Skip to content
Snippets Groups Projects
test_sfg_generators.py 9.97 KiB
Newer Older
  • Learn to ignore specific revisions
  • import numpy as np
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.core_operations import (
        Addition,
    
        Butterfly,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ConstantMultiplication,
        SymmetricTwoportAdaptor,
    )
    from b_asic.sfg_generators import (
        direct_form_fir,
    
        radix_2_dif_fft,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        transposed_direct_form_fir,
        wdf_allpass,
    )
    
    from b_asic.signal_generator import Constant, Impulse
    
    from b_asic.simulation import Simulation
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.special_operations import Delay
    
    
    def test_wdf_allpass():
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        sfg = wdf_allpass([0.3, 0.5, 0.7])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 3
        )
    
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 3
    
        # Fourth-order
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        sfg = wdf_allpass([0.3, 0.5, 0.7, 0.9])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 4
        )
    
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 4
    
        # First-order
        sfg = wdf_allpass([0.3])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 1
        )
    
        # First-order with scalar input (happens to work)
        sfg = wdf_allpass(0.3)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 1
        )
    
    
        # Bi-reciprocal third-order
        sfg = wdf_allpass([0.0, 0.5, 0.0])
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, SymmetricTwoportAdaptor)
                ]
            )
            == 1
        )
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 3
    
        # Second-order all zeros third-order
        sfg = wdf_allpass([0.0, 0.0])
        assert not [
            comp for comp in sfg.components if isinstance(comp, SymmetricTwoportAdaptor)
        ]
    
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 2
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
    def test_direct_form_fir():
    
        impulse_response = [0.3, 0.5, 0.7]
        sfg = direct_form_fir(impulse_response)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 3
        )
    
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 2
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 2
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(4)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
        impulse_response = [0.3, 0.4, 0.5, 0.6, 0.3]
    
        sfg = direct_form_fir(
            (0.3, 0.4, 0.5, 0.6, 0.3),
            mult_properties={'latency': 2, 'execution_time': 1},
            add_properties={'latency': 1, 'execution_time': 1},
        )
    
        assert sfg.critical_path_time() == 6
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(6)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
    
        impulse_response = [0.3]
        sfg = direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
        impulse_response = 0.3
        sfg = direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
    def test_transposed_direct_form_fir():
    
        impulse_response = [0.3, 0.5, 0.7]
        sfg = transposed_direct_form_fir(impulse_response)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 3
        )
    
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 2
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 2
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(4)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
        impulse_response = [0.3, 0.4, 0.5, 0.6, 0.3]
    
        sfg = transposed_direct_form_fir(
            (0.3, 0.4, 0.5, 0.6, 0.3),
            mult_properties={'latency': 2, 'execution_time': 1},
            add_properties={'latency': 1, 'execution_time': 1},
        )
    
        assert sfg.critical_path_time() == 3
    
    
        sim = Simulation(sfg, [Impulse()])
        sim.run_for(6)
        impulse_response.append(0.0)
        assert np.allclose(sim.results['0'], impulse_response)
    
    
        impulse_response = [0.3]
        sfg = transposed_direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
        impulse_response = 0.3
        sfg = transposed_direct_form_fir(impulse_response)
        assert (
            len(
                [
                    comp
                    for comp in sfg.components
                    if isinstance(comp, ConstantMultiplication)
                ]
            )
            == 1
        )
        assert len([comp for comp in sfg.components if isinstance(comp, Addition)]) == 0
        assert len([comp for comp in sfg.components if isinstance(comp, Delay)]) == 0
    
    
    def test_sfg_generator_errors():
        sfg_gens = [wdf_allpass, transposed_direct_form_fir, direct_form_fir]
        for gen in sfg_gens:
            with pytest.raises(ValueError, match="Coefficients cannot be empty"):
                gen([])
            with pytest.raises(TypeError, match="coefficients must be a 1D-array"):
                gen([[1, 2], [1, 3]])
    
    
    
    def test_radix_2_dif_fft_4_points_constant_input():
        sfg = radix_2_dif_fft(points=4)
    
        assert len(sfg.inputs) == 4
        assert len(sfg.outputs) == 4
    
        bfs = sfg.find_by_type_name(Butterfly.type_name())
        assert len(bfs) == 4
    
        muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
        assert len(muls) == 1
    
        # simulate when the input signal is a constant 1
        input_samples = [Impulse() for _ in range(4)]
        sim = Simulation(sfg, input_samples)
        sim.run_for(1)
    
        # ensure that the result is an impulse at time 0 with weight 4
        res = sim.results
        for i in range(4):
            exp_res = 4 if i == 0 else 0
            assert np.allclose(res[str(i)], exp_res)
    
    
    def test_radix_2_dif_fft_8_points_impulse_input():
        sfg = radix_2_dif_fft(points=8)
    
        assert len(sfg.inputs) == 8
        assert len(sfg.outputs) == 8
    
        bfs = sfg.find_by_type_name(Butterfly.type_name())
        assert len(bfs) == 12
    
        muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
        assert len(muls) == 5
    
        # simulate when the input signal is an impulse at time 0
        input_samples = [Impulse(), 0, 0, 0, 0, 0, 0, 0]
        sim = Simulation(sfg, input_samples)
        sim.run_for(1)
    
        # ensure that the result is a constant 1
        res = sim.results
        for i in range(8):
            assert np.allclose(res[str(i)], 1)
    
    
    def test_radix_2_dif_fft_8_points_sinus_input():
        POINTS = 8
        sfg = radix_2_dif_fft(points=POINTS)
    
        assert len(sfg.inputs) == POINTS
        assert len(sfg.outputs) == POINTS
    
        n = np.linspace(0, 2 * np.pi, POINTS)
        waveform = np.sin(n)
        input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
        sim = Simulation(sfg, input_samples)
        sim.run_for(1)
    
        exp_res = abs(np.fft.fft(waveform))
    
        res = sim.results
        for i in range(POINTS):
            a = abs(res[str(i)])
            b = exp_res[i]
            assert np.isclose(a, b)
    
    
    def test_radix_2_dif_fft_16_points_sinus_input():
        POINTS = 16
        sfg = radix_2_dif_fft(points=POINTS)
    
        assert len(sfg.inputs) == POINTS
        assert len(sfg.outputs) == POINTS
    
        bfs = sfg.find_by_type_name(Butterfly.type_name())
        assert len(bfs) == 8 * 4
    
        muls = sfg.find_by_type_name(ConstantMultiplication.type_name())
        assert len(muls) == 17
    
        n = np.linspace(0, 2 * np.pi, POINTS)
        waveform = np.sin(n)
        input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
        sim = Simulation(sfg, input_samples)
        sim.run_for(1)
    
        exp_res = np.fft.fft(waveform)
        res = sim.results
        for i in range(POINTS):
            a = res[str(i)]
            b = exp_res[i]
            assert np.isclose(a, b)
    
    
    def test_radix_2_dif_fft_256_points_sinus_input():
        POINTS = 256
        sfg = radix_2_dif_fft(points=POINTS)
    
        assert len(sfg.inputs) == POINTS
        assert len(sfg.outputs) == POINTS
    
        n = np.linspace(0, 2 * np.pi, POINTS)
        waveform = np.sin(n)
        input_samples = [Constant(waveform[i]) for i in range(POINTS)]
    
        sim = Simulation(sfg, input_samples)
        sim.run_for(1)
    
        exp_res = np.fft.fft(waveform)
        res = sim.results
        for i in range(POINTS):
            a = res[str(i)]
            b = exp_res[i]
            assert np.isclose(a, b)
    
    
    def test_radix_2_dif_fft_negative_number_of_points():
        POINTS = -8
        with pytest.raises(ValueError, match="Points must be positive number."):
            radix_2_dif_fft(points=POINTS)
    
    
    def test_radix_2_dif_fft_number_of_points_not_power_of_2():
        POINTS = 5
        with pytest.raises(ValueError, match="Points must be a power of two."):
            radix_2_dif_fft(points=POINTS)