Skip to content
Snippets Groups Projects
Commit 8b73f603 authored by Simon Bjurek's avatar Simon Bjurek
Browse files

added more tests and one commented out test for complex matrices

parent 19e86fcc
No related branches found
No related tags found
1 merge request!470Add slack time scheduling, redid earliest deadline, added max-fan-out and hybrid scheduler, also added example
......@@ -3,9 +3,11 @@ import pytest
from scipy import signal
from b_asic.core_operations import (
MADS,
Addition,
Butterfly,
ConstantMultiplication,
Reciprocal,
SymmetricTwoportAdaptor,
)
from b_asic.sfg_generators import (
......@@ -644,6 +646,12 @@ class TestLdltMatrixInverse:
def test_1x1(self):
sfg = ldlt_matrix_inverse(N=1, is_complex=False)
assert len(sfg.inputs) == 1
assert len(sfg.outputs) == 1
assert len(sfg.find_by_type_name(MADS.type_name())) == 0
assert len(sfg.find_by_type_name(Reciprocal.type_name())) == 1
A_input = [Constant(5)]
sim = Simulation(sfg, A_input)
......@@ -655,6 +663,12 @@ class TestLdltMatrixInverse:
def test_2x2_simple_spd(self):
sfg = ldlt_matrix_inverse(N=2, is_complex=False)
assert len(sfg.inputs) == 3
assert len(sfg.outputs) == 3
assert len(sfg.find_by_type_name(MADS.type_name())) == 4
assert len(sfg.find_by_type_name(Reciprocal.type_name())) == 2
A = np.array([[1, 2], [2, 1]])
A_input = [Constant(1), Constant(2), Constant(1)]
......@@ -671,6 +685,12 @@ class TestLdltMatrixInverse:
def test_3x3_simple_spd(self):
sfg = ldlt_matrix_inverse(N=3, is_complex=False)
assert len(sfg.inputs) == 6
assert len(sfg.outputs) == 6
assert len(sfg.find_by_type_name(MADS.type_name())) == 15
assert len(sfg.find_by_type_name(Reciprocal.type_name())) == 3
A = np.array([[2, -1, 0], [-1, 3, -1], [0, -1, 2]])
A_input = [
Constant(2),
......@@ -693,3 +713,103 @@ class TestLdltMatrixInverse:
assert np.isclose(res["3"], A_inv[1, 1])
assert np.isclose(res["4"], A_inv[1, 2])
assert np.isclose(res["5"], A_inv[2, 2])
def test_5x5_random_spd(self):
N = 5
sfg = ldlt_matrix_inverse(N=N, is_complex=False)
assert len(sfg.inputs) == 15
assert len(sfg.outputs) == 15
assert len(sfg.find_by_type_name(MADS.type_name())) == 70
assert len(sfg.find_by_type_name(Reciprocal.type_name())) == N
A = self._generate_random_spd_matrix(N)
upper_tridiag = A[np.triu_indices_from(A)]
A_input = [Constant(num) for num in upper_tridiag]
A_inv = np.linalg.inv(A)
sim = Simulation(sfg, A_input)
sim.run_for(1)
res = sim.results
row_indices, col_indices = np.triu_indices(N)
expected_values = A_inv[row_indices, col_indices]
actual_values = [res[str(i)] for i in range(len(expected_values))]
for i in range(len(expected_values)):
assert np.isclose(actual_values[i], expected_values[i])
def test_30x30_random_spd(self):
N = 30
sfg = ldlt_matrix_inverse(N=N, is_complex=False)
A = self._generate_random_spd_matrix(N)
assert len(sfg.inputs) == len(A[np.triu_indices_from(A)])
assert len(sfg.outputs) == len(A[np.triu_indices_from(A)])
assert len(sfg.find_by_type_name(Reciprocal.type_name())) == N
upper_tridiag = A[np.triu_indices_from(A)]
A_input = [Constant(num) for num in upper_tridiag]
A_inv = np.linalg.inv(A)
sim = Simulation(sfg, A_input)
sim.run_for(1)
res = sim.results
row_indices, col_indices = np.triu_indices(N)
expected_values = A_inv[row_indices, col_indices]
actual_values = [res[str(i)] for i in range(len(expected_values))]
for i in range(len(expected_values)):
assert np.isclose(actual_values[i], expected_values[i])
# def test_2x2_random_complex_spd(self):
# N = 2
# sfg = ldlt_matrix_inverse(N=N, is_complex=True)
# # A = self._generate_random_complex_spd_matrix(N)
# A = np.array([[2, 1+1j],[1-1j, 3]])
# assert len(sfg.inputs) == len(A[np.triu_indices_from(A)])
# assert len(sfg.outputs) == len(A[np.triu_indices_from(A)])
# assert len(sfg.find_by_type_name(Reciprocal.type_name())) == N
# upper_tridiag = A[np.triu_indices_from(A)]
# A_input = [Constant(num) for num in upper_tridiag]
# A_inv = np.linalg.inv(A)
# sim = Simulation(sfg, A_input)
# sim.run_for(1)
# res = sim.results
# row_indices, col_indices = np.triu_indices(N)
# expected_values = A_inv[row_indices, col_indices]
# actual_values = [res[str(i)] for i in range(len(expected_values))]
# for i in range(len(expected_values)):
# assert np.isclose(actual_values[i], expected_values[i])
def _generate_random_spd_matrix(self, N: int) -> np.ndarray:
A = np.random.rand(N, N)
A = (A + A.T) / 2 # ensure symmetric
min_eig = np.min(np.linalg.eigvals(A))
A += (np.abs(min_eig) + 0.1) * np.eye(N) # ensure positive definiteness
return A
def _generate_random_complex_spd_matrix(self, N: int) -> np.ndarray:
A = np.random.randn(N, N) + 1j * np.random.randn(N, N)
A = (A + A.conj().T) / 2 # ensure symmetric
min_eig = np.min(np.linalg.eigvals(A))
A += (np.abs(min_eig) + 0.1) * np.eye(N) # ensure positive definiteness
return A
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment