Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B-ASIC - Better ASIC Toolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Computer Engineering
B-ASIC - Better ASIC Toolbox
Merge requests
!8
Convert from tabs to spaces
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Convert from tabs to spaces
pylint-tabs-to-spaces
into
develop
Overview
1
Commits
1
Pipelines
1
Changes
11
Merged
Jacob Wahlman
requested to merge
pylint-tabs-to-spaces
into
develop
5 years ago
Overview
1
Commits
1
Pipelines
1
Changes
11
Expand
Convert all tabs to use spaces instead. No functional change.
0
0
Merge request reports
Compare
develop
develop (base)
and
latest version
latest version
75204fba
1 commit,
5 years ago
11 files
+
470
−
471
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
11
Search (e.g. *.vue) (Ctrl+P)
b_asic/abstract_operation.py
+
97
−
97
Options
@@ -15,100 +15,100 @@ from b_asic.utilities import breadth_first_search
from
b_asic.abstract_graph_component
import
AbstractGraphComponent
class
AbstractOperation
(
Operation
,
AbstractGraphComponent
):
"""
Generic abstract operation class which most implementations will derive from.
TODO: More info.
"""
_input_ports
:
List
[
InputPort
]
_output_ports
:
List
[
OutputPort
]
_parameters
:
Dict
[
str
,
Optional
[
Any
]]
def
__init__
(
self
,
**
kwds
):
super
().
__init__
(
**
kwds
)
self
.
_input_ports
=
[]
self
.
_output_ports
=
[]
self
.
_parameters
=
{}
@abstractmethod
def
evaluate
(
self
,
inputs
:
list
)
->
list
:
"""
Evaluate the operation and generate a list of output values given a list of input values.
"""
raise
NotImplementedError
def
inputs
(
self
)
->
List
[
InputPort
]:
return
self
.
_input_ports
.
copy
()
def
outputs
(
self
)
->
List
[
OutputPort
]:
return
self
.
_output_ports
.
copy
()
def
input_count
(
self
)
->
int
:
return
len
(
self
.
_input_ports
)
def
output_count
(
self
)
->
int
:
return
len
(
self
.
_output_ports
)
def
input
(
self
,
i
:
int
)
->
InputPort
:
return
self
.
_input_ports
[
i
]
def
output
(
self
,
i
:
int
)
->
OutputPort
:
return
self
.
_output_ports
[
i
]
def
params
(
self
)
->
Dict
[
str
,
Optional
[
Any
]]:
return
self
.
_parameters
.
copy
()
def
param
(
self
,
name
:
str
)
->
Optional
[
Any
]:
return
self
.
_parameters
.
get
(
name
)
def
set_param
(
self
,
name
:
str
,
value
:
Any
)
->
None
:
assert
name
in
self
.
_parameters
# TODO: Error message.
self
.
_parameters
[
name
]
=
value
def
evaluate_outputs
(
self
,
state
:
SimulationState
)
->
List
[
Number
]:
# TODO: Check implementation.
input_count
:
int
=
self
.
input_count
()
output_count
:
int
=
self
.
output_count
()
assert
input_count
==
len
(
self
.
_input_ports
)
# TODO: Error message.
assert
output_count
==
len
(
self
.
_output_ports
)
# TODO: Error message.
self_state
:
OperationState
=
state
.
operation_states
[
self
]
while
self_state
.
iteration
<
state
.
iteration
:
input_values
:
List
[
Number
]
=
[
0
]
*
input_count
for
i
in
range
(
input_count
):
source
:
Signal
=
self
.
_input_ports
[
i
].
signal
input_values
[
i
]
=
source
.
operation
.
evaluate_outputs
(
state
)[
source
.
port_index
]
self_state
.
output_values
=
self
.
evaluate
(
input_values
)
assert
len
(
self_state
.
output_values
)
==
output_count
# TODO: Error message.
self_state
.
iteration
+=
1
for
i
in
range
(
output_count
):
for
signal
in
self
.
_output_ports
[
i
].
signals
():
destination
:
Signal
=
signal
.
destination
destination
.
evaluate_outputs
(
state
)
return
self_state
.
output_values
def
split
(
self
)
->
List
[
Operation
]:
# TODO: Check implementation.
results
=
self
.
evaluate
(
self
.
_input_ports
)
if
all
(
isinstance
(
e
,
Operation
)
for
e
in
results
):
return
results
return
[
self
]
@property
def
neighbours
(
self
)
->
List
[
Operation
]:
neighbours
:
List
[
Operation
]
=
[]
for
port
in
self
.
_input_ports
:
for
signal
in
port
.
signals
:
neighbours
.
append
(
signal
.
source
.
operation
)
for
port
in
self
.
_output_ports
:
for
signal
in
port
.
signals
:
neighbours
.
append
(
signal
.
destination
.
operation
)
return
neighbours
def
traverse
(
self
)
->
Operation
:
"""
Traverse the operation tree and return a generator with start point in the operation.
"""
return
breadth_first_search
(
self
)
# TODO: More stuff.
"""
Generic abstract operation class which most implementations will derive from.
TODO: More info.
"""
_input_ports
:
List
[
InputPort
]
_output_ports
:
List
[
OutputPort
]
_parameters
:
Dict
[
str
,
Optional
[
Any
]]
def
__init__
(
self
,
**
kwds
):
super
().
__init__
(
**
kwds
)
self
.
_input_ports
=
[]
self
.
_output_ports
=
[]
self
.
_parameters
=
{}
@abstractmethod
def
evaluate
(
self
,
inputs
:
list
)
->
list
:
"""
Evaluate the operation and generate a list of output values given a list of input values.
"""
raise
NotImplementedError
def
inputs
(
self
)
->
List
[
InputPort
]:
return
self
.
_input_ports
.
copy
()
def
outputs
(
self
)
->
List
[
OutputPort
]:
return
self
.
_output_ports
.
copy
()
def
input_count
(
self
)
->
int
:
return
len
(
self
.
_input_ports
)
def
output_count
(
self
)
->
int
:
return
len
(
self
.
_output_ports
)
def
input
(
self
,
i
:
int
)
->
InputPort
:
return
self
.
_input_ports
[
i
]
def
output
(
self
,
i
:
int
)
->
OutputPort
:
return
self
.
_output_ports
[
i
]
def
params
(
self
)
->
Dict
[
str
,
Optional
[
Any
]]:
return
self
.
_parameters
.
copy
()
def
param
(
self
,
name
:
str
)
->
Optional
[
Any
]:
return
self
.
_parameters
.
get
(
name
)
def
set_param
(
self
,
name
:
str
,
value
:
Any
)
->
None
:
assert
name
in
self
.
_parameters
# TODO: Error message.
self
.
_parameters
[
name
]
=
value
def
evaluate_outputs
(
self
,
state
:
SimulationState
)
->
List
[
Number
]:
# TODO: Check implementation.
input_count
:
int
=
self
.
input_count
()
output_count
:
int
=
self
.
output_count
()
assert
input_count
==
len
(
self
.
_input_ports
)
# TODO: Error message.
assert
output_count
==
len
(
self
.
_output_ports
)
# TODO: Error message.
self_state
:
OperationState
=
state
.
operation_states
[
self
]
while
self_state
.
iteration
<
state
.
iteration
:
input_values
:
List
[
Number
]
=
[
0
]
*
input_count
for
i
in
range
(
input_count
):
source
:
Signal
=
self
.
_input_ports
[
i
].
signal
input_values
[
i
]
=
source
.
operation
.
evaluate_outputs
(
state
)[
source
.
port_index
]
self_state
.
output_values
=
self
.
evaluate
(
input_values
)
assert
len
(
self_state
.
output_values
)
==
output_count
# TODO: Error message.
self_state
.
iteration
+=
1
for
i
in
range
(
output_count
):
for
signal
in
self
.
_output_ports
[
i
].
signals
():
destination
:
Signal
=
signal
.
destination
destination
.
evaluate_outputs
(
state
)
return
self_state
.
output_values
def
split
(
self
)
->
List
[
Operation
]:
# TODO: Check implementation.
results
=
self
.
evaluate
(
self
.
_input_ports
)
if
all
(
isinstance
(
e
,
Operation
)
for
e
in
results
):
return
results
return
[
self
]
@property
def
neighbours
(
self
)
->
List
[
Operation
]:
neighbours
:
List
[
Operation
]
=
[]
for
port
in
self
.
_input_ports
:
for
signal
in
port
.
signals
:
neighbours
.
append
(
signal
.
source
.
operation
)
for
port
in
self
.
_output_ports
:
for
signal
in
port
.
signals
:
neighbours
.
append
(
signal
.
destination
.
operation
)
return
neighbours
def
traverse
(
self
)
->
Operation
:
"""
Traverse the operation tree and return a generator with start point in the operation.
"""
return
breadth_first_search
(
self
)
# TODO: More stuff.
Loading