Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tdde01-ht24
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mehce338-felra653-sigjo290
tdde01-ht24
Commits
8a1cea42
Commit
8a1cea42
authored
5 months ago
by
Felix Ramnelöv
Browse files
Options
Downloads
Patches
Plain Diff
Lab 1: Code and graph cleanup for assignment 1
parent
da59abd1
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lab1/assignment1.R
+99
-45
99 additions, 45 deletions
lab1/assignment1.R
with
99 additions
and
45 deletions
lab1/assignment1.R
+
99
−
45
View file @
8a1cea42
library
(
kknn
)
# 1. Import data
data
=
read.csv
(
"optdigits.csv"
,
header
=
FALSE
)
# ----1.----
n
=
dim
(
data
)[
1
]
data
=
read.csv
(
"optdigits.csv"
,
header
=
FALSE
)
n
=
dim
(
data
)[
1
]
set.seed
(
12345
)
id
=
sample
(
1
:
n
,
floor
(
n
*
0.5
))
train
=
data
[
id
,]
id1
=
setdiff
(
1
:
n
,
id
)
id
=
sample
(
1
:
n
,
floor
(
n
*
0.5
))
train
=
data
[
id
,
]
id1
=
setdiff
(
1
:
n
,
id
)
set.seed
(
12345
)
id2
=
sample
(
id1
,
floor
(
n
*
0.25
))
valid
=
data
[
id2
,]
id3
=
setdiff
(
id1
,
id2
)
test
=
data
[
id3
,]
id2
=
sample
(
id1
,
floor
(
n
*
0.25
))
valid
=
data
[
id2
,
]
id3
=
setdiff
(
id1
,
id2
)
test
=
data
[
id3
,
]
# Missclassification rate
missclass
=
function
(
X
,
Xfit
){
n
=
length
(
X
)
return
(
1
-
sum
(
diag
(
table
(
X
,
Xfit
)))
/
n
)
missclass
=
function
(
X
,
Xfit
)
{
n
=
length
(
X
)
return
(
1
-
sum
(
diag
(
table
(
X
,
Xfit
)))
/
n
)
}
# -------- part 2 ---------
# ----2.----
# Create model from training data
model_train
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
train
,
k
=
30
,
kernel
=
"rectangular"
)
model_test
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
test
,
k
=
30
,
kernel
=
"rectangular"
)
model_train
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
train
,
k
=
30
,
kernel
=
"rectangular"
)
model_test
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
test
,
k
=
30
,
kernel
=
"rectangular"
)
# Get fitted values
fitted_train
<-
model_train
$
fitted.values
fitted_test
<-
model_test
$
fitted.values
# Create confusion matrix
confusion_matrix_train
<-
table
(
train
$
V65
,
fitted_train
)
confusion_matrix_test
<-
table
(
test
$
V65
,
fitted_test
)
confusion_matrix_train
<-
table
(
train
$
V65
,
fitted_train
)
confusion_matrix_test
<-
table
(
test
$
V65
,
fitted_test
)
print
(
confusion_matrix_train
)
print
(
confusion_matrix_test
)
# Get missclassification rate for the model
missclass_train
<-
missclass
(
train
$
V65
,
fitted_train
)
missclass_test
<-
missclass
(
test
$
V65
,
fitted_test
)
missclass_train
<-
missclass
(
train
$
V65
,
fitted_train
)
missclass_test
<-
missclass
(
test
$
V65
,
fitted_test
)
print
(
missclass_train
)
print
(
missclass_test
)
# ----
---- part 3 -----
----
# ----
3.
----
# Get all cases where the target is 8
digit_8_cases
<-
which
(
train
$
V65
==
"8"
)
...
...
@@ -55,8 +62,16 @@ hardest_cases <- digit_8_cases[order(probs_digit_8)][1:3]
# Plot case from data
plot_case
=
function
(
case
,
data
)
{
digit_matrix
<-
matrix
(
as.numeric
(
data
[
case
,
-
ncol
(
data
)]),
nrow
=
8
,
ncol
=
8
,
byrow
=
TRUE
)
heatmap
(
x
=
digit_matrix
,
Colv
=
NA
,
Rowv
=
NA
,
scale
=
"none"
,
main
=
paste
(
"Digit 8 - Case:"
,
case
))
digit_matrix
<-
matrix
(
as.numeric
(
data
[
case
,
-
ncol
(
data
)]),
nrow
=
8
,
ncol
=
8
,
byrow
=
TRUE
)
heatmap
(
x
=
digit_matrix
,
Colv
=
NA
,
Rowv
=
NA
,
main
=
paste
(
"Digit 8 - Case:"
,
case
)
)
}
for
(
case
in
easiest_cases
)
{
...
...
@@ -67,59 +82,98 @@ for (case in hardest_cases) {
plot_case
(
case
,
train
)
}
# -------- part 4 ---------
# ----4.----
# Initialize numeric vectors for missclassification rates
train_missclassification
<-
numeric
(
30
)
valid_missclassification
<-
numeric
(
30
)
for
(
i
in
1
:
30
)
{
temp_model_train
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
train
,
k
=
i
,
kernel
=
"rectangular"
)
temp_model_valid
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
valid
,
k
=
i
,
kernel
=
"rectangular"
)
temp_model_train
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
train
,
k
=
i
,
kernel
=
"rectangular"
)
temp_model_valid
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
valid
,
k
=
i
,
kernel
=
"rectangular"
)
train_missclassification
[
i
]
<-
missclass
(
train
$
V65
,
temp_model_train
$
fitted.values
)
valid_missclassification
[
i
]
<-
missclass
(
valid
$
V65
,
temp_model_valid
$
fitted.values
)
train_missclassification
[
i
]
<-
missclass
(
train
$
V65
,
temp_model_train
$
fitted.values
)
valid_missclassification
[
i
]
<-
missclass
(
valid
$
V65
,
temp_model_valid
$
fitted.values
)
}
print
(
train_missclassification
)
print
(
valid_missclassification
)
# -------- part 5 ---------
# Plot missclassification rates
plot
(
1
:
30
,
valid_missclassification
,
ylim
=
c
(
0
,
max
(
valid_missclassification
)),
col
=
"red"
,
type
=
"l"
)
points
(
1
:
30
,
train_missclassification
,
col
=
"blue"
,
type
=
"l"
)
plot
(
1
:
30
,
valid_missclassification
,
ylim
=
c
(
0
,
max
(
valid_missclassification
)),
col
=
"blue"
,
type
=
"l"
,
xlab
=
"k"
,
ylab
=
"Missclassification rate"
)
grid
()
points
(
1
:
30
,
train_missclassification
,
col
=
"red"
,
type
=
"l"
)
# Min classification rate for validation data
print
(
which.min
(
valid_missclassification
))
# Predict test error for test data given best k for validation data
model_test
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
test
,
k
=
which.min
(
valid_missclassification
),
kernel
=
"rectangular"
)
test_missclassification
<-
missclass
(
test
$
V65
,
model_test
$
fitted.values
)
model_test
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
test
,
k
=
which.min
(
valid_missclassification
),
kernel
=
"rectangular"
)
test_missclassification
<-
missclass
(
test
$
V65
,
model_test
$
fitted.values
)
# Missclassification rate for test data
print
(
test_missclassification
)
cross_entropy
=
function
(
X_true
,
X_pred
,
epsilon
=
1e-15
){
# -----5.----
# Compute cross-entropy loss
return
(
-
sum
(
X_true
*
log
(
X_pred
+
epsilon
))
/
nrow
(
X_true
))
# Average cross-entropy loss
cross_entropy
=
function
(
X_true
,
X_pred
,
epsilon
=
1e-15
)
{
n
=
length
(
X_true
)
return
(
-
sum
(
X_true
*
log
(
X_pred
+
epsilon
))
/
n
)
}
valid_cross_entropy
<-
numeric
(
30
)
for
(
i
in
1
:
30
)
{
temp_model_valid
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
valid
,
k
=
i
,
kernel
=
"rectangular"
)
temp_model_valid
<-
kknn
(
as.factor
(
V65
)
~
.
,
train
,
valid
,
k
=
i
,
kernel
=
"rectangular"
)
X_true
<-
model.matrix
(
~
as.factor
(
valid
$
V65
)
-
1
)
# one-shot encoded matrix of target variables (to skip loops)
X_true
<-
model.matrix
(
~
as.factor
(
valid
$
V65
)
-
1
)
X_pred
<-
temp_model_valid
$
prob
valid_cross_entropy
[
i
]
=
cross_entropy
(
X_true
,
X_pred
)
valid_cross_entropy
[
i
]
=
cross_entropy
(
X_true
,
X_pred
)
}
plot
(
1
:
30
,
valid_cross_entropy
,
ylim
=
c
(
0
,
max
(
valid_cross_entropy
)),
col
=
"red"
,
type
=
"l"
)
print
(
which.min
(
valid_cross_entropy
))
plot
(
1
:
30
,
valid_cross_entropy
,
ylim
=
c
(
0
,
max
(
valid_cross_entropy
)),
col
=
"blue"
,
type
=
"l"
,
ylab
=
"Average cross-entropy loss"
,
xlab
=
"k"
,
)
grid
()
print
(
which.min
(
valid_cross_entropy
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment