Newer
Older
"""
Module for code generation of VHDL architectures.
"""

Mikael Henriksson
committed
from math import ceil, log2
from typing import TYPE_CHECKING, Dict, List, Optional, Set, TextIO, Tuple, cast
from b_asic.codegen.vhdl import common, write, write_lines

Mikael Henriksson
committed
from b_asic.process import MemoryVariable
if TYPE_CHECKING:
from b_asic.resources import ProcessCollection, _ForwardBackwardTable
f: TextIO,
assignment: List["ProcessCollection"],
entity_name: str,
word_length: int,
read_ports: int,
write_ports: int,
total_ports: int,

Mikael Henriksson
committed
*,

Mikael Henriksson
committed
input_sync: bool = True,

Mikael Henriksson
committed
adr_mux_size: int = 1,
adr_pipe_depth: int = 0,
Generate the VHDL architecture for a memory-based storage architecture.

Mikael Henriksson
committed
Settings should be sanitized when calling this function, e.g. from calling
generate_memory_based_storage_vhdl from one of the memory classes.
Parameters
----------
f : TextIO
File object (or other TextIO object) to write the architecture onto.
assignment : list
A possible cell assignment to use when generating the memory based storage.
The cell assignment is a dictionary int to ProcessCollection where the integer
corresponds to the cell to assign all MemoryVariables in corresponding process
collection.
If unset, each MemoryVariable will be assigned to a unique cell.
entity_name : str
The entity name for the resulting HDL.
word_length : int
Word length of the memory variable objects.
Number of read ports.
write_ports : int
Number of write ports.
total_ports : int
Total concurrent memory accesses possible.

Mikael Henriksson
committed
input_sync : bool, default: True
Add registers to the input signals (enable signal and data input signals).
Adding registers to the inputs allow pipelining of address generation (which
is added automatically). For large interleavers, this can improve timing
significantly.

Mikael Henriksson
committed
adr_mux_size : int, default: 1
Size of multiplexer if using address generation pipelining. Set to 1 for no
multiplexer pipelining. If any other value than 1, `input_sync` must be set.
adr_pipe_depth : int, default: 0
Depth of address generation pipelining. Set to 0 for no multiplexer pipelining.
If any other value than 0, `input_sync` must be set.
"""
# Code settings
mem_depth = len(assignment)
architecture_name = "rtl"
schedule_time = next(iter(assignment)).schedule_time

Mikael Henriksson
committed
# Address generation "ROMs"
total_roms = adr_mux_size**adr_pipe_depth
bits_per_mux = int(log2(adr_mux_size))
elements_per_rom = int(
2 ** ceil(log2(schedule_time / total_roms))
) # Next power-of-two
# Write architecture header
write(f, 0, f'architecture {architecture_name} of {entity_name} is', end='\n\n')
# Architecture declarative region begin
write(f, 1, '-- HDL memory description')
common.constant_declaration(

Mikael Henriksson
committed
f, name='MEM_WL', signal_type='integer', value=word_length, name_pad=16

Mikael Henriksson
committed
f, name='MEM_DEPTH', signal_type='integer', value=mem_depth, name_pad=16
f, 'mem_type', 'array(0 to MEM_DEPTH-1) of std_logic_vector(MEM_WL-1 downto 0)'
)
common.signal_declaration(
f,
name='memory',
signal_type='mem_type',

Mikael Henriksson
committed
name_pad=18,
vivado_ram_style='distributed', # Xilinx Vivado distributed RAM

Mikael Henriksson
committed
)

Mikael Henriksson
committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Schedule time counter
write(f, 1, '-- Schedule counter', start='\n')
common.constant_declaration(
f,
name='SCHEDULE_CNT_LEN',
signal_type='integer',
value=ceil(log2(schedule_time)),
name_pad=16,
)
common.signal_declaration(
f,
name='schedule_cnt',
signal_type='unsigned(SCHEDULE_CNT_LEN-1 downto 0)',
name_pad=18,
)
for i in range(adr_pipe_depth):
common.signal_declaration(
f,
name=f'schedule_cnt{i+1}',
signal_type='unsigned(SCHEDULE_CNT_LEN-1 downto 0)',
name_pad=18,
)
common.constant_declaration(
f,
name='ADR_LEN',
signal_type='integer',
value=f'SCHEDULE_CNT_LEN-({int(log2(adr_mux_size))}*{adr_pipe_depth})',
name_pad=16,
)
common.alias_declaration(
f,
name='schedule_cnt_adr',
signal_type='unsigned(ADR_LEN-1 downto 0)',
value='schedule_cnt(ADR_LEN-1 downto 0)',
name_pad=19,
)
# Address generation signals
write(f, 1, '-- Memory address generation', start='\n')
for i in range(read_ports):
common.signal_declaration(

Mikael Henriksson
committed
f, f'read_port_{i}', 'std_logic_vector(MEM_WL-1 downto 0)', name_pad=18
common.signal_declaration(

Mikael Henriksson
committed
f, f'read_adr_{i}', 'integer range 0 to MEM_DEPTH-1', name_pad=18

Mikael Henriksson
committed
common.signal_declaration(f, f'read_en_{i}', 'std_logic', name_pad=18)
for i in range(write_ports):
common.signal_declaration(

Mikael Henriksson
committed
f, f'write_port_{i}', 'std_logic_vector(MEM_WL-1 downto 0)', name_pad=18
common.signal_declaration(

Mikael Henriksson
committed
f, f'write_adr_{i}', 'integer range 0 to MEM_DEPTH-1', name_pad=18

Mikael Henriksson
committed
common.signal_declaration(f, f'write_en_{i}', 'std_logic', name_pad=18)

Mikael Henriksson
committed
# Address generation mutltiplexing signals
write(f, 1, '-- Address generation multiplexing signals', start='\n')
for write_port_idx in range(write_ports):
for depth in range(adr_pipe_depth + 1):
for rom in range(total_roms // adr_mux_size**depth):
common.signal_declaration(
f,
f'write_adr_{write_port_idx}_{depth}_{rom}',

Mikael Henriksson
committed
signal_type='integer range 0 to MEM_DEPTH-1',

Mikael Henriksson
committed
name_pad=18,
)
for write_port_idx in range(write_ports):
for depth in range(adr_pipe_depth + 1):
for rom in range(total_roms // adr_mux_size**depth):
common.signal_declaration(
f,
f'write_en_{write_port_idx}_{depth}_{rom}',
signal_type='std_logic',
name_pad=18,
)
for read_port_idx in range(read_ports):
for depth in range(adr_pipe_depth + 1):
for rom in range(total_roms // adr_mux_size**depth):
common.signal_declaration(
f,
f'read_adr_{read_port_idx}_{depth}_{rom}',

Mikael Henriksson
committed
signal_type='integer range 0 to MEM_DEPTH-1',

Mikael Henriksson
committed
name_pad=18,
)

Mikael Henriksson
committed
# Input sync signals
if input_sync:
write(f, 1, '-- Input synchronization', start='\n')

Mikael Henriksson
committed
for i in range(read_ports):
common.signal_declaration(

Mikael Henriksson
committed
f, f'p_{i}_in_sync', 'std_logic_vector(WL-1 downto 0)', name_pad=18

Mikael Henriksson
committed
)
#
# Architecture body begin
#

Mikael Henriksson
committed
# Schedule counter
write(f, 0, 'begin', start='\n', end='\n\n')
write(f, 1, '-- Schedule counter')

Mikael Henriksson
committed
common.synchronous_process_prologue(f=f, name='schedule_cnt_proc', clk='clk')
f,
[

Mikael Henriksson
committed
(4, "schedule_cnt <= (others => '0');"),
(5, f'if schedule_cnt = {schedule_time-1} then'),

Mikael Henriksson
committed
(6, "schedule_cnt <= (others => '0');"),
(5, 'else'),
(6, 'schedule_cnt <= schedule_cnt + 1;'),
(5, 'end if;'),
(4, 'end if;'),
],
)

Mikael Henriksson
committed
for i in range(adr_pipe_depth):
if i == 0:
write(f, 4, 'schedule_cnt1 <= schedule_cnt;')
else:
write(f, 4, f'schedule_cnt{i+1} <= schedule_cnt{i};')
write(f, 3, 'end if;')
common.synchronous_process_epilogue(
f=f,
name='schedule_cnt_proc',
clk='clk',
)

Mikael Henriksson
committed
# Input synchronization

Mikael Henriksson
committed
if input_sync:
write(f, 1, '-- Input synchronization', start='\n')
common.synchronous_process_prologue(

Mikael Henriksson
committed
f=f,
name='input_sync_proc',
clk='clk',
)
for i in range(read_ports):
write(f, 3, f'p_{i}_in_sync <= p_{i}_in;')
common.synchronous_process_epilogue(

Mikael Henriksson
committed
f=f,
name='input_sync_proc',
clk='clk',
)

Mikael Henriksson
committed
# Infer the memory
write(f, 1, '-- Memory', start='\n')
common.asynchronous_read_memory(
f=f,
clk='clk',
name=f'mem_{0}_proc',
read_ports={
(f'read_port_{i}', f'read_adr_{i}', f'read_en_{i}')
for i in range(read_ports)
},
write_ports={
(f'write_port_{i}', f'write_adr_{i}', f'write_en_{i}')
for i in range(write_ports)
},
)

Mikael Henriksson
committed
write(f, 1, f'read_adr_0 <= read_adr_0_{adr_pipe_depth}_0;')
write(f, 1, f'write_adr_0 <= write_adr_0_{adr_pipe_depth}_0;')
write(f, 1, f'write_en_0 <= write_en_0_{adr_pipe_depth}_0;')

Mikael Henriksson
committed
if input_sync:

Mikael Henriksson
committed
write(f, 1, 'write_port_0 <= p_0_in_sync;')

Mikael Henriksson
committed
else:

Mikael Henriksson
committed
write(f, 1, 'write_port_0 <= p_0_in;')

Mikael Henriksson
committed
# Input and output assignments
write(f, 1, '-- Input and output assignments', start='\n')
p_zero_exec = filter(
lambda p: p.execution_time == 0, (p for pc in assignment for p in pc)
)
common.synchronous_process_prologue(
f,
clk='clk',
name='output_reg_proc',
)

Mikael Henriksson
committed
write(f, 3, 'case to_integer(schedule_cnt) is')
for p in p_zero_exec:

Mikael Henriksson
committed
if input_sync:
write_time = (p.start_time + 1) % schedule_time

Mikael Henriksson
committed
if adr_pipe_depth:
write(
f,
4,

Mikael Henriksson
committed
f'when {write_time}+{adr_pipe_depth} => p_0_out <= p_0_in_sync;',

Mikael Henriksson
committed
)
else:
write(f, 4, f'when {write_time} => p_0_out <= p_0_in_sync;')

Mikael Henriksson
committed
else:
write_time = (p.start_time) % schedule_time
write(f, 4, f'when {write_time} => p_0_out <= p_0_in;')
write_lines(
f,
[
(4, 'when others => p_0_out <= read_port_0;'),
(3, 'end case;'),
],
)
common.synchronous_process_epilogue(
f,
clk='clk',
name='output_reg_proc',
)

Mikael Henriksson
committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#
# ROM Write address generation
#
write(f, 1, '--', start='\n')
write(f, 1, '-- Memory write address generation', start='')
write(f, 1, '--', end='\n')
# Extract all the write addresses
write_list: List[Optional[Tuple[int, MemoryVariable]]] = [
None for _ in range(schedule_time)
]
for i, collection in enumerate(assignment):
for mv in collection:
mv = cast(MemoryVariable, mv)
if mv.start_time >= schedule_time:
raise ValueError('start_time greater than scheudle_time')
if mv.execution_time:
write_list[mv.start_time] = (i, mv)
for rom in range(total_roms):
if input_sync:
common.synchronous_process_prologue(
f, clk="clk", name=f"mem_write_address_proc_{0}_{rom}"
)
else:
common.process_prologue(
f, sensitivity_list="schedule_cnt_adr", name="mem_write_address_proc"
)
write(f, 3, 'case to_integer(schedule_cnt_adr) is')
list_start_idx = rom * elements_per_rom
list_stop_idx = list_start_idx + elements_per_rom
for i, mv in filter(None, write_list[list_start_idx:list_stop_idx]):
write_lines(
f,
[
(4, f'-- {mv!r}'),
(
4,
(
f'when {mv.start_time % schedule_time} mod'
f' {elements_per_rom} =>'
),
),
(5, f'write_adr_0_{0}_{rom} <= {i};'),
(5, f'write_en_0_{0}_{rom} <= \'1\';'),
],
)
write_lines(
f,
[
(4, 'when others =>'),
(5, f'write_adr_0_{0}_{rom} <= 0;'),
(5, f'write_en_0_{0}_{rom} <= \'0\';'),
(3, 'end case;'),
],
)
if input_sync:
common.synchronous_process_epilogue(
f, clk="clk", name=f"mem_write_address_proc_{0}_{rom}"
)
write(f, 1, "")
else:
common.process_epilogue(
f, sensitivity_list="clk", name=f"mem_write_address_proc_{0}_{rom}"
)
write(f, 1, "")
# Write address multiplexing layers
for layer in range(adr_pipe_depth):
for mux_idx in range(total_roms // adr_mux_size ** (layer + 1)):
common.synchronous_process_prologue(
f, clk='clk', name=f'mem_write_address_proc{layer+1}_{mux_idx}'
)
write(
f,
3,
(
f'case to_integer(schedule_cnt{layer+1}('
f'ADR_LEN+{layer*bits_per_mux + bits_per_mux - 1} downto '
f'ADR_LEN+{layer*bits_per_mux}'
')) is'
),
)
for in_idx in range(adr_mux_size):
out_idx = in_idx + mux_idx * adr_mux_size
write(
f,
4,
(
f'-- {adr_mux_size}-to-1 MUX layer: '
f'layer={layer}, MUX={mux_idx}, input={in_idx}'
),
)
write_lines(
f,
[
(4, f'when {in_idx} =>'),
(
5,
(
f'write_adr_0_{layer+1}_{mux_idx} <='
f' write_adr_0_{layer}_{out_idx};'
),
),
(
5,
(
f'write_en_0_{layer+1}_{mux_idx} <='
f' write_en_0_{layer}_{out_idx};'
),
),
],
)
write_lines(
f,
[
(4, 'when others =>'),
(5, f'write_adr_0_{layer+1}_{mux_idx} <= 0;'),
(5, f'write_en_0_{layer+1}_{mux_idx} <= \'0\';'),
(3, 'end case;'),
],
)
common.synchronous_process_epilogue(
f, clk='clk', name=f'mem_write_address_proc{layer+1}_{mux_idx}'
)
write(f, 1, "")
#
# ROM read address generation
#
write(f, 1, '--', start='\n')
write(f, 1, '-- Memory read address generation', start='')
write(f, 1, '--', end='\n')
# Extract all the read addresses
read_list: List[Optional[Tuple[int, MemoryVariable]]] = [
None for _ in range(schedule_time)
]
for i, collection in enumerate(assignment):
for mv in collection:
mv = cast(MemoryVariable, mv)
for read_time in mv.reads.values():
read_list[
(mv.start_time + read_time - int(not (input_sync))) % schedule_time
] = (i, mv)
for rom in range(total_roms):
if input_sync:
common.synchronous_process_prologue(
f, clk="clk", name=f"mem_read_address_proc_{0}_{rom}"
)
else:
common.process_prologue(
f, sensitivity_list="schedule_cnt_adr", name="mem_read_address_proc"
)
write(f, 3, 'case to_integer(schedule_cnt_adr) is')
list_start_idx = rom * elements_per_rom
list_stop_idx = list_start_idx + elements_per_rom
for idx in range(list_start_idx, list_stop_idx):
if idx < schedule_time:
tp = read_list[idx]
if tp is None:
continue
i = tp[0]
mv = tp[1]
write_lines(
f,
[
(4, f'-- {mv!r}'),
(4, f'when {idx} mod {elements_per_rom} =>'),
(5, f'read_adr_0_{0}_{rom} <= {i};'),
],
)
write_lines(
f,
[
(4, 'when others =>'),
(5, f'read_adr_0_{0}_{rom} <= 0;'),
(3, 'end case;'),
],
)
if input_sync:
common.synchronous_process_epilogue(
f, clk="clk", name=f"mem_read_address_proc_{0}_{rom}"
)
write(f, 1, "")
else:
common.process_epilogue(
f, sensitivity_list="clk", name=f"mem_read_address_proc_{0}_{rom}"
)
write(f, 1, "")
# Read address multiplexing layers
for layer in range(adr_pipe_depth):
for mux_idx in range(total_roms // adr_mux_size ** (layer + 1)):
common.synchronous_process_prologue(
f, clk='clk', name=f'mem_read_address_proc{layer+1}_{mux_idx}'
)
write(
f,
3,
(
f'case to_integer(schedule_cnt{layer+1}('
f'ADR_LEN+{layer*bits_per_mux + bits_per_mux - 1} downto '
f'ADR_LEN+{layer*bits_per_mux}'
')) is'
),
)
for in_idx in range(adr_mux_size):
out_idx = in_idx + mux_idx * adr_mux_size
write(
f,
4,
(
f'-- {adr_mux_size}-to-1 MUX layer: '
f'layer={layer}, MUX={mux_idx}, input={in_idx}'
),
)
write_lines(
f,
[
(4, f'when {in_idx} =>'),
(
5,
(
f'read_adr_0_{layer+1}_{mux_idx} <='
f' read_adr_0_{layer}_{out_idx};'
),
),
],
)
write_lines(
f,
[
(4, 'when others =>'),
(5, f'read_adr_0_{layer+1}_{mux_idx} <= 0;'),
(3, 'end case;'),
],
)
common.synchronous_process_epilogue(
f, clk='clk', name=f'mem_read_address_proc{layer+1}_{mux_idx}'
)
write(f, 1, "")
write(f, 0, f'end architecture {architecture_name};', start='\n')
entity_name: str,
word_length: int,
read_ports: int,
write_ports: int,
total_ports: int,
sync_rst: bool = False,
async_rst: bool = False,
):
architecture_name = "rtl"
schedule_time = len(forward_backward_table)

Mikael Henriksson
committed
# Number of registers in this design
reg_cnt = len(forward_backward_table[0].regs)

Mikael Henriksson
committed
# Set of the register indices to output from
output_regs = {entry.outputs_from for entry in forward_backward_table.table}
if None in output_regs:
output_regs.remove(None)
output_regs = cast(Set[int], output_regs)
# Table with mapping: register to output multiplexer index
output_mux_table = {reg: i for i, reg in enumerate(output_regs)}
# Back-edge register indices
back_edges: Set[Tuple[int, int]] = {
(frm, to)
for entry in forward_backward_table
for frm, to in entry.back_edge_to.items()
}
back_edge_table: Dict[Tuple[int, int], int] = {
edge: i + 1 for i, edge in enumerate(back_edges)
}
# Architecture declarative region begin
#
# Write architecture header
write(f, 0, f'architecture {architecture_name} of {entity_name} is', end='\n\n')
# Schedule time counter
write(f, 1, '-- Schedule counter')
common.signal_declaration(
f,
name='schedule_cnt',
signal_type=f'integer range 0 to {schedule_time}-1',

Mikael Henriksson
committed
name_pad=18,
default_value='0',
)
# Shift register
write(f, 1, '-- Shift register', start='\n')
common.type_declaration(
f,
name='shift_reg_type',
alias=f'array(0 to {reg_cnt}-1) of std_logic_vector(WL-1 downto 0)',
)
common.signal_declaration(
f,
name='shift_reg',

Mikael Henriksson
committed
name_pad=18,
)
# Back edge mux decoder
write(f, 1, '-- Back-edge mux select signal', start='\n')
common.signal_declaration(

Mikael Henriksson
committed
f,
name='back_edge_mux_sel',
signal_type=f'integer range 0 to {len(back_edges)}',

Mikael Henriksson
committed
name_pad=18,

Mikael Henriksson
committed
# Output mux selector
write(f, 1, '-- Output mux select signal', start='\n')
common.signal_declaration(

Mikael Henriksson
committed
f,
name='out_mux_sel',
signal_type=f'integer range 0 to {len(output_regs) - 1}',

Mikael Henriksson
committed
name_pad=18,

Mikael Henriksson
committed
)
#
# Architecture body begin
#
write(f, 0, 'begin', start='\n', end='\n\n')
write(f, 1, '-- Schedule counter')
common.synchronous_process_prologue(
f=f,
name='schedule_cnt_proc',
clk='clk',
)
f,
[
(5, f'if schedule_cnt = {schedule_time}-1 then'),
(6, 'schedule_cnt <= 0;'),
(5, 'else'),
(6, 'schedule_cnt <= schedule_cnt + 1;'),
(5, 'end if;'),
(4, 'end if;'),
],
)
common.synchronous_process_epilogue(
f=f,
name='schedule_cnt_proc',
clk='clk',
)

Mikael Henriksson
committed
# Shift register back-edge decoding
write(f, 1, '-- Shift register back-edge decoding', start='\n')
common.synchronous_process_prologue(

Mikael Henriksson
committed
f,
clk='clk',
name='shift_reg_back_edge_decode_proc',
)
write(f, 3, 'case schedule_cnt is')

Mikael Henriksson
committed
for time, entry in enumerate(forward_backward_table):
if entry.back_edge_to:
assert len(entry.back_edge_to) == 1
for src, dst in entry.back_edge_to.items():
mux_idx = back_edge_table[(src, dst)]
f,
[
(4, f'when {(time-1)%schedule_time} =>'),
(5, f'-- ({src} -> {dst})'),
(5, f'back_edge_mux_sel <= {mux_idx};'),
],
)
f,
[
(4, 'when others =>'),
(5, 'back_edge_mux_sel <= 0;'),
(3, 'end case;'),
],
)
common.synchronous_process_epilogue(

Mikael Henriksson
committed
f,
clk='clk',
name='shift_reg_back_edge_decode_proc',
)

Mikael Henriksson
committed
# Shift register multiplexer logic
write(f, 1, '-- Multiplexers for shift register', start='\n')
common.synchronous_process_prologue(
f,
clk='clk',
name='shift_reg_proc',
)
if sync_rst:
write(f, 3, 'if rst = \'1\' then')
for reg_idx in range(reg_cnt):
write(f, 4, f'shift_reg({reg_idx}) <= (others => \'0\');')
write(f, 3, 'else')
f,
[
(3, '-- Default case'),
(3, 'shift_reg(0) <= p_0_in;'),
],
)
for reg_idx in range(1, reg_cnt):
write(f, 3, f'shift_reg({reg_idx}) <= shift_reg({reg_idx-1});')
write(f, 3, 'case back_edge_mux_sel is')

Mikael Henriksson
committed
for edge, mux_sel in back_edge_table.items():
f,
[
(4, f'when {mux_sel} =>'),
(5, f'shift_reg({edge[1]}) <= shift_reg({edge[0]});'),
],
)
f,
[
(4, 'when others => null;'),
(3, 'end case;'),
],
)
if sync_rst:
common.synchronous_process_epilogue(
f,
clk='clk',
name='shift_reg_proc',
)

Mikael Henriksson
committed
# Output multiplexer decoding logic
write(f, 1, '-- Output multiplexer decoding logic', start='\n')
common.synchronous_process_prologue(f, clk='clk', name='out_mux_decode_proc')
write(f, 3, 'case schedule_cnt is')

Mikael Henriksson
committed
for i, entry in enumerate(forward_backward_table):
if entry.outputs_from is not None:
sel = output_mux_table[entry.outputs_from]
write(f, 4, f'when {(i-1)%schedule_time} =>')
write(f, 5, f'out_mux_sel <= {sel};')
write(f, 3, 'end case;')
common.synchronous_process_epilogue(f, clk='clk', name='out_mux_decode_proc')

Mikael Henriksson
committed

Mikael Henriksson
committed
# Output multiplexer logic
write(f, 1, '-- Output multiplexer', start='\n')
common.synchronous_process_prologue(
f,
clk='clk',
name='out_mux_proc',
)
write(f, 3, 'case out_mux_sel is')

Mikael Henriksson
committed
for reg_i, mux_i in output_mux_table.items():
write(f, 4, f'when {mux_i} =>')

Mikael Henriksson
committed
if reg_i < 0:
write(f, 5, f'p_0_out <= p_{-1-reg_i}_in;')

Mikael Henriksson
committed
else:
write(f, 5, f'p_0_out <= shift_reg({reg_i});')
write(f, 3, 'end case;')
common.synchronous_process_epilogue(
f,
clk='clk',
name='out_mux_proc',
)
write(f, 0, f'end architecture {architecture_name};', start='\n')