Skip to content
Snippets Groups Projects
test_sfg_generators.py 24.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.core_operations import (
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        Addition,
    
        Butterfly,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ConstantMultiplication,
    
        Reciprocal,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        SymmetricTwoportAdaptor,
    )
    from b_asic.sfg_generators import (
    
        direct_form_1_iir,
        direct_form_2_iir,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        direct_form_fir,
    
        ldlt_matrix_inverse,
    
        radix_2_dif_fft,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        transposed_direct_form_fir,
        wdf_allpass,
    )
    
    from b_asic.signal_generator import Constant, Impulse, ZeroPad
    
    from b_asic.simulation import Simulation
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.special_operations import Delay
    
    
    def test_wdf_allpass():
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        sfg = wdf_allpass([0.3, 0.5, 0.7])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 3
        )
    
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 3
    
        # Fourth-order
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        sfg = wdf_allpass([0.3, 0.5, 0.7, 0.9])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 4
        )
    
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 4
    
        # First-order
        sfg = wdf_allpass([0.3])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 1
        )
    
        # First-order with scalar input (happens to work)
        sfg = wdf_allpass(0.3)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 1
        )
    
    
        # Bi-reciprocal third-order
        sfg = wdf_allpass([0.0, 0.5, 0.0])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 1
        )
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 3
    
        # Second-order all zeros third-order
        sfg = wdf_allpass([0.0, 0.0])
        assert not [
            comp for comp in sfg.components if isinstance(comp, SymmetricTwoportAdaptor)
        ]
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 2
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
    def test_direct_form_fir():
    
        impulse_response = [0.3, 0.5, 0.7]
        sfg = direct_form_fir(impulse_response)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 3
        )
    
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 2
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 2
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(4)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
        impulse_response = [0.3, 0.4, 0.5, 0.6, 0.3]
    
        sfg = direct_form_fir(
            (0.3, 0.4, 0.5, 0.6, 0.3),
            mult_properties={'latency': 2, 'execution_time': 1},
            add_properties={'latency': 1, 'execution_time': 1},
        )
    
        assert sfg.critical_path_time() == 6
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(6)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
    
        impulse_response = [0.3]
        sfg = direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
        impulse_response = 0.3
        sfg = direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
    def test_transposed_direct_form_fir():
    
        impulse_response = [0.3, 0.5, 0.7]
        sfg = transposed_direct_form_fir(impulse_response)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 3
        )
    
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 2
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 2
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(4)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
        impulse_response = [0.3, 0.4, 0.5, 0.6, 0.3]
    
        sfg = transposed_direct_form_fir(
            (0.3, 0.4, 0.5, 0.6, 0.3),
            mult_properties={'latency': 2, 'execution_time': 1},
            add_properties={'latency': 1, 'execution_time': 1},
        )
    
        assert sfg.critical_path_time() == 3
    
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(6)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
    
        impulse_response = [0.3]
        sfg = transposed_direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
        impulse_response = 0.3
        sfg = transposed_direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
    
    def test_sfg_generator_errors():
        sfg_gens = [wdf_allpass, transposed_direct_form_fir, direct_form_fir]
        for gen in sfg_gens:
            with pytest.raises(ValueError, match="Coefficients cannot be empty"):
                gen([])
            with pytest.raises(TypeError, match="coefficients must be a 1D-array"):
                gen([[1, 2], [1, 3]])
    
    class TestDirectFormIIRType1:
        def test_correct_number_of_operations_and_name(self):
            N = 17
    
            b = [i + 1 for i in range(N + 1)]
            a = [i + 1 for i in range(N + 1)]
    
            sfg = direct_form_1_iir(b, a, name="test iir direct form 1")
    
            amount_of_muls = len(sfg.find_by_type_name(ConstantMultiplication.type_name()))
            assert amount_of_muls == 2 * N + 1
    
            amount_of_adds = len(sfg.find_by_type_name(Addition.type_name()))
            assert amount_of_adds == 2 * N
    
            amount_of_delays = len(sfg.find_by_type_name(Delay.type_name()))
            assert amount_of_delays == 2 * N
    
            amount_of_ops = len(sfg.operations)
            assert amount_of_ops == 6 * N + 3
    
            assert sfg.name == "test iir direct form 1"
    
        def test_b_single_coeff(self):
            with pytest.raises(
                ValueError,
                match="Size of coefficient lists a and b needs to contain at least 2 element.",
            ):
                direct_form_1_iir([1], [2, 3])
    
        def test_a_single_coeff(self):
            with pytest.raises(
                ValueError,
                match="Size of coefficient lists a and b needs to contain at least 2 element.",
            ):
                direct_form_1_iir([1, 2], [3])
    
        def test_coeffs_not_same_size(self):
            with pytest.raises(
                ValueError, match="Size of coefficient lists a and b are not the same."
            ):
                direct_form_1_iir([1, 2, 3], [1, 2])
    
            with pytest.raises(
                ValueError, match="Size of coefficient lists a and b are not the same."
            ):
                direct_form_1_iir([i for i in range(10)], [i for i in range(11)])
    
            with pytest.raises(
                ValueError, match="Size of coefficient lists a and b are not the same."
            ):
                direct_form_1_iir([i for i in range(10)], [i for i in range(11)])
    
        def test_a0_not_1(self):
            with pytest.raises(ValueError, match=r"The value of a\[0] must be 1\."):
                direct_form_1_iir(b=[1, 2, 3], a=[1.1, 2, 3])
    
        def test_first_order_filter(self):
            N = 1
            Wc = 0.5
    
            b, a = signal.butter(N, Wc, btype="lowpass", output="ba")
    
            input_signal = np.random.randn(100)
            reference_filter_output = signal.lfilter(b, a, input_signal)
    
            sfg = direct_form_1_iir(b, a, name="test iir direct form 1")
    
            sim = Simulation(sfg, [ZeroPad(input_signal)])
            sim.run_for(100)
    
            assert np.allclose(sim.results['0'], reference_filter_output)
    
        def test_random_input_compare_with_scipy_butterworth_filter(self):
            N = 10
            Wc = 0.3
    
            b, a = signal.butter(N, Wc, btype="lowpass", output="ba")
    
            input_signal = np.random.randn(100)
            reference_filter_output = signal.lfilter(b, a, input_signal)
    
            sfg = direct_form_1_iir(b, a, name="test iir direct form 1")
    
            sim = Simulation(sfg, [ZeroPad(input_signal)])
            sim.run_for(100)
    
            assert np.allclose(sim.results['0'], reference_filter_output)
    
        def test_random_input_compare_with_scipy_elliptic_filter(self):
            N = 2
            Wc = 0.3
    
            b, a = signal.ellip(N, 0.1, 60, Wc, btype='low', analog=False)
            b, a = signal.butter(N, Wc, btype="lowpass", output="ba")
    
            input_signal = np.random.randn(100)
            reference_filter_output = signal.lfilter(b, a, input_signal)
    
            sfg = direct_form_1_iir(b, a, name="test iir direct form 1")
    
            sim = Simulation(sfg, [ZeroPad(input_signal)])
            sim.run_for(100)
    
            assert np.allclose(sim.results['0'], reference_filter_output)
    
        def test_add_and_mult_properties(self):
            N = 17
    
            b = [i + 1 for i in range(N + 1)]
            a = [i + 1 for i in range(N + 1)]
    
            sfg = direct_form_1_iir(
                b,
                a,
                mult_properties={"latency": 5, "execution_time": 2},
                add_properties={"latency": 3, "execution_time": 1},
            )
    
            adds = sfg.find_by_type_name(Addition.type_name())
            for add in adds:
                assert add.latency == 3
                assert add.execution_time == 1
    
            muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
            for mul in muls:
                assert mul.latency == 5
                assert mul.execution_time == 2
    
    
    class TestDirectFormIIRType2:
        def test_correct_number_of_operations_and_name(self):
            N = 17
    
            b = [i + 1 for i in range(N + 1)]
            a = [i + 1 for i in range(N + 1)]
    
            sfg = direct_form_2_iir(b, a, name="test iir direct form 2")
    
            amount_of_muls = len(sfg.find_by_type_name(ConstantMultiplication.type_name()))
            assert amount_of_muls == 2 * N + 1
    
            amount_of_adds = len(sfg.find_by_type_name(Addition.type_name()))
            assert amount_of_adds == 2 * N
    
            amount_of_delays = len(sfg.find_by_type_name(Delay.type_name()))
            assert amount_of_delays == N
    
            amount_of_ops = len(sfg.operations)
            assert amount_of_ops == 5 * N + 3
    
            assert sfg.name == "test iir direct form 2"
    
        def test_b_single_coeff(self):
            with pytest.raises(
                ValueError,
                match="Size of coefficient lists a and b needs to contain at least 2 element.",
            ):
                direct_form_2_iir([1], [2, 3])
    
        def test_a_single_coeff(self):
            with pytest.raises(
                ValueError,
                match="Size of coefficient lists a and b needs to contain at least 2 element.",
            ):
                direct_form_2_iir([1, 2], [3])
    
        def test_a0_not_1(self):
            with pytest.raises(ValueError, match=r"The value of a\[0] must be 1\."):
                direct_form_2_iir(b=[1, 2, 3], a=[1.1, 2, 3])
    
        def test_coeffs_not_same_size(self):
            with pytest.raises(
                ValueError, match="Size of coefficient lists a and b are not the same."
            ):
                direct_form_2_iir([1, 2, 3], [1, 2])
    
        def test_first_order_filter(self):
            N = 1
            Wc = 0.5
    
            b, a = signal.butter(N, Wc, btype="lowpass", output="ba")
    
            input_signal = np.random.randn(100)
            reference_filter_output = signal.lfilter(b, a, input_signal)
    
            sfg = direct_form_2_iir(b, a, name="test iir direct form 1")
    
            sim = Simulation(sfg, [ZeroPad(input_signal)])
            sim.run_for(100)
    
            assert np.allclose(sim.results['0'], reference_filter_output)
    
        def test_random_input_compare_with_scipy_butterworth_filter(self):
            N = 10
            Wc = 0.3
    
            b, a = signal.butter(N, Wc, btype="lowpass", output="ba")
    
            input_signal = np.random.randn(100)
            reference_filter_output = signal.lfilter(b, a, input_signal)
    
            sfg = direct_form_2_iir(b, a, name="test iir direct form 1")
    
            sim = Simulation(sfg, [ZeroPad(input_signal)])
            sim.run_for(100)
    
            assert np.allclose(sim.results['0'], reference_filter_output)
    
        def test_random_input_compare_with_scipy_elliptic_filter(self):
            N = 2
            Wc = 0.3
    
            b, a = signal.ellip(N, 0.1, 60, Wc, btype='low', analog=False)
            b, a = signal.butter(N, Wc, btype="lowpass", output="ba")
    
            input_signal = np.random.randn(100)
            reference_filter_output = signal.lfilter(b, a, input_signal)
    
            sfg = direct_form_2_iir(b, a, name="test iir direct form 1")
    
            sim = Simulation(sfg, [ZeroPad(input_signal)])
            sim.run_for(100)
    
            assert np.allclose(sim.results['0'], reference_filter_output)
    
        def test_add_and_mult_properties(self):
            N = 17
    
            b = [i + 1 for i in range(N + 1)]
            a = [i + 1 for i in range(N + 1)]
    
            sfg = direct_form_2_iir(
                b,
                a,
                mult_properties={"latency": 5, "execution_time": 2},
                add_properties={"latency": 3, "execution_time": 1},
            )
    
            adds = sfg.find_by_type_name(Addition.type_name())
            for add in adds:
                assert add.latency == 3
                assert add.execution_time == 1
    
            muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
            for mul in muls:
                assert mul.latency == 5
                assert mul.execution_time == 2
    
    
    class TestRadix2FFT:
        def test_4_points_constant_input(self):
            sfg = radix_2_dif_fft(points=4)
    
            assert len(sfg.inputs) == 4
            assert len(sfg.outputs) == 4
    
            bfs = sfg.find_by_type_name(Butterfly.type_name())
            assert len(bfs) == 4
    
            muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
            assert len(muls) == 1
    
            # simulate when the input signal is a constant 1
            input_samples = [Impulse() for _ in range(4)]
            sim = Simulation(sfg, input_samples)
            sim.run_for(1)
    
            # ensure that the result is an impulse at time 0 with weight 4
            res = sim.results
            for i in range(4):
                exp_res = 4 if i == 0 else 0
                assert np.allclose(res[str(i)], exp_res)
    
        def test_8_points_impulse_input(self):
            sfg = radix_2_dif_fft(points=8)
    
            assert len(sfg.inputs) == 8
            assert len(sfg.outputs) == 8
    
            bfs = sfg.find_by_type_name(Butterfly.type_name())
            assert len(bfs) == 12
    
            muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
            assert len(muls) == 5
    
            # simulate when the input signal is an impulse at time 0
            input_samples = [Impulse(), 0, 0, 0, 0, 0, 0, 0]
            sim = Simulation(sfg, input_samples)
            sim.run_for(1)
    
            # ensure that the result is a constant 1
            res = sim.results
            for i in range(8):
                assert np.allclose(res[str(i)], 1)
    
        def test_8_points_sinus_input(self):
            POINTS = 8
            sfg = radix_2_dif_fft(points=POINTS)
    
            assert len(sfg.inputs) == POINTS
            assert len(sfg.outputs) == POINTS
    
            n = np.linspace(0, 2 * np.pi, POINTS)
            waveform = np.sin(n)
            input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
            sim = Simulation(sfg, input_samples)
            sim.run_for(1)
    
            exp_res = abs(np.fft.fft(waveform))
    
            res = sim.results
            for i in range(POINTS):
                a = abs(res[str(i)])
                b = exp_res[i]
                assert np.isclose(a, b)
    
        def test_16_points_sinus_input(self):
            POINTS = 16
            sfg = radix_2_dif_fft(points=POINTS)
    
            assert len(sfg.inputs) == POINTS
            assert len(sfg.outputs) == POINTS
    
            bfs = sfg.find_by_type_name(Butterfly.type_name())
            assert len(bfs) == 8 * 4
    
            muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
            assert len(muls) == 17
    
            n = np.linspace(0, 2 * np.pi, POINTS)
            waveform = np.sin(n)
            input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
            sim = Simulation(sfg, input_samples)
            sim.run_for(1)
    
            exp_res = np.fft.fft(waveform)
            res = sim.results
            for i in range(POINTS):
                a = res[str(i)]
                b = exp_res[i]
                assert np.isclose(a, b)
    
        def test_256_points_sinus_input(self):
            POINTS = 256
            sfg = radix_2_dif_fft(points=POINTS)
    
            assert len(sfg.inputs) == POINTS
            assert len(sfg.outputs) == POINTS
    
            n = np.linspace(0, 2 * np.pi, POINTS)
            waveform = np.sin(n)
            input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
            sim = Simulation(sfg, input_samples)
            sim.run_for(1)
    
            exp_res = np.fft.fft(waveform)
            res = sim.results
            for i in range(POINTS):
                a = res[str(i)]
                b = exp_res[i]
                assert np.isclose(a, b)
    
        def test_512_points_multi_tone_input(self):
            POINTS = 512
            sfg = radix_2_dif_fft(points=POINTS)
    
            assert len(sfg.inputs) == POINTS
            assert len(sfg.outputs) == POINTS
    
            n = np.linspace(0, 2 * np.pi, POINTS)
            waveform = np.sin(n) + np.sin(0.5 * n) + np.sin(0.1 * n)
            input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
            sim = Simulation(sfg, input_samples)
            sim.run_for(1)
    
            exp_res = np.fft.fft(waveform)
            res = sim.results
            for i in range(POINTS):
                a = res[str(i)]
                b = exp_res[i]
                assert np.isclose(a, b)
    
        def test_negative_number_of_points(self):
            POINTS = -8
            with pytest.raises(ValueError, match="Points must be positive number."):
                radix_2_dif_fft(points=POINTS)
    
        def test_number_of_points_not_power_of_2(self):
            POINTS = 5
            with pytest.raises(ValueError, match="Points must be a power of two."):
                radix_2_dif_fft(points=POINTS)
    
    
    
    class TestLdltMatrixInverse:
        def test_1x1(self):
            sfg = ldlt_matrix_inverse(N=1)
    
            assert len(sfg.inputs) == 1
            assert len(sfg.outputs) == 1
    
            assert len(sfg.find_by_type_name(MADS.type_name())) == 0
            assert len(sfg.find_by_type_name(Reciprocal.type_name())) == 1
    
            A_input = [Constant(5)]
    
            sim = Simulation(sfg, A_input)
            sim.run_for(1)
    
            res = sim.results
            assert np.isclose(res["0"], 0.2)
    
        def test_2x2_simple_spd(self):
            sfg = ldlt_matrix_inverse(N=2)
    
            assert len(sfg.inputs) == 3
            assert len(sfg.outputs) == 3
    
            assert len(sfg.find_by_type_name(MADS.type_name())) == 4
            assert len(sfg.find_by_type_name(Reciprocal.type_name())) == 2
    
            A = np.array([[1, 2], [2, 1]])
            A_input = [Constant(1), Constant(2), Constant(1)]
    
            A_inv = np.linalg.inv(A)
    
            sim = Simulation(sfg, A_input)
            sim.run_for(1)
    
            res = sim.results
            assert np.isclose(res["0"], A_inv[0, 0])
            assert np.isclose(res["1"], A_inv[0, 1])
            assert np.isclose(res["2"], A_inv[1, 1])
    
        def test_3x3_simple_spd(self):
            sfg = ldlt_matrix_inverse(N=3)
    
            assert len(sfg.inputs) == 6
            assert len(sfg.outputs) == 6
    
            assert len(sfg.find_by_type_name(MADS.type_name())) == 15
            assert len(sfg.find_by_type_name(Reciprocal.type_name())) == 3
    
            A = np.array([[2, -1, 0], [-1, 3, -1], [0, -1, 2]])
            A_input = [
                Constant(2),
                Constant(-1),
                Constant(0),
                Constant(3),
                Constant(-1),
                Constant(2),
            ]
    
            A_inv = np.linalg.inv(A)
    
            sim = Simulation(sfg, A_input)
            sim.run_for(1)
    
            res = sim.results
            assert np.isclose(res["0"], A_inv[0, 0])
            assert np.isclose(res["1"], A_inv[0, 1])
            assert np.isclose(res["2"], A_inv[0, 2])
            assert np.isclose(res["3"], A_inv[1, 1])
            assert np.isclose(res["4"], A_inv[1, 2])
            assert np.isclose(res["5"], A_inv[2, 2])
    
        def test_5x5_random_spd(self):
            N = 5
    
            sfg = ldlt_matrix_inverse(N=N)
    
            assert len(sfg.inputs) == 15
            assert len(sfg.outputs) == 15
    
            assert len(sfg.find_by_type_name(MADS.type_name())) == 70
            assert len(sfg.find_by_type_name(Reciprocal.type_name())) == N
    
            A = self._generate_random_spd_matrix(N)
    
            upper_tridiag = A[np.triu_indices_from(A)]
    
            A_input = [Constant(num) for num in upper_tridiag]
            A_inv = np.linalg.inv(A)
    
            sim = Simulation(sfg, A_input)
            sim.run_for(1)
            res = sim.results
    
            row_indices, col_indices = np.triu_indices(N)
            expected_values = A_inv[row_indices, col_indices]
            actual_values = [res[str(i)] for i in range(len(expected_values))]
    
            for i in range(len(expected_values)):
                assert np.isclose(actual_values[i], expected_values[i])
    
        def test_20x20_random_spd(self):
            N = 20
    
            sfg = ldlt_matrix_inverse(N=N)
    
            A = self._generate_random_spd_matrix(N)
    
            assert len(sfg.inputs) == len(A[np.triu_indices_from(A)])
            assert len(sfg.outputs) == len(A[np.triu_indices_from(A)])
    
            assert len(sfg.find_by_type_name(Reciprocal.type_name())) == N
    
            upper_tridiag = A[np.triu_indices_from(A)]
    
            A_input = [Constant(num) for num in upper_tridiag]
            A_inv = np.linalg.inv(A)
    
            sim = Simulation(sfg, A_input)
            sim.run_for(1)
            res = sim.results
    
            row_indices, col_indices = np.triu_indices(N)
            expected_values = A_inv[row_indices, col_indices]
            actual_values = [res[str(i)] for i in range(len(expected_values))]
    
            for i in range(len(expected_values)):
                assert np.isclose(actual_values[i], expected_values[i])
    
        # def test_2x2_random_complex_spd(self):
        #     N = 2
    
        #     sfg = ldlt_matrix_inverse(N=N, is_complex=True)
    
        #     # A = self._generate_random_complex_spd_matrix(N)
        #     A = np.array([[2, 1+1j],[1-1j, 3]])
    
        #     assert len(sfg.inputs) == len(A[np.triu_indices_from(A)])
        #     assert len(sfg.outputs) == len(A[np.triu_indices_from(A)])
    
        #     assert len(sfg.find_by_type_name(Reciprocal.type_name())) == N
    
        #     upper_tridiag = A[np.triu_indices_from(A)]
    
        #     A_input = [Constant(num) for num in upper_tridiag]
        #     A_inv = np.linalg.inv(A)
    
        #     sim = Simulation(sfg, A_input)
        #     sim.run_for(1)
        #     res = sim.results
    
        #     row_indices, col_indices = np.triu_indices(N)
        #     expected_values = A_inv[row_indices, col_indices]
        #     actual_values = [res[str(i)] for i in range(len(expected_values))]
    
        #     for i in range(len(expected_values)):
        #         assert np.isclose(actual_values[i], expected_values[i])
    
        def _generate_random_spd_matrix(self, N: int) -> np.ndarray:
            A = np.random.rand(N, N)
            A = (A + A.T) / 2  # ensure symmetric
            min_eig = np.min(np.linalg.eigvals(A))
            A += (np.abs(min_eig) + 0.1) * np.eye(N)  # ensure positive definiteness
            return A
    
        # def _generate_random_complex_spd_matrix(self, N: int) -> np.ndarray:
        #     A = np.random.randn(N, N) + 1j * np.random.randn(N, N)
        #     A = (A + A.conj().T) / 2  # ensure symmetric
        #     min_eig = np.min(np.linalg.eigvals(A))
        #     A += (np.abs(min_eig) + 0.1) * np.eye(N)  # ensure positive definiteness
        #     return A