"""@package docstring B-ASIC Simulation Module. TODO: More info. """ import numpy as np from collections import defaultdict from numbers import Number from typing import List, Dict, DefaultDict, Callable, Sequence, Mapping, Union, Optional, MutableSequence, MutableMapping from b_asic.operation import ResultKey, ResultMap, MutableResultMap, MutableDelayMap from b_asic.signal_flow_graph import SFG ResultArrayMap = Mapping[ResultKey, Sequence[Number]] MutableResultArrayMap = MutableMapping[ResultKey, MutableSequence[Number]] InputFunction = Callable[[int], Number] InputProvider = Union[Number, Sequence[Number], InputFunction] class Simulation: """Simulation. TODO: More info. """ _sfg: SFG _results: MutableResultArrayMap _delays: MutableDelayMap _iteration: int _input_functions: Sequence[InputFunction] _input_length: Optional[int] def __init__(self, sfg: SFG, input_providers: Optional[Sequence[Optional[InputProvider]]] = None): self._sfg = sfg self._results = defaultdict(list) self._delays = {} self._iteration = 0 self._input_functions = [lambda _: 0 for _ in range(self._sfg.input_count)] self._input_length = None if input_providers is not None: self.set_inputs(input_providers) def set_input(self, index: int, input_provider: InputProvider) -> None: """Set the input function used to get values for the specific input at the given index to the internal SFG.""" if index < 0 or index >= len(self._input_functions): raise IndexError( f"Input index out of range (expected 0-{len(self._input_functions) - 1}, got {index})") if callable(input_provider): self._input_functions[index] = input_provider elif isinstance(input_provider, Number): self._input_functions[index] = lambda _: input_provider else: if self._input_length is None: self._input_length = len(input_provider) elif self._input_length != len(input_provider): raise ValueError(f"Inconsistent input length for simulation (was {self._input_length}, got {len(input_provider)})") self._input_functions[index] = lambda n: input_provider[n] def set_inputs(self, input_providers: Sequence[Optional[InputProvider]]) -> None: """Set the input functions used to get values for the inputs to the internal SFG.""" if len(input_providers) != self._sfg.input_count: raise ValueError(f"Wrong number of inputs supplied to simulation (expected {self._sfg.input_count}, got {len(input_providers)})") for index, input_provider in enumerate(input_providers): if input_provider is not None: self.set_input(index, input_provider) def step(self, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]: """Run one iteration of the simulation and return the resulting output values.""" return self.run_for(1, save_results, bits_override, truncate) def run_until(self, iteration: int, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]: """Run the simulation until its iteration is greater than or equal to the given iteration and return the output values of the last iteration. """ result = [] while self._iteration < iteration: input_values = [self._input_functions[i](self._iteration) for i in range(self._sfg.input_count)] results = {} result = self._sfg.evaluate_outputs(input_values, results, self._delays, "", bits_override, truncate) if save_results: for key, value in results.items(): self._results[key].append(value) self._iteration += 1 return result def run_for(self, iterations: int, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]: """Run a given number of iterations of the simulation and return the output values of the last iteration.""" return self.run_until(self._iteration + iterations, save_results, bits_override, truncate) def run(self, save_results: bool = True, bits_override: Optional[int] = None, truncate: bool = True) -> Sequence[Number]: """Run the simulation until the end of its input arrays and return the output values of the last iteration.""" if self._input_length is None: raise IndexError("Tried to run unlimited simulation") return self.run_until(self._input_length, save_results, bits_override, truncate) @property def iteration(self) -> int: """Get the current iteration number of the simulation.""" return self._iteration @property def results(self) -> ResultArrayMap: """Get a mapping from result keys to numpy arrays containing all results, including intermediate values, calculated for each iteration up until now that was run with save_results enabled. The mapping is indexed using the key() method of Operation with the appropriate output index. Example result after 3 iterations: {"c1": [3, 6, 7], "c2": [4, 5, 5], "bfly1.0": [7, 0, 0], "bfly1.1": [-1, 0, 2], "0": [7, -2, -1]} """ return {key: np.array(value) for key, value in self._results.items()} def clear_results(self) -> None: """Clear all results that were saved until now.""" self._results.clear() def clear_state(self) -> None: """Clear all current state of the simulation, except for the results and iteration.""" self._delays.clear()