""" B-ASIC Core Operations Module. Contains some of the most commonly used mathematical operations. """ from numbers import Number from typing import Dict, Iterable, Optional, Set from numpy import abs as np_abs from numpy import conjugate, sqrt from b_asic.graph_component import Name, TypeName from b_asic.operation import AbstractOperation, Operation from b_asic.port import SignalSourceProvider class Constant(AbstractOperation): r""" Constant value operation. Gives a specified value that remains constant for every iteration. .. math:: y = \text{value} Parameters ========== value : Number, default: 0 The constant value. name : Name, optional Operation name. """ _execution_time = 0 def __init__(self, value: Number = 0, name: Name = Name("")): """Construct a Constant operation with the given value.""" super().__init__( input_count=0, output_count=1, name=Name(name), latency_offsets={"out0": 0}, ) self.set_param("value", value) @classmethod def type_name(cls) -> TypeName: return TypeName("c") def evaluate(self): return self.param("value") @property def value(self) -> Number: """Get the constant value of this operation.""" return self.param("value") @value.setter def value(self, value: Number) -> None: """Set the constant value of this operation.""" self.set_param("value", value) class Addition(AbstractOperation): """ Binary addition operation. Gives the result of adding two inputs. .. math:: y = x_0 + x_1 Parameters ========== src0, src1 : SignalSourceProvider, optional The two signals to add. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== AddSub """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """ Construct an Addition operation. """ super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("add") def evaluate(self, a, b): return a + b def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: if any(c == 0.0 for c in constants): print("One input is 0!") class Subtraction(AbstractOperation): """ Binary subtraction operation. Gives the result of subtracting the second input from the first one. .. math:: y = x_0 - x_1 Parameters ========== src0, src1 : SignalSourceProvider, optional The two signals to subtract. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== AddSub """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Subtraction operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("sub") def evaluate(self, a, b): return a - b def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: if any(c == 0.0 for c in constants): print("One input is 0!") class AddSub(AbstractOperation): r""" Two-input addition or subtraction operation. Gives the result of adding or subtracting two inputs. .. math:: y = \begin{cases} x_0 + x_1,& \text{is_add} = \text{True}\\ x_0 - x_1,& \text{is_add} = \text{False} \end{cases} This is used to later map additions and subtractions to the same operator. Parameters ========== is_add : bool, default: True If True, the operation is an addition, if False, a subtraction. src0, src1 : SignalSourceProvider, optional The two signals to add or subtract. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== Addition, Subtraction """ def __init__( self, is_add: bool = True, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct an Addition/Subtraction operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) self.set_param("is_add", is_add) @classmethod def type_name(cls) -> TypeName: return TypeName("addsub") def evaluate(self, a, b): return a + b if self.is_add else a - b @property def is_add(self) -> Number: """Get if operation is add.""" return self.param("is_add") @is_add.setter def is_add(self, is_add: bool) -> None: """Set if operation is add.""" self.set_param("is_add", is_add) def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: if any(c == 0.0 for c in constants): print("One input is 0!") def _propagate_constant_parameters( self, valid_operations: Optional[Set["Operation"]] = None ) -> None: print(f"Can turn into {'Addition' if self.is_add else 'Subtraction'}") return class Multiplication(AbstractOperation): r""" Binary multiplication operation. Gives the result of multiplying two inputs. .. math:: y = x_0 \times x_1 Parameters ========== src0, src1 : SignalSourceProvider, optional The two signals to multiply. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== ConstantMultiplication """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Multiplication operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("mul") def evaluate(self, a, b): return a * b def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: if any(c == 0.0 for c in constants): print("One input is 0!") if any(c == 1.0 for c in constants): print("One input is 1!") print("Can turn into ConstantMultiplication") class Division(AbstractOperation): r""" Binary division operation. Gives the result of dividing the first input by the second one. .. math:: y = \frac{x_0}{x_1} See also ======== Reciprocal """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Division operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("div") def evaluate(self, a, b): return a / b def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: numerator, denominator = constants if numerator == 0.0: print("Result is 0!") if denominator is not None: print("Can turn into ConstantMultiplication") class Min(AbstractOperation): r""" Binary min operation. Gives the minimum value of two inputs. .. math:: y = \min\{x_0 , x_1\} .. note:: Only real-valued numbers are supported. See also ======== Max """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Min operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("min") def evaluate(self, a, b): if isinstance(a, complex) or isinstance(b, complex): raise ValueError( "core_operations.Min does not support complex numbers." ) return a if a < b else b class Max(AbstractOperation): r""" Binary max operation. Gives the maximum value of two inputs. .. math:: y = \max\{x_0 , x_1\} .. note:: Only real-valued numbers are supported. See also ======== Min """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Max operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("max") def evaluate(self, a, b): if isinstance(a, complex) or isinstance(b, complex): raise ValueError( "core_operations.Max does not support complex numbers." ) return a if a > b else b class SquareRoot(AbstractOperation): r""" Square root operation. Gives the square root of its input. .. math:: y = \sqrt{x} """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a SquareRoot operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("sqrt") def evaluate(self, a): return sqrt(complex(a)) class ComplexConjugate(AbstractOperation): """ Complex conjugate operation. Gives the complex conjugate of its input. .. math:: y = x^* """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a ComplexConjugate operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("conj") def evaluate(self, a): return conjugate(a) class Absolute(AbstractOperation): """ Absolute value operation. Gives the absolute value of its input. .. math:: y = |x| """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct an Absolute operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("abs") def evaluate(self, a): return np_abs(a) class ConstantMultiplication(AbstractOperation): r""" Constant multiplication operation. Gives the result of multiplying its input by a specified value. .. math:: y = x_0 \times \text{value} """ def __init__( self, value: Number = 0, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a ConstantMultiplication operation with the given value. """ super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) self.set_param("value", value) @classmethod def type_name(cls) -> TypeName: return TypeName("cmul") def evaluate(self, a): return a * self.param("value") @property def value(self) -> Number: """Get the constant value of this operation.""" return self.param("value") @value.setter def value(self, value: Number) -> None: """Set the constant value of this operation.""" self.set_param("value", value) def _propagate_constant_parameters( self, valid_operations: Optional[Set["Operation"]] = None ) -> None: if self.value == 0.0: print("Constant is zero!") if self.value == 1.0: print("Constant is zero!") return class Butterfly(AbstractOperation): r""" Radix-2 Butterfly operation. Gives the result of adding its two inputs, as well as the result of subtracting the second input from the first one. .. math:: \begin{eqnarray} y_0 & = & x_0 + x_1\\ y_1 & = & x_0 - x_1 \end{eqnarray} """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Butterfly operation.""" super().__init__( input_count=2, output_count=2, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("bfly") def evaluate(self, a, b): return a + b, a - b def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: if any(c == 0.0 for c in constants): print("One input is 0!") class MAD(AbstractOperation): r""" Multiply-add operation. Gives the result of multiplying the first input by the second input and then adding the third input. .. math:: y = x_0 \times x_1 + x_2 """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, src2: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a MAD operation.""" super().__init__( input_count=3, output_count=1, name=Name(name), input_sources=[src0, src1, src2], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("mad") def evaluate(self, a, b, c): return a * b + c def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: a, b, c = constants if a == 0.0 or b == 0.0: print("One multiplier input is zero!") if a == 1.0 or b == 1.0: print("One multiplier input is one!") if any(c == 0.0): print("Adder input is zero!") class SymmetricTwoportAdaptor(AbstractOperation): r""" Symmetric twoport-adaptor operation. .. math:: \begin{eqnarray} y_0 & = & x_1 + \text{value}\times\left(x_1 - x_0\right)\\ y_1 & = & x_0 + \text{value}\times\left(x_1 - x_0\right) \end{eqnarray} """ def __init__( self, value: Number = 0, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a SymmetricTwoportAdaptor operation.""" super().__init__( input_count=2, output_count=2, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) self.set_param("value", value) @classmethod def type_name(cls) -> TypeName: return TypeName("sym2p") def evaluate(self, a, b): tmp = self.value * (b - a) return b + tmp, a + tmp @property def value(self) -> Number: """Get the constant value of this operation.""" return self.param("value") @value.setter def value(self, value: Number) -> None: """Set the constant value of this operation.""" self.set_param("value", value) def _propagate_some_constants( self, constants: Iterable[Optional[Number]], valid_operations: Optional[Set["Operation"]] = None, ) -> None: if any(c == 0.0 for c in constants): print("One input is 0!") def _propagate_constant_parameters( self, valid_operations: Optional[Set["Operation"]] = None ) -> None: if self.value == 0.0: print("Constant is zero!") return class Reciprocal(AbstractOperation): r""" Reciprocal operation. Gives the reciprocal of its input. .. math:: y = \frac{1}{x} See also ======== Division """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct an Reciprocal operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("rec") def evaluate(self, a): return 1 / a