Skip to content
Snippets Groups Projects
Commit 5d196428 authored by Mehmet Celik Yildirim's avatar Mehmet Celik Yildirim
Browse files

lab1: part 1 code cleanup

parent ed7aad62
No related branches found
No related tags found
No related merge requests found
......@@ -19,7 +19,7 @@ missclass=function(X,Xfit){
n=length(X)
return(1-sum(diag(table(X,Xfit)))/n)
}
# -------- part 2 ---------
# Create model from training data
model_train <- kknn(as.factor(V65)~., train, train, k=30, kernel="rectangular")
model_test <- kknn(as.factor(V65)~., train, test, k=30, kernel="rectangular")
......@@ -42,6 +42,8 @@ missclass_test <- missclass(test$V65,fitted_test)
print(missclass_train)
print(missclass_test)
# -------- part 3 ---------
# Get all cases where the target is 8
digit_8_cases <- which(train$V65 == "8")
......@@ -65,7 +67,7 @@ for (case in hardest_cases) {
plot_case(case, train)
}
# -------- part 4 ---------
# Initialize numeric vectors for missclassification rates
train_missclassification <- numeric(30)
valid_missclassification <- numeric(30)
......@@ -82,6 +84,8 @@ for (i in 1:30) {
print(train_missclassification)
print(valid_missclassification)
# -------- part 5 ---------
# Plot missclassification rates
plot(1:30,valid_missclassification, ylim = c(0, max(valid_missclassification)), col="red", type="l")
points(1:30, train_missclassification, col="blue", type="l")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment