Skip to content
Snippets Groups Projects
simulation.py 5.63 KiB
Newer Older
  • Learn to ignore specific revisions
  • """@package docstring
    
    B-ASIC Simulation Module.
    TODO: More info.
    """
    
    
    import numpy as np
    
    
    from numbers import Number
    
    from typing import List, Dict, DefaultDict, Callable, Sequence, Mapping, Union, Optional, MutableSequence, MutableMapping
    
    from b_asic.operation import ResultKey, ResultMap, MutableResultMap, MutableDelayMap
    
    ResultArrayMap = Mapping[ResultKey, Sequence[Number]]
    MutableResultArrayMap = MutableMapping[ResultKey, MutableSequence[Number]]
    InputFunction = Callable[[int], Number]
    InputProvider = Union[Number, Sequence[Number], InputFunction]
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
        TODO: More info.
        """
    
        _results: MutableResultArrayMap
        _delays: MutableDelayMap
    
        _input_functions: Sequence[InputFunction]
        _input_length: Optional[int]
    
        def __init__(self, sfg: SFG, input_providers: Optional[Sequence[Optional[InputProvider]]] = None):
    
            self._results = defaultdict(list)
            self._delays = {}
    
            self._input_functions = [lambda _: 0 for _ in range(self._sfg.input_count)]
            self._input_length = None
    
            if input_providers is not None:
                self.set_inputs(input_providers)
    
        def set_input(self, index: int, input_provider: InputProvider) -> None:
            """Set the input function used to get values for the specific input at the given index to the internal SFG."""
            if index < 0 or index >= len(self._input_functions):
    
                raise IndexError(
                    f"Input index out of range (expected 0-{len(self._input_functions) - 1}, got {index})")
    
            if callable(input_provider):
                self._input_functions[index] = input_provider
            elif isinstance(input_provider, Number):
                self._input_functions[index] = lambda _: input_provider
            else:
    
                if self._input_length is None:
                    self._input_length = len(input_provider)
                elif self._input_length != len(input_provider):
                    raise ValueError(f"Inconsistent input length for simulation (was {self._input_length}, got {len(input_provider)})")
    
                self._input_functions[index] = lambda n: input_provider[n]
    
        def set_inputs(self, input_providers: Sequence[Optional[InputProvider]]) -> None:
            """Set the input functions used to get values for the inputs to the internal SFG."""
            if len(input_providers) != self._sfg.input_count:
    
                raise ValueError(f"Wrong number of inputs supplied to simulation (expected {self._sfg.input_count}, got {len(input_providers)})")
    
            for index, input_provider in enumerate(input_providers):
                if input_provider is not None:
                    self.set_input(index, input_provider)
    
    
        def step(self, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]:
    
            """Run one iteration of the simulation and return the resulting output values."""
    
            return self.run_for(1, save_results, bits_override, truncate)
    
        def run_until(self, iteration: int, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]:
    
            """Run the simulation until its iteration is greater than or equal to the given iteration
    
            and return the output values of the last iteration.
    
            result = []
    
                input_values = [self._input_functions[i](self._iteration) for i in range(self._sfg.input_count)]
                results = {}
                result = self._sfg.evaluate_outputs(input_values, results, self._delays, "", bits_override, truncate)
                if save_results:
                    for key, value in results.items():
                        self._results[key].append(value)
    
            return result
    
        def run_for(self, iterations: int, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]:
            """Run a given number of iterations of the simulation and return the output values of the last iteration."""
            return self.run_until(self._iteration + iterations, save_results, bits_override, truncate)
    
        def run(self, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]:
            """Run the simulation until the end of its input arrays and return the output values of the last iteration."""
            if self._input_length is None:
                raise IndexError("Tried to run unlimited simulation")
            return self.run_until(self._input_length, save_results, bits_override, truncate)
    
    
        @property
        def iteration(self) -> int:
            """Get the current iteration number of the simulation."""
            return self._iteration
    
        @property
    
        def results(self) -> ResultArrayMap:
            """Get a mapping from result keys to numpy arrays containing all results, including intermediate values,
            calculated for each iteration up until now that was run with save_results enabled.
            The mapping is indexed using the key() method of Operation with the appropriate output index.
            Example result after 3 iterations: {"c1": [3, 6, 7], "c2": [4, 5, 5], "bfly1.0": [7, 0, 0], "bfly1.1": [-1, 0, 2], "0": [7, -2, -1]}
    
            return {key: np.array(value) for key, value in self._results.items()}
    
    
        def clear_results(self) -> None:
            """Clear all results that were saved until now."""
            self._results.clear()
    
        def clear_state(self) -> None:
            """Clear all current state of the simulation, except for the results and iteration."""
    
            self._delays.clear()