.plot([0, end[0]], [end[1], end[1]])
elif end[0] == start[0]:
plt.plot([start[0], start[0] + 0.2, start[0] + 0.2, start[0] - 0.2, start[0] - 0.2, start[0]],
[start[1], start[1], (start[1] + end[1])/2, (start[1] + end[1])/2, end[1], end[1]])
else:
plt.plot([start[0], (start[0] + end[0])/2, (start[0] + end[0])/2, end[0]],
[start[1], start[1], end[1], end[1]])
def _draw_spline(x, y):
l = len(x)
t = np.linspace(0, 1, l-2, endpoint=True)
t = np.append([0, 0, 0], t)
t = np.append(t, [1, 1, 1])
tck = [t, [x, y], 3]
u3 = np.linspace(0, 1, 50, endpoint=True)
out = interpolate.splev(u3, tck)
plt.plot(out[0], out[1], color='black')
def _draw_arrow(start, end, name="", laps=0):
if end[0] < start[0] or laps > 0: # Wrap around
plt.plot([start[0], self._schedule_time + 0.2], [start[1], start[1]], color='black')
plt.plot([-0.2, end[0]], [end[1], end[1]], color='black')
plt.text(self._schedule_time + 0.2, start[1], name, verticalalignment='center')
plt.text(-0.2, end[1], "{}: {}".format(name, laps), verticalalignment='center', horizontalalignment='right')
elif end[0] == start[0]:
_draw_spline([start[0], start[0] + 0.2, start[0] + 0.2, start[0] - 0.2, start[0] - 0.2, start[0]],
[start[1], start[1], (start[1] + end[1])/2, (start[1] + end[1])/2, end[1], end[1]])
else:
_draw_spline([start[0], (start[0] + end[0])/2, (start[0] + end[0])/2, end[0]],
[start[1], start[1], end[1], end[1]])
def _draw_offset_arrow(start, end, start_offset, end_offset, name="", laps=0):
_draw_arrow([start[0] + start_offset[0], start[1] + start_offset[1]],
[end[0] + end_offset[0], end[1] + end_offset[1]], name=name, laps=laps)
ypos = 0.5
ytickpositions = []
yticklabels = []
plt.grid(zorder=0.5)
for op_id, op_start_time in self._start_times.items():
op = self._sfg.find_by_id(op_id)
latency_coords, execution_time_coords = op.get_plot_coordinates()
_x, _y = zip(*latency_coords)
x = np.array(_x)
y = np.array(_y)
plt.fill(x + op_start_time, y + ypos)
if execution_time_coords:
_x, _y = zip(*execution_time_coords)
x = np.array(_x)
y = np.array(_y)
plt.plot(x + op_start_time, y + ypos, color='black', linewidth=3, alpha=0.5)
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
ytickpositions.append(ypos + 0.5)
yticklabels.append(self._sfg.find_by_id(op_id).name)
ypositions[op_id] = ypos
ypos += 1.5
for op_id, op_start_time in self._start_times.items():
op = self._sfg.find_by_id(op_id)
_, out_coords = op.get_io_coordinates()
source_ypos = ypositions[op_id]
for output_port in op.outputs:
for output_signal in output_port.signals:
dest_op = output_signal.destination.operation
dest_start_time = self._start_times[dest_op.graph_id]
dest_ypos = ypositions[dest_op.graph_id]
dest_in_coords, _ = output_signal.destination.operation.get_io_coordinates()
_draw_offset_arrow(out_coords[output_port.index],
dest_in_coords[output_signal.destination.index],
[op_start_time, source_ypos],
[dest_start_time, dest_ypos], name=op_id,
laps=self._laps[output_signal.graph_id])
plt.yticks(ytickpositions, yticklabels)
plt.axis([-1, self._schedule_time+1, 0, ypos])
plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True))
plt.plot([0, 0], [0, ypos], linestyle='--', color='black')
plt.plot([self._schedule_time, self._schedule_time], [0, ypos], linestyle='--', color='black')
def plot_schedule(self) -> None:
plt.figure()
self._plot_schedule()
plt.show()
def _repr_svg_(self):
plt.figure()
self._plot_schedule()
f = io.StringIO()
plt.savefig(f, format='svg')
return f.getvalue()