Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tdde01-ht24
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mehce338-felra653-sigjo290
tdde01-ht24
Commits
5e9d99cb
Commit
5e9d99cb
authored
4 months ago
by
Felix Ramnelöv
Browse files
Options
Downloads
Patches
Plain Diff
Lab 1: Added notes for Assignment 3 (not revised)
parent
995d312c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
lab1/assignment3.R
+117
-7
117 additions, 7 deletions
lab1/assignment3.R
lab1/lab-notes.md
+28
-0
28 additions, 0 deletions
lab1/lab-notes.md
with
145 additions
and
7 deletions
lab1/assignment3.R
+
117
−
7
View file @
5e9d99cb
...
...
@@ -3,16 +3,126 @@ data = read.csv("pima-indians-diabetes.csv", header = FALSE)
# ----1.----
plot
(
main
=
"Plasma Glucose Concentration vs Age"
,
main
=
"Plasma Glucose Concentration vs Age"
,
data
$
V8
,
data
$
V2
,
xlab
=
"Age"
,
ylab
=
"Plasma Glucose Concentration"
,
col
=
ifelse
(
data
$
V9
==
1
,
"red"
,
"blue"
)
col
=
ifelse
(
data
$
V9
==
1
,
"red"
,
"blue"
)
)
legend
(
"bottomright"
,
legend
=
c
(
"Diabetes"
,
"No Diabetes"
),
fill
=
c
(
"red"
,
"blue"
))
legend
(
"bottomright"
,
legend
=
c
(
"Diabetes"
,
"No Diabetes"
),
fill
=
c
(
"red"
,
"blue"
)
)
# ----2.----
model
<-
glm
(
V9
~
V8
+
V2
,
family
=
binomial
,
data
=
data
)
predict_reg
<-
predict
(
model
,
data
,
type
=
"response"
)
r
=
0.5
predict_reg
<-
ifelse
(
predict_reg
>
r
,
1
,
0
)
# Missclassification rate
missclass
=
function
(
X
,
Xfit
)
{
n
=
length
(
X
)
return
(
1
-
sum
(
diag
(
table
(
X
,
Xfit
)))
/
n
)
}
missclass_rate
=
missclass
(
data
$
V9
,
predict_reg
)
print
(
missclass_rate
)
plot
(
main
=
"Plasma Glucose Concentration vs Age"
,
data
$
V8
,
data
$
V2
,
xlab
=
"Age"
,
ylab
=
"Plasma Glucose Concentration"
,
col
=
ifelse
(
predict_reg
==
1
,
"red"
,
"blue"
)
)
legend
(
"bottomright"
,
legend
=
c
(
"Predicted Diabetes"
,
"No Predicted Diabetes"
),
fill
=
c
(
"red"
,
"blue"
)
)
# ----3.----
theta
<-
coefficients
(
model
)
boundary
<-
function
(
x1
,
theta
,
r
)
{
logit_r
<-
log
(
r
/
(
1
-
r
))
# Calculate the log-odds corresponding to the threshold r
# Solve for Plasma Glucose given Age, using the logistic regression coefficients
return
((
-
theta
[
1
]
-
log
((
1
-
r
)
/
r
)
-
theta
[
2
]
*
x1
)
/
theta
[
3
])
}
age_seq
<-
seq
(
min
(
data
$
V8
),
max
(
data
$
V8
),
length.out
=
100
)
glucose_boundary
<-
sapply
(
age_seq
,
boundary
,
theta
=
theta
,
r
=
r
)
lines
(
age_seq
,
glucose_boundary
,
col
=
"black"
,
lwd
=
2
)
# ----5.----
data
$
z1
<-
data
$
V8
^
4
data
$
z2
<-
data
$
V8
^
3
*
data
$
V2
data
$
z3
<-
data
$
V8
^
2
*
data
$
V2
^
2
data
$
z4
<-
data
$
V8
*
data
$
V2
^
3
data
$
z5
<-
data
$
V2
^
4
model2
<-
glm
(
V9
~
V8
+
V2
+
z1
+
z2
+
z3
+
z4
+
z5
,
family
=
binomial
,
data
=
data
)
predict_reg2
<-
predict
(
model2
,
data
,
type
=
"response"
)
predict_reg2
<-
ifelse
(
predict_reg2
>
r
,
1
,
0
)
theta2
<-
coefficients
(
model2
)
plot
(
main
=
"Plasma Glucose Concentration vs Age"
,
data
$
V8
,
data
$
V2
,
xlab
=
"Age"
,
ylab
=
"Plasma Glucose Concentration"
,
col
=
ifelse
(
predict_reg2
==
1
,
"red"
,
"blue"
)
)
legend
(
"bottomright"
,
legend
=
c
(
"Predicted Diabetes"
,
"No Predicted Diabetes"
),
fill
=
c
(
"red"
,
"blue"
)
)
missclass_rate2
=
missclass
(
data
$
V9
,
predict_reg2
)
print
(
summary
(
model2
))
print
(
missclass_rate2
)
boundary2
<-
function
(
x1
,
theta
,
r
)
{
# Calculate the log-odds corresponding to the threshold r
logit_r
<-
log
(
r
/
(
1
-
r
))
# Basis function transformations
z1
<-
x1
^
4
z2
<-
x1
^
3
*
x2
z3
<-
x1
^
2
*
x2
^
2
z4
<-
x1
*
x2
^
3
z5
<-
x2
^
4
return
()
}
glucose_boundary2
<-
sapply
(
age_seq
,
boundary
,
theta
=
theta2
,
r
=
r
)
# ----2.----
\ No newline at end of file
lines
(
age_seq
,
glucose_boundary2
,
col
=
"black"
,
lwd
=
2
)
This diff is collapsed.
Click to expand it.
lab1/lab-notes.md
+
28
−
0
View file @
5e9d99cb
...
...
@@ -130,6 +130,34 @@ Confusion matrix o misclassification error e framtana.
## Assignment 3
1.
Not easy to classify. High variance. A lot of overlapping.
2.
$$p(y = 1
\m
id
\m
athbf{x}^
*) = g(\mathbf{x}^*
,
\b
oldsymbol{
\t
heta}) =
\f
rac{1}{1 + e^{-
\b
oldsymbol{
\t
heta}^
\t
op
\m
athbf{x}^
*
}}$$
Transform into decision:
$$
\h
at{y} =
\b
egin{cases}
1 &
\t
ext{if } p(y = 1
\m
id
\m
athbf{x}^
*
) > t
\\
0 &
\t
ext{otherwise}
\e
nd{cases}
$$
Normally,
\(
t = 0.5
\)
.
Wrong 1/4 of times, not very good.
3.
a. theta0 + theta1
* C1 + theta2*
C2 = 0
b.
Does not capture data distibution very well.
4.
Lower r gives lower risk of missing patient with diabetes.
5.
Model becomes more complex with lower missclassification rate.
## Assignment 4
-
_Why can it be important to consider various probability thresholds in the
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment