Skip to content
Snippets Groups Projects
core_operations.py 24 KiB
Newer Older
  • Learn to ignore specific revisions
  • """
    B-ASIC Core Operations Module.
    
    
    Contains some of the most commonly used mathematical operations.
    
    """
    
    from numbers import Number
    
    from typing import Dict, Iterable, Optional, Set
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
    from numpy import abs as np_abs
    from numpy import conjugate, sqrt
    
    from b_asic.graph_component import Name, TypeName
    
    from b_asic.operation import AbstractOperation, Operation
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.port import SignalSourceProvider
    
    
    
    class Constant(AbstractOperation):
    
        Constant value operation.
    
    
        Gives a specified value that remains constant for every iteration.
    
    
        .. math:: y = \text{value}
    
        Parameters
        ==========
    
        value : Number, default: 0
            The constant value.
        name : Name, optional
            Operation name.
    
    
    Andreas Bolin's avatar
    Andreas Bolin committed
        _execution_time = 0
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(self, value: Number = 0, name: Name = Name("")):
    
            """Construct a Constant operation with the given value."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=0,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                latency_offsets={"out0": 0},
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("c")
    
    
        def evaluate(self):
            return self.param("value")
    
        @property
    
        def value(self) -> Number:
            """Get the constant value of this operation."""
            return self.param("value")
    
        @value.setter
        def value(self, value: Number) -> None:
            """Set the constant value of this operation."""
    
            self.set_param("value", value)
    
    
    
    class Addition(AbstractOperation):
    
        """
        Binary addition operation.
    
        .. math:: y = x_0 + x_1
    
        Parameters
        ==========
    
        src0, src1 : SignalSourceProvider, optional
            The two signals to add.
        name : Name, optional
            Operation name.
        latency : int, optional
            Operation latency (delay from input to output in time units).
        latency_offsets : dict[str, int], optional
            Used if inputs have different arrival times, e.g.,
            ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one
            time unit later than *src0*. If not provided and *latency* is
            provided, set to zero if not explicitly provided. So the previous
            example can be written as ``{"in1": 1}`` only.
        execution_time : int, optional
            Operation execution time (time units before operator can be
            reused).
    
        See also
        ========
        AddSub
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """
            Construct an Addition operation.
            """
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("add")
    
    
        def evaluate(self, a, b):
            return a + b
    
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            if any(c == 0.0 for c in constants):
                print("One input is 0!")
    
    
    
    class Subtraction(AbstractOperation):
    
        """
        Binary subtraction operation.
    
    
        Gives the result of subtracting the second input from the first one.
    
    
        .. math:: y = x_0 - x_1
    
        Parameters
        ==========
    
        src0, src1 : SignalSourceProvider, optional
            The two signals to subtract.
        name : Name, optional
            Operation name.
        latency : int, optional
            Operation latency (delay from input to output in time units).
        latency_offsets : dict[str, int], optional
            Used if inputs have different arrival times, e.g.,
            ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one
            time unit later than *src0*. If not provided and *latency* is
            provided, set to zero if not explicitly provided. So the previous
            example can be written as ``{"in1": 1}`` only.
        execution_time : int, optional
            Operation execution time (time units before operator can be
            reused).
    
        See also
        ========
        AddSub
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("sub")
    
    
        def evaluate(self, a, b):
            return a - b
    
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            if any(c == 0.0 for c in constants):
                print("One input is 0!")
    
    
    class AddSub(AbstractOperation):
    
        Two-input addition or subtraction operation.
    
    
        Gives the result of adding or subtracting two inputs.
    
    
        .. math::
            y = \begin{cases}
            x_0 + x_1,& \text{is_add} = \text{True}\\
            x_0 - x_1,& \text{is_add} = \text{False}
            \end{cases}
    
        This is used to later map additions and subtractions to the same
        operator.
    
        Parameters
        ==========
    
        is_add : bool, default: True
            If True, the operation is an addition, if False, a subtraction.
        src0, src1 : SignalSourceProvider, optional
            The two signals to add or subtract.
        name : Name, optional
            Operation name.
        latency : int, optional
            Operation latency (delay from input to output in time units).
        latency_offsets : dict[str, int], optional
            Used if inputs have different arrival times, e.g.,
            ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one
            time unit later than *src0*. If not provided and *latency* is
            provided, set to zero if not explicitly provided. So the previous
            example can be written as ``{"in1": 1}`` only.
        execution_time : int, optional
            Operation execution time (time units before operator can be
            reused).
    
        See also
        ========
        Addition, Subtraction
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            is_add: bool = True,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """Construct an Addition/Subtraction operation."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
            self.set_param("is_add", is_add)
    
        @classmethod
        def type_name(cls) -> TypeName:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("addsub")
    
    
        def evaluate(self, a, b):
            return a + b if self.is_add else a - b
    
        @property
        def is_add(self) -> Number:
            """Get if operation is add."""
            return self.param("is_add")
    
        @is_add.setter
        def is_add(self, is_add: bool) -> None:
            """Set if operation is add."""
    
            self.set_param("is_add", is_add)
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            if any(c == 0.0 for c in constants):
                print("One input is 0!")
    
        def _propagate_constant_parameters(
            self, valid_operations: Optional[Set["Operation"]] = None
        ) -> None:
            print(f"Can turn into {'Addition' if self.is_add else 'Subtraction'}")
            return
    
    
    class Multiplication(AbstractOperation):
    
        Binary multiplication operation.
    
        .. math:: y = x_0 \times x_1
    
        Parameters
        ==========
    
        src0, src1 : SignalSourceProvider, optional
            The two signals to multiply.
        name : Name, optional
            Operation name.
        latency : int, optional
            Operation latency (delay from input to output in time units).
        latency_offsets : dict[str, int], optional
            Used if inputs have different arrival times, e.g.,
            ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one
            time unit later than *src0*. If not provided and *latency* is
            provided, set to zero if not explicitly provided. So the previous
            example can be written as ``{"in1": 1}`` only.
        execution_time : int, optional
            Operation execution time (time units before operator can be
            reused).
    
    
        See also
        ========
        ConstantMultiplication
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """Construct a Multiplication operation."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("mul")
    
    
        def evaluate(self, a, b):
            return a * b
    
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            if any(c == 0.0 for c in constants):
                print("One input is 0!")
            if any(c == 1.0 for c in constants):
                print("One input is 1!")
            print("Can turn into ConstantMultiplication")
    
    
    
    class Division(AbstractOperation):
    
        Binary division operation.
    
        Gives the result of dividing the first input by the second one.
    
        See also
        ========
        Reciprocal
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("div")
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            numerator, denominator = constants
            if numerator == 0.0:
                print("Result is 0!")
            if denominator is not None:
                print("Can turn into ConstantMultiplication")
    
    
        Binary min operation.
    
        .. math:: y = \min\{x_0 , x_1\}
    
        .. note:: Only real-valued numbers are supported.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("min")
    
            if isinstance(a, complex) or isinstance(b, complex):
                raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "core_operations.Min does not support complex numbers."
                )
    
    
    
    class Max(AbstractOperation):
    
        Binary max operation.
    
        .. math:: y = \max\{x_0 , x_1\}
    
        .. note:: Only real-valued numbers are supported.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("max")
    
    
        def evaluate(self, a, b):
    
            if isinstance(a, complex) or isinstance(b, complex):
                raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "core_operations.Max does not support complex numbers."
                )
    
            return a if a > b else b
    
    
    
        Square root operation.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=1,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("sqrt")
    
        def evaluate(self, a):
            return sqrt(complex(a))
    
    class ComplexConjugate(AbstractOperation):
    
        """
        Complex conjugate operation.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """Construct a ComplexConjugate operation."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=1,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("conj")
    
    
        def evaluate(self, a):
    
        """
        Absolute value operation.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=1,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("abs")
    
    
        def evaluate(self, a):
    
    class ConstantMultiplication(AbstractOperation):
    
        Constant multiplication operation.
    
    
        Gives the result of multiplying its input by a specified value.
    
        .. math:: y = x_0 \times \text{value}
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            value: Number = 0,
            src0: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """Construct a ConstantMultiplication operation with the given value.
            """
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=1,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("cmul")
    
    
        def evaluate(self, a):
    
    
        @property
    
        def value(self) -> Number:
            """Get the constant value of this operation."""
            return self.param("value")
    
        @value.setter
        def value(self, value: Number) -> None:
            """Set the constant value of this operation."""
    
            self.set_param("value", value)
    
        def _propagate_constant_parameters(
            self, valid_operations: Optional[Set["Operation"]] = None
        ) -> None:
            if self.value == 0.0:
                print("Constant is zero!")
            if self.value == 1.0:
                print("Constant is zero!")
            return
    
    
        r"""
        Radix-2 Butterfly operation.
    
    
        Gives the result of adding its two inputs, as well as the result of
        subtracting the second input from the first one.
    
    
            y_0 & = & x_0 + x_1\\
            y_1 & = & x_0 - x_1
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=2,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("bfly")
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            if any(c == 0.0 for c in constants):
                print("One input is 0!")
    
    
        Multiply-add operation.
    
        Gives the result of multiplying the first input by the second input and
        then adding the third input.
    
        .. math:: y = x_0 \times x_1 + x_2
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
            src2: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=3,
                output_count=1,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1, src2],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("mad")
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            a, b, c = constants
            if a == 0.0 or b == 0.0:
                print("One multiplier input is zero!")
            if a == 1.0 or b == 1.0:
                print("One multiplier input is one!")
            if any(c == 0.0):
                print("Adder input is zero!")
    
    
    
    class SymmetricTwoportAdaptor(AbstractOperation):
    
        Symmetric twoport-adaptor operation.
    
            y_0 & = & x_1 + \text{value}\times\left(x_1 - x_0\right)\\
            y_1 & = & x_0 + \text{value}\times\left(x_1 - x_0\right)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            value: Number = 0,
            src0: Optional[SignalSourceProvider] = None,
            src1: Optional[SignalSourceProvider] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """Construct a SymmetricTwoportAdaptor operation."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(
                input_count=2,
                output_count=2,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                name=Name(name),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                input_sources=[src0, src1],
                latency=latency,
                latency_offsets=latency_offsets,
    
                execution_time=execution_time,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            )
    
            self.set_param("value", value)
    
        @classmethod
        def type_name(cls) -> TypeName:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return TypeName("sym2p")
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            tmp = self.value * (b - a)
    
            return b + tmp, a + tmp
    
        @property
        def value(self) -> Number:
            """Get the constant value of this operation."""
            return self.param("value")
    
        @value.setter
        def value(self, value: Number) -> None:
            """Set the constant value of this operation."""
    
            self.set_param("value", value)
    
        def _propagate_some_constants(
            self,
            constants: Iterable[Optional[Number]],
            valid_operations: Optional[Set["Operation"]] = None,
        ) -> None:
            if any(c == 0.0 for c in constants):
                print("One input is 0!")
    
        def _propagate_constant_parameters(
            self, valid_operations: Optional[Set["Operation"]] = None
        ) -> None:
            if self.value == 0.0:
                print("Constant is zero!")
            return
    
    
    
    class Reciprocal(AbstractOperation):
        r"""
        Reciprocal operation.
    
        Gives the reciprocal of its input.
    
        .. math:: y = \frac{1}{x}
    
    
        See also
        ========
        Division
    
        """
    
        def __init__(
            self,
            src0: Optional[SignalSourceProvider] = None,
            name: Name = Name(""),
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
            execution_time: Optional[int] = None,
        ):
            """Construct an Reciprocal operation."""
            super().__init__(
                input_count=1,
                output_count=1,
                name=Name(name),
                input_sources=[src0],
                latency=latency,
                latency_offsets=latency_offsets,
                execution_time=execution_time,
            )
    
        @classmethod
        def type_name(cls) -> TypeName:
            return TypeName("rec")
    
        def evaluate(self, a):
            return 1 / a