Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
schedule.py 35.81 KiB
"""
B-ASIC Schedule Module.

Contains the schedule class for scheduling operations in an SFG.
"""

import io
import sys
from collections import defaultdict
from typing import Dict, List, Optional, Sequence, Tuple, cast

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from matplotlib.patches import PathPatch, Polygon
from matplotlib.path import Path
from matplotlib.ticker import MaxNLocator

from b_asic import Signal
from b_asic._preferences import (
    EXECUTION_TIME_COLOR,
    LATENCY_COLOR,
    OPERATION_GAP,
    SCHEDULE_OFFSET,
    SIGNAL_COLOR,
    SIGNAL_LINEWIDTH,
    SPLINE_OFFSET,
)
from b_asic.graph_component import GraphID
from b_asic.operation import Operation
from b_asic.port import InputPort, OutputPort
from b_asic.process import MemoryVariable, OperatorProcess
from b_asic.resources import ProcessCollection
from b_asic.signal_flow_graph import SFG
from b_asic.special_operations import Delay, Input, Output

# Need RGB from 0 to 1
_EXECUTION_TIME_COLOR = tuple(c / 255 for c in EXECUTION_TIME_COLOR)
_LATENCY_COLOR = tuple(c / 255 for c in LATENCY_COLOR)
_SIGNAL_COLOR = tuple(c / 255 for c in SIGNAL_COLOR)


class Schedule:
    """
    Schedule of an SFG with scheduled Operations.

    Parameters
    ----------
    sfg : :class:`~b_asic.signal_flow_graph.SFG`
        The signal flow graph to schedule.
    schedule_time : int, optional
        The schedule time. If not provided, it will be determined by the scheduling
        algorithm.
    cyclic : bool, default: False
        If the schedule is cyclic.
    scheduling_algorithm : {'ASAP', 'provided'}, optional
        The scheduling algorithm to use. Currently, only "ASAP" is supported.
        If 'provided', use provided *start_times*  and *laps* dictionaries.
    start_times : dict, optional
        Dictionary with GraphIDs as keys and start times as values.
        Used when *scheduling_algorithm* is 'provided'.
    laps : dict, optional
        Dictionary with GraphIDs as keys and laps as values.
        Used when *scheduling_algorithm* is 'provided'.
    """

    _sfg: SFG
    _start_times: Dict[GraphID, int]
    _laps: Dict[GraphID, int]
    _schedule_time: int
    _cyclic: bool
    _y_locations: Dict[GraphID, Optional[int]]

    def __init__(
        self,
        sfg: SFG,
        schedule_time: Optional[int] = None,
        cyclic: bool = False,
        scheduling_algorithm: str = "ASAP",
        start_times: Optional[Dict[GraphID, int]] = None,
        laps: Optional[Dict[GraphID, int]] = None,
    ):
        """Construct a Schedule from an SFG."""
        if not isinstance(sfg, SFG):
            raise TypeError("An SFG must be provided")

        self._original_sfg = sfg()  # Make a copy
        self._sfg = sfg
        self._start_times = {}
        self._laps = defaultdict(lambda: 0)
        self._cyclic = cyclic
        self._y_locations = defaultdict(lambda: None)
        if scheduling_algorithm == "ASAP":
            self._schedule_asap()
        elif scheduling_algorithm == "provided":
            if start_times is None:
                raise ValueError("Must provide start_times when using 'provided'")
            if laps is None:
                raise ValueError("Must provide laps when using 'provided'")
            self._start_times = start_times
            self._laps.update(laps)
            self._remove_delays_no_laps()
        else:
            raise NotImplementedError(
                f"No algorithm with name: {scheduling_algorithm} defined."
            )

        max_end_time = self.get_max_end_time()

        if schedule_time is None:
            self._schedule_time = max_end_time
        elif schedule_time < max_end_time:
            raise ValueError(f"Too short schedule time. Minimum is {max_end_time}.")
        else:
            self._schedule_time = schedule_time

    def start_time_of_operation(self, graph_id: GraphID) -> int:
        """
        Return the start time of the operation with the specified by *graph_id*.
        """
        if graph_id not in self._start_times:
            raise ValueError(f"No operation with graph_id {graph_id} in schedule")
        return self._start_times[graph_id]

    def get_max_end_time(self) -> int:
        """Return the current maximum end time among all operations."""
        max_end_time = 0
        for graph_id, op_start_time in self._start_times.items():
            operation = cast(Operation, self._sfg.find_by_id(graph_id))
            for outport in operation.outputs:
                max_end_time = max(
                    max_end_time,
                    op_start_time + cast(int, outport.latency_offset),
                )
        return max_end_time

    def forward_slack(self, graph_id: GraphID) -> int:
        """
        Return how much an operation can be moved forward in time.

        Parameters
        ----------
        graph_id : GraphID
            The graph id of the operation.

        Returns
        -------
        The number of time steps the operation with *graph_id* can ba moved
        forward in time.

        See Also
        --------
        backward_slack
        slacks
        """
        if graph_id not in self._start_times:
            raise ValueError(f"No operation with graph_id {graph_id} in schedule")
        slack = sys.maxsize
        output_slacks = self._forward_slacks(graph_id)
        # Make more pythonic
        for signal_slacks in output_slacks.values():
            for signal_slack in signal_slacks.values():
                slack = min(slack, signal_slack)
        return slack

    def _forward_slacks(
        self, graph_id: GraphID
    ) -> Dict["OutputPort", Dict["Signal", int]]:
        ret = {}
        start_time = self._start_times[graph_id]
        operation = cast(Operation, self._sfg.find_by_id(graph_id))
        for output_port in operation.outputs:
            output_slacks = {}
            available_time = start_time + cast(int, output_port.latency_offset)

            for signal in output_port.signals:
                destination = cast(InputPort, signal.destination)
                usage_time = (
                    cast(int, destination.latency_offset)
                    + self._start_times[destination.operation.graph_id]
                    + self._schedule_time * self._laps[signal.graph_id]
                )
                output_slacks[signal] = usage_time - available_time
            ret[output_port] = output_slacks
        return ret

    def backward_slack(self, graph_id: GraphID) -> int:
        """
        Return how much an operation can be moved backward in time.

        Parameters
        ----------
        graph_id : GraphID
            The graph id of the operation.

        Returns
        -------
        The number of time steps the operation with *graph_id* can ba moved
            backward in time.
        .. note:: The backward slack is positive, but a call to :func:`move_operation`
            should be negative to move the operation backward.

        See Also
        --------
        forward_slack
        slacks
        """
        if graph_id not in self._start_times:
            raise ValueError(f"No operation with graph_id {graph_id} in schedule")
        slack = sys.maxsize
        input_slacks = self._backward_slacks(graph_id)
        # Make more pythonic
        for signal_slacks in input_slacks.values():
            for signal_slack in signal_slacks.values():
                slack = min(slack, signal_slack)
        return slack

    def _backward_slacks(self, graph_id: GraphID) -> Dict[InputPort, Dict[Signal, int]]:
        ret = {}
        start_time = self._start_times[graph_id]
        operation = cast(Operation, self._sfg.find_by_id(graph_id))
        for input_port in operation.inputs:
            input_slacks = {}
            usage_time = start_time + cast(int, input_port.latency_offset)

            for signal in input_port.signals:
                source = cast(OutputPort, signal.source)
                available_time = (
                    cast(int, source.latency_offset)
                    + self._start_times[source.operation.graph_id]
                    - self._schedule_time * self._laps[signal.graph_id]
                )
                input_slacks[signal] = usage_time - available_time
            ret[input_port] = input_slacks
        return ret

    def slacks(self, graph_id: GraphID) -> Tuple[int, int]:
        """
        Return the backward and forward slacks of operation *graph_id*. That is, how
        much the operation can be moved backward and forward in time.

        Parameters
        ----------
        graph_id : GraphID
            The graph id of the operation.

        Returns
        -------
        A tuple as ``(backward_slack, forward_slack)``.
        .. note:: The backward slack is positive, but a call to :func:`move_operation`
            should be negative to move the operation backward.

        See Also
        --------
        backward_slack
        forward_slack

        """
        if graph_id not in self._start_times:
            raise ValueError(f"No operation with graph_id {graph_id} in schedule")
        return self.backward_slack(graph_id), self.forward_slack(graph_id)

    def print_slacks(self) -> None:
        """Print the slack times for all operations in the schedule."""
        raise NotImplementedError

    def set_schedule_time(self, time: int) -> "Schedule":
        """
        Set a new schedule time.

        Parameters
        ----------
        time : int
            The new schedule time. If it is too short, a ValueError will be raised.

        See Also
        --------
        get_max_time
        """
        if time < self.get_max_end_time():
            raise ValueError(
                f"New schedule time ({time}) too short, minimum:"
                f" {self.get_max_end_time()}."
            )
        self._schedule_time = time
        return self

    @property
    def sfg(self) -> SFG:
        """The SFG of the current schedule."""
        return self._original_sfg

    @property
    def start_times(self) -> Dict[GraphID, int]:
        """The start times of the operations in the schedule."""
        return self._start_times

    @property
    def laps(self) -> Dict[GraphID, int]:
        """
        The number of laps for the start times of the operations in the schedule.
        """
        return self._laps

    @property
    def schedule_time(self) -> int:
        """The schedule time of the current schedule."""
        return self._schedule_time

    @property
    def cyclic(self) -> bool:
        """If the current schedule is cyclic."""
        return self._cyclic

    def edit(self) -> None:
        """Edit schedule in GUI."""
        from b_asic.scheduler_gui.main_window import start_scheduler

        start_scheduler(self)

    def increase_time_resolution(self, factor: int) -> "Schedule":
        """
        Increase time resolution for a schedule.

        Parameters
        ----------
        factor : int
            The time resolution increment.
        """
        self._start_times = {k: factor * v for k, v in self._start_times.items()}
        for graph_id in self._start_times:
            cast(Operation, self._sfg.find_by_id(graph_id))._increase_time_resolution(
                factor
            )
        self._schedule_time *= factor
        return self

    def _get_all_times(self) -> List[int]:
        """
        Return a list of all times for the schedule. Used to check how the
        resolution can be modified.
        """
        # Local values
        ret = [self._schedule_time, *self._start_times.values()]
        # Loop over operations
        for graph_id in self._start_times:
            operation = cast(Operation, self._sfg.find_by_id(graph_id))
            ret += [
                cast(int, operation.execution_time),
                *operation.latency_offsets.values(),
            ]
        # Remove not set values (None)
        ret = [v for v in ret if v is not None]
        return ret

    def get_possible_time_resolution_decrements(self) -> List[int]:
        """Return a list with possible factors to reduce time resolution."""
        vals = self._get_all_times()
        maxloop = min(val for val in vals if val)
        if maxloop <= 1:
            return [1]
        ret = [1]
        for candidate in range(2, maxloop + 1):
            if not any(val % candidate for val in vals):
                ret.append(candidate)
        return ret

    def decrease_time_resolution(self, factor: int) -> "Schedule":
        """
        Decrease time resolution for a schedule.

        Parameters
        ----------
        factor : int
            The time resolution decrement.

        See Also
        --------
        get_possible_time_resolution_decrements
        """
        possible_values = self.get_possible_time_resolution_decrements()
        if factor not in possible_values:
            raise ValueError(
                f"Not possible to decrease resolution with {factor}. Possible"
                f" values are {possible_values}"
            )
        self._start_times = {k: v // factor for k, v in self._start_times.items()}
        for graph_id in self._start_times:
            cast(Operation, self._sfg.find_by_id(graph_id))._decrease_time_resolution(
                factor
            )
        self._schedule_time = self._schedule_time // factor
        return self

    def move_y_location(
        self, graph_id: GraphID, new_y: int, insert: bool = False
    ) -> None:
        """
        Move operation in y-direction and remove any empty rows.

        Parameters
        ----------
        graph_id : GraphID
            The GraphID of the operation to move.
        new_y : int
            The new y-position of the operation.
        insert : bool, optional
            If True, all operations on that y-position will be moved one position.
            The default is False.

        """
        if insert:
            for gid in self._y_locations:
                if self.get_y_location(gid) >= new_y:
                    self.set_y_location(gid, self.get_y_location(gid) + 1)
        self.set_y_location(graph_id, new_y)
        used_locations = {*self._y_locations.values()}
        possible_locations = set(range(round(max(used_locations)) + 1))
        if not possible_locations - used_locations:
            return
        remapping = {}
        offset = 0
        for loc in possible_locations:
            if loc in used_locations:
                remapping[loc] = loc - offset
            else:
                offset += 1

        for gid, y_location in self._y_locations.items():
            self._y_locations[gid] = remapping[self._y_locations[gid]]

    def get_y_location(self, graph_id: GraphID) -> int:
        """
        Get the y-position of the Operation with GraphID *graph_id*.

        Parameters
        ----------
        graph_id : GraphID
            The GraphID of the operation.

        Returns
        -------
        int
            The y-position of the operation.

        """
        return self._y_locations[graph_id]

    def set_y_location(self, graph_id: GraphID, y_location: int) -> None:
        """
        Set the y-position of the Operation with GraphID *graph_id* to *y_location*.

        Parameters
        ----------
        graph_id : GraphID
            The GraphID of the operation to move.
        y_location : int
            The new y-position of the operation.

        """
        self._y_locations[graph_id] = y_location

    def move_operation(self, graph_id: GraphID, time: int) -> "Schedule":
        """
        Move an operation in the schedule.

        Parameters
        ----------
        graph_id : GraphID
            The graph id of the operation to move.
        time : int
            The time to move. If positive move forward, if negative move backward.
        """
        if graph_id not in self._start_times:
            raise ValueError(f"No operation with graph_id {graph_id} in schedule")

        (backward_slack, forward_slack) = self.slacks(graph_id)
        if not -backward_slack <= time <= forward_slack:
            raise ValueError(
                f"Operation {graph_id} got incorrect move: {time}. Must be"
                f" between {-backward_slack} and {forward_slack}."
            )

        tmp_start = self._start_times[graph_id] + time
        new_start = tmp_start % self._schedule_time

        # Update input laps
        input_slacks = self._backward_slacks(graph_id)
        for in_port, signal_slacks in input_slacks.items():
            tmp_usage = tmp_start + cast(int, in_port.latency_offset)
            new_usage = tmp_usage % self._schedule_time
            for signal, signal_slack in signal_slacks.items():
                new_slack = signal_slack + time
                old_laps = self._laps[signal.graph_id]
                tmp_prev_available = tmp_usage - new_slack
                prev_available = tmp_prev_available % self._schedule_time
                laps = new_slack // self._schedule_time
                source_op = signal.source_operation
                if new_usage < prev_available:
                    print("Incrementing input laps 1")
                    laps += 1
                if (
                    prev_available == 0
                    and new_usage == 0
                    and (
                        tmp_prev_available > 0
                        or tmp_prev_available == 0
                        and not isinstance(source_op, Input)
                    )
                ):
                    print("Incrementing input laps 2")
                    laps += 1
                print(
                    [
                        "Input",
                        signal.source.operation,
                        time,
                        tmp_start,
                        signal_slack,
                        new_slack,
                        old_laps,
                        laps,
                        new_usage,
                        prev_available,
                        tmp_usage,
                        tmp_prev_available,
                    ]
                )
                self._laps[signal.graph_id] = laps

        # Update output laps
        output_slacks = self._forward_slacks(graph_id)
        for out_port, signal_slacks in output_slacks.items():
            tmp_available = tmp_start + cast(int, out_port.latency_offset)
            new_available = tmp_available % self._schedule_time
            for signal, signal_slack in signal_slacks.items():
                new_slack = signal_slack - time
                tmp_next_usage = tmp_available + new_slack
                next_usage = tmp_next_usage % self._schedule_time
                laps = new_slack // self._schedule_time
                if next_usage < new_available:
                    laps += 1
                    print("Incrementing output laps 1")
                if new_available == 0 and (new_slack > 0 or next_usage == 0):
                    print("Incrementing output laps 2")
                    laps += 1
                print(
                    [
                        "Output",
                        signal_slack,
                        new_slack,
                        old_laps,
                        laps,
                        new_available,
                        next_usage,
                        tmp_available,
                        tmp_next_usage,
                    ]
                )
                self._laps[signal.graph_id] = laps

        # Set new start time
        self._start_times[graph_id] = new_start
        return self

    def _remove_delays_no_laps(self) -> None:
        """Remove delay elements without updating laps. Used when loading schedule."""
        delay_list = self._sfg.find_by_type_name(Delay.type_name())
        while delay_list:
            delay_op = cast(Delay, delay_list[0])
            self._sfg = cast(SFG, self._sfg.remove_operation(delay_op.graph_id))
            delay_list = self._sfg.find_by_type_name(Delay.type_name())

    def _remove_delays(self) -> None:
        """Remove delay elements and update laps. Used after scheduling algorithm."""
        delay_list = self._sfg.find_by_type_name(Delay.type_name())
        while delay_list:
            delay_op = cast(Delay, delay_list[0])
            delay_input_id = delay_op.input(0).signals[0].graph_id
            delay_output_ids = [sig.graph_id for sig in delay_op.output(0).signals]
            self._sfg = cast(SFG, self._sfg.remove_operation(delay_op.graph_id))
            for output_id in delay_output_ids:
                self._laps[output_id] += 1 + self._laps[delay_input_id]
            del self._laps[delay_input_id]
            delay_list = self._sfg.find_by_type_name(Delay.type_name())

    def _schedule_asap(self) -> None:
        """Schedule the operations using as-soon-as-possible scheduling."""
        precedence_list = self._sfg.get_precedence_list()

        if len(precedence_list) < 2:
            print("Empty signal flow graph cannot be scheduled.")
            return

        non_schedulable_ops = set()
        for outport in precedence_list[0]:
            operation = outport.operation
            if operation.type_name() not in [Delay.type_name()]:
                if operation.graph_id not in self._start_times:
                    # Set start time of all operations in the first iter to 0
                    self._start_times[operation.graph_id] = 0
            else:
                non_schedulable_ops.add(operation.graph_id)

        for outport in precedence_list[1]:
            operation = outport.operation
            if operation.graph_id not in self._start_times:
                # Set start time of all operations in the first iter to 0
                self._start_times[operation.graph_id] = 0

        for outports in precedence_list[2:]:
            for outport in outports:
                operation = outport.operation
                if operation.graph_id not in self._start_times:
                    # Schedule the operation if it does not have a start time yet.
                    op_start_time = 0
                    for inport in operation.inputs:
                        if len(inport.signals) != 1:
                            raise ValueError(
                                "Error in scheduling, dangling input port detected."
                            )
                        if inport.signals[0].source is None:
                            raise ValueError(
                                "Error in scheduling, signal with no source detected."
                            )
                        source_port = inport.signals[0].source

                        source_end_time = None
                        if source_port.operation.graph_id in non_schedulable_ops:
                            source_end_time = 0
                        else:
                            source_op_time = self._start_times[
                                source_port.operation.graph_id
                            ]

                            if source_port.latency_offset is None:
                                raise ValueError(
                                    f"Output port {source_port.index} of"
                                    " operation"
                                    f" {source_port.operation.graph_id} has no"
                                    " latency-offset."
                                )

                            source_end_time = (
                                source_op_time + source_port.latency_offset
                            )

                        if inport.latency_offset is None:
                            raise ValueError(
                                f"Input port {inport.index} of operation"
                                f" {inport.operation.graph_id} has no"
                                " latency-offset."
                            )
                        op_start_time_from_in = source_end_time - inport.latency_offset
                        op_start_time = max(op_start_time, op_start_time_from_in)

                    self._start_times[operation.graph_id] = op_start_time
        for output in self._sfg.find_by_type_name(Output.type_name()):
            output = cast(Output, output)
            source_port = cast(OutputPort, output.inputs[0].signals[0].source)
            if source_port.operation.graph_id in non_schedulable_ops:
                self._start_times[output.graph_id] = 0
            else:
                if source_port.latency_offset is None:
                    raise ValueError(
                        f"Output port {source_port.index} of operation"
                        f" {source_port.operation.graph_id} has no"
                        " latency-offset."
                    )
                self._start_times[output.graph_id] = self._start_times[
                    source_port.operation.graph_id
                ] + cast(int, source_port.latency_offset)
        self._remove_delays()

    def _get_memory_variables_list(self) -> List[MemoryVariable]:
        ret: List[MemoryVariable] = []
        for graph_id, start_time in self._start_times.items():
            slacks = self._forward_slacks(graph_id)
            for outport, signals in slacks.items():
                reads = {
                    cast(InputPort, signal.destination): slack
                    for signal, slack in signals.items()
                }
                ret.append(
                    MemoryVariable(
                        start_time + cast(int, outport.latency_offset),
                        outport,
                        reads,
                        outport.name,
                    )
                )
        return ret

    def get_memory_variables(self) -> ProcessCollection:
        """
        Return a :class:`~b_asic.resources.ProcessCollection` containing all
        memory variables.

        Returns
        -------
        ProcessCollection

        """
        return ProcessCollection(
            set(self._get_memory_variables_list()), self.schedule_time
        )

    def get_operations(self) -> ProcessCollection:
        """
        Return a :class:`~b_asic.resources.ProcessCollection` containing all
        operations.

        Returns
        -------
        ProcessCollection

        """
        return ProcessCollection(
            {
                OperatorProcess(start_time, self._sfg.find_by_id(graph_id))
                for graph_id, start_time in self._start_times.items()
            },
            self.schedule_time,
            self.cyclic,
        )

    def _get_y_position(
        self, graph_id, operation_height=1.0, operation_gap=None
    ) -> float:
        if operation_gap is None:
            operation_gap = OPERATION_GAP
        y_location = self._y_locations[graph_id]
        if y_location is None:
            # Assign the lowest row number not yet in use
            used = set(loc for loc in self._y_locations.values() if loc is not None)
            possible = set(range(len(self._start_times))) - used
            y_location = min(possible)
            self._y_locations[graph_id] = y_location
        return operation_gap + y_location * (operation_height + operation_gap)

    def _plot_schedule(self, ax: Axes, operation_gap: Optional[float] = None) -> None:
        """Draw the schedule."""
        line_cache = []

        def _draw_arrow(
            start: Sequence[float], end: Sequence[float], name: str = "", laps: int = 0
        ) -> None:
            """Draw an arrow from *start* to *end*."""
            if end[0] < start[0] or laps > 0:  # Wrap around
                if start not in line_cache:
                    line = Line2D(
                        [start[0], self._schedule_time + SCHEDULE_OFFSET],
                        [start[1], start[1]],
                        color=_SIGNAL_COLOR,
                        lw=SIGNAL_LINEWIDTH,
                    )
                    ax.add_line(line)
                    ax.text(
                        self._schedule_time + SCHEDULE_OFFSET,
                        start[1],
                        name,
                        verticalalignment="center",
                    )
                line = Line2D(
                    [-SCHEDULE_OFFSET, end[0]],
                    [end[1], end[1]],
                    color=_SIGNAL_COLOR,
                    lw=SIGNAL_LINEWIDTH,
                )
                ax.add_line(line)
                ax.text(
                    -SCHEDULE_OFFSET,
                    end[1],
                    f"{name}: {laps}",
                    verticalalignment="center",
                    horizontalalignment="right",
                )
                line_cache.append(start)

            elif end[0] == start[0]:
                path = Path(
                    [
                        start,
                        [start[0] + SPLINE_OFFSET, start[1]],
                        [start[0] + SPLINE_OFFSET, (start[1] + end[1]) / 2],
                        [start[0], (start[1] + end[1]) / 2],
                        [start[0] - SPLINE_OFFSET, (start[1] + end[1]) / 2],
                        [start[0] - SPLINE_OFFSET, end[1]],
                        end,
                    ],
                    [
                        Path.MOVETO,
                        Path.CURVE4,
                        Path.CURVE4,
                        Path.CURVE4,
                        Path.CURVE4,
                        Path.CURVE4,
                        Path.CURVE4,
                    ],
                )
                path_patch = PathPatch(
                    path,
                    fc='none',
                    ec=_SIGNAL_COLOR,
                    lw=SIGNAL_LINEWIDTH,
                    zorder=10,
                )
                ax.add_patch(path_patch)
            else:
                path = Path(
                    [
                        start,
                        [(start[0] + end[0]) / 2, start[1]],
                        [(start[0] + end[0]) / 2, end[1]],
                        end,
                    ],
                    [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4],
                )
                path_patch = PathPatch(
                    path,
                    fc='none',
                    ec=_SIGNAL_COLOR,
                    lw=SIGNAL_LINEWIDTH,
                    zorder=10,
                )
                ax.add_patch(path_patch)

        def _draw_offset_arrow(
            start: Sequence[float],
            end: Sequence[float],
            start_offset: Sequence[float],
            end_offset: Sequence[float],
            name: str = "",
            laps: int = 0,
        ) -> None:
            """Draw an arrow from *start* to *end*, but with an offset."""
            _draw_arrow(
                [start[0] + start_offset[0], start[1] + start_offset[1]],
                [end[0] + end_offset[0], end[1] + end_offset[1]],
                name=name,
                laps=laps,
            )

        ytickpositions = []
        yticklabels = []
        ax.set_axisbelow(True)
        ax.grid()
        for graph_id, op_start_time in self._start_times.items():
            y_pos = self._get_y_position(graph_id, operation_gap=operation_gap)
            operation = cast(Operation, self._sfg.find_by_id(graph_id))
            # Rewrite to make better use of NumPy
            (
                latency_coordinates,
                execution_time_coordinates,
            ) = operation.get_plot_coordinates()
            _x, _y = zip(*latency_coordinates)
            x = np.array(_x)
            y = np.array(_y)
            xy = np.stack((x + op_start_time, y + y_pos))
            ax.add_patch(Polygon(xy.T, fc=_LATENCY_COLOR))
            if execution_time_coordinates:
                _x, _y = zip(*execution_time_coordinates)
                x = np.array(_x)
                y = np.array(_y)
                ax.plot(
                    x + op_start_time,
                    y + y_pos,
                    color=_EXECUTION_TIME_COLOR,
                    linewidth=3,
                )
            ytickpositions.append(y_pos + 0.5)
            yticklabels.append(cast(Operation, self._sfg.find_by_id(graph_id)).name)

        for graph_id, op_start_time in self._start_times.items():
            operation = cast(Operation, self._sfg.find_by_id(graph_id))
            out_coordinates = operation.get_output_coordinates()
            source_y_pos = self._get_y_position(graph_id, operation_gap=operation_gap)

            for output_port in operation.outputs:
                for output_signal in output_port.signals:
                    destination = cast(InputPort, output_signal.destination)
                    destination_op = destination.operation
                    destination_start_time = self._start_times[destination_op.graph_id]
                    destination_y_pos = self._get_y_position(
                        destination_op.graph_id, operation_gap=operation_gap
                    )
                    destination_in_coordinates = (
                        destination.operation.get_input_coordinates()
                    )
                    _draw_offset_arrow(
                        out_coordinates[output_port.index],
                        destination_in_coordinates[destination.index],
                        [op_start_time, source_y_pos],
                        [destination_start_time, destination_y_pos],
                        name=graph_id,
                        laps=self._laps[output_signal.graph_id],
                    )

        ax.set_yticks(ytickpositions)
        ax.set_yticklabels(yticklabels)

        # Get operation with maximum position
        max_pos_graph_id = max(self._y_locations, key=self._y_locations.get)
        y_position_max = (
            self._get_y_position(max_pos_graph_id, operation_gap=operation_gap)
            + 1
            + (OPERATION_GAP if operation_gap is None else operation_gap)
        )
        ax.axis([-1, self._schedule_time + 1, y_position_max, 0])  # Inverted y-axis
        ax.xaxis.set_major_locator(MaxNLocator(integer=True))
        ax.axvline(
            0,
            linestyle="--",
            color="black",
        )
        ax.axvline(
            self._schedule_time,
            linestyle="--",
            color="black",
        )

    def _reset_y_locations(self) -> None:
        """Reset all the y-locations in the schedule to None"""
        self._y_locations = defaultdict(lambda: None)

    def plot(self, ax: Axes, operation_gap: Optional[float] = None) -> None:
        """
        Plot the schedule in a :class:`matplotlib.axes.Axes` or subclass.

        Parameters
        ----------
        ax : :class:`~matplotlib.axes.Axes`
            The :class:`matplotlib.axes.Axes` to plot in.
        operation_gap : float, optional
            The vertical distance between operations in the schedule. The height of
            the operation is always 1.
        """
        self._plot_schedule(ax, operation_gap=operation_gap)

    def show(self, operation_gap: Optional[float] = None) -> None:
        """
        Show the schedule. Will display based on the current Matplotlib backend.

        Parameters
        ----------
        operation_gap : float, optional
            The vertical distance between operations in the schedule. The height of
            the operation is always 1.
        """
        self._get_figure(operation_gap=operation_gap).show()

    def _get_figure(self, operation_gap: Optional[float] = None) -> Figure:
        """
        Create a Figure and an Axes and plot schedule in the Axes.

        Parameters
        ----------
        operation_gap : float, optional
            The vertical distance between operations in the schedule. The height of
            the operation is always 1.

        Returns
        -------
        The Matplotlib Figure.
        """
        fig, ax = plt.subplots()
        self._plot_schedule(ax, operation_gap=operation_gap)
        return fig

    def _repr_svg_(self) -> str:
        """
        Generate an SVG of the schedule. This is automatically displayed in e.g.
        Jupyter Qt console.
        """
        fig, ax = plt.subplots()
        self._plot_schedule(ax)
        buffer = io.StringIO()
        fig.savefig(buffer, format="svg")

        return buffer.getvalue()