-
Simon Bjurek authoredSimon Bjurek authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
schedule.py 44.27 KiB
"""
B-ASIC Schedule Module.
Contains the schedule class for scheduling operations in an SFG.
"""
import io
import sys
from collections import defaultdict
from typing import Dict, List, Optional, Sequence, Tuple, cast
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from matplotlib.patches import PathPatch, Polygon
from matplotlib.path import Path
from matplotlib.ticker import MaxNLocator
from b_asic import Signal
from b_asic._preferences import (
EXECUTION_TIME_COLOR,
LATENCY_COLOR,
OPERATION_GAP,
SCHEDULE_OFFSET,
SIGNAL_COLOR,
SIGNAL_LINEWIDTH,
SPLINE_OFFSET,
)
from b_asic.graph_component import GraphID
from b_asic.operation import Operation
from b_asic.port import InputPort, OutputPort
from b_asic.process import MemoryVariable, OperatorProcess
from b_asic.resources import ProcessCollection
from b_asic.scheduler import Scheduler
from b_asic.signal_flow_graph import SFG
from b_asic.special_operations import Delay, Input, Output
from b_asic.types import TypeName
# Need RGB from 0 to 1
_EXECUTION_TIME_COLOR: Tuple[float, ...] = tuple(
float(c / 255) for c in EXECUTION_TIME_COLOR
)
_LATENCY_COLOR: Tuple[float, ...] = tuple(float(c / 255) for c in LATENCY_COLOR)
_SIGNAL_COLOR: Tuple[float, ...] = tuple(float(c / 255) for c in SIGNAL_COLOR)
def _laps_default():
"""Default value for _laps. Cannot use lambda."""
return 0
def _y_locations_default():
"""Default value for _y_locations. Cannot use lambda."""
return None
class Schedule:
"""
Schedule of an SFG with scheduled Operations.
Parameters
----------
sfg : :class:`~b_asic.signal_flow_graph.SFG`
The signal flow graph to schedule.
scheduler : Scheduler, default: None
The automatic scheduler to be used.
schedule_time : int, optional
The schedule time. If not provided, it will be determined by the scheduling
algorithm.
cyclic : bool, default: False
If the schedule is cyclic.
start_times : dict, optional
Dictionary with GraphIDs as keys and start times as values.
Used when *algorithm* is 'provided'.
laps : dict, optional
Dictionary with GraphIDs as keys and laps as values.
Used when *algorithm* is 'provided'.
"""
_sfg: SFG
_start_times: Dict[GraphID, int]
_laps: Dict[GraphID, int]
_schedule_time: int
_cyclic: bool
_y_locations: Dict[GraphID, Optional[int]]
def __init__(
self,
sfg: SFG,
scheduler: Optional[Scheduler] = None,
schedule_time: Optional[int] = None,
cyclic: bool = False,
start_times: Optional[Dict[GraphID, int]] = None,
laps: Optional[Dict[GraphID, int]] = None,
):
"""Construct a Schedule from an SFG."""
if not isinstance(sfg, SFG):
raise TypeError("An SFG must be provided")
self._sfg = sfg
self._start_times = {}
self._laps = defaultdict(_laps_default)
self._cyclic = cyclic
self._y_locations = defaultdict(_y_locations_default)
self._schedule_time = schedule_time
if scheduler:
self._scheduler = scheduler
self._scheduler.apply_scheduling(self)
else:
if start_times is None:
raise ValueError("Must provide start_times when using 'provided'")
if laps is None:
raise ValueError("Must provide laps when using 'provided'")
self._start_times = start_times
self._laps.update(laps)
self._remove_delays_no_laps()
max_end_time = self.get_max_end_time()
if not self._schedule_time:
self._schedule_time = max_end_time
self._validate_schedule()
def __str__(self) -> str:
"""Return a string representation of this Schedule."""
res: List[Tuple[GraphID, int, int, int]] = [
(
op.graph_id,
self.start_time_of_operation(op.graph_id),
cast(int, self.backward_slack(op.graph_id)),
self.forward_slack(op.graph_id),
)
for op in self._sfg.operations
]
res.sort(key=lambda tup: tup[0])
res_str = [
(
r[0],
r[1],
f"{r[2]}".rjust(8) if r[2] < sys.maxsize else "oo".rjust(8),
f"{r[3]}".rjust(8) if r[3] < sys.maxsize else "oo".rjust(8),
)
for r in res
]
string_io = io.StringIO()
header = ["Graph ID", "Start time", "Backward slack", "Forward slack"]
string_io.write("|".join(f"{col:^15}" for i, col in enumerate(header)) + "\n")
string_io.write("-" * (15 * len(header) + len(header) - 1) + "\n")
for r in res_str:
row_str = "|".join(f"{str(item):^15}" for i, item in enumerate(r))
string_io.write(row_str + "\n")
return string_io.getvalue()
def _validate_schedule(self) -> None:
if self._schedule_time is None:
raise ValueError("Schedule without set scheduling time detected.")
if not isinstance(self._schedule_time, int):
raise ValueError("Schedule with non-integer scheduling time detected.")
ops = {op.graph_id for op in self._sfg.operations}
missing_elems = ops - set(self._start_times)
extra_elems = set(self._start_times) - ops
if missing_elems:
raise ValueError(
f"Missing operations detected in start_times: {missing_elems}"
)
if extra_elems:
raise ValueError(f"Extra operations detected in start_times: {extra_elems}")
for graph_id, time in self._start_times.items():
if self.forward_slack(graph_id) < 0 or self.backward_slack(graph_id) < 0:
raise ValueError(
f"Negative slack detected in Schedule for operation: {graph_id}."
)
if time > self._schedule_time:
raise ValueError(
f"Start time larger than scheduling time detected in Schedule for operation {graph_id}"
)
def start_time_of_operation(self, graph_id: GraphID) -> int:
"""
Return the start time of the operation with the specified by *graph_id*.
Parameters
----------
graph_id : GraphID
The graph id of the operation to get the start time for.
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
return self._start_times[graph_id]
def get_max_end_time(self) -> int:
"""Return the current maximum end time among all operations."""
max_end_time = 0
for graph_id, op_start_time in self._start_times.items():
operation = cast(Operation, self._sfg.find_by_id(graph_id))
if graph_id.startswith("out"):
max_end_time = max(max_end_time, op_start_time)
else:
for outport in operation.outputs:
max_end_time = max(
max_end_time,
op_start_time + cast(int, outport.latency_offset),
)
return max_end_time
def get_max_non_io_end_time(self) -> int:
"""Return the current maximum end time among all non-IO operations."""
max_end_time = 0
for graph_id, op_start_time in self._start_times.items():
operation = cast(Operation, self._sfg.find_by_id(graph_id))
if graph_id.startswith("out"):
continue
else:
for outport in operation.outputs:
max_end_time = max(
max_end_time,
op_start_time + cast(int, outport.latency_offset),
)
return max_end_time
def forward_slack(self, graph_id: GraphID) -> int:
"""
Return how much an operation can be moved forward in time.
Parameters
----------
graph_id : GraphID
The graph id of the operation.
Returns
-------
int
The number of time steps the operation with *graph_id* can be moved
forward in time.
See Also
--------
backward_slack
slacks
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
output_slacks = self._forward_slacks(graph_id)
return cast(
int,
min(
sum(
(
list(signal_slacks.values())
for signal_slacks in output_slacks.values()
),
[sys.maxsize],
)
),
)
def _forward_slacks(
self, graph_id: GraphID
) -> Dict["OutputPort", Dict["Signal", int]]:
ret = {}
start_time = self._start_times[graph_id]
operation = cast(Operation, self._sfg.find_by_id(graph_id))
for output_port in operation.outputs:
ret[output_port] = self._output_slacks(output_port, start_time)
return ret
def _output_slacks(
self, output_port: "OutputPort", start_time: Optional[int] = None
) -> Dict[Signal, int]:
if start_time is None:
start_time = self._start_times[output_port.operation.graph_id]
output_slacks = {}
available_time = start_time + cast(int, output_port.latency_offset)
if available_time > self._schedule_time:
available_time -= self._schedule_time
for signal in output_port.signals:
destination = cast(InputPort, signal.destination)
usage_time = (
cast(int, destination.latency_offset)
+ self._start_times[destination.operation.graph_id]
+ self._schedule_time * self._laps[signal.graph_id]
)
output_slacks[signal] = usage_time - available_time
return output_slacks
def backward_slack(self, graph_id: GraphID) -> int:
"""
Return how much an operation can be moved backward in time.
Parameters
----------
graph_id : GraphID
The graph id of the operation.
Returns
-------
int
The number of time steps the operation with *graph_id* can be moved
backward in time.
.. note:: The backward slack is positive, but a call to
:func:`move_operation` should be negative to move the operation
backward.
See Also
--------
forward_slack
slacks
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
input_slacks = self._backward_slacks(graph_id)
return cast(
int,
min(
sum(
(
list(signal_slacks.values())
for signal_slacks in input_slacks.values()
),
[sys.maxsize],
)
),
)
def _backward_slacks(self, graph_id: GraphID) -> Dict[InputPort, Dict[Signal, int]]:
ret = {}
start_time = self._start_times[graph_id]
operation = cast(Operation, self._sfg.find_by_id(graph_id))
for input_port in operation.inputs:
ret[input_port] = self._input_slacks(input_port, start_time)
return ret
def _input_slacks(
self, input_port: InputPort, start_time: Optional[int] = None
) -> Dict[Signal, int]:
if start_time is None:
start_time = self._start_times[input_port.operation.graph_id]
input_slacks = {}
usage_time = start_time + cast(int, input_port.latency_offset)
for signal in input_port.signals:
source = cast(OutputPort, signal.source)
if source.operation.graph_id.startswith("dontcare"):
available_time = 0
else:
available_time = (
cast(int, source.latency_offset)
+ self._start_times[source.operation.graph_id]
- self._schedule_time * self._laps[signal.graph_id]
)
if available_time > self._schedule_time:
available_time -= self._schedule_time
input_slacks[signal] = usage_time - available_time
return input_slacks
def slacks(self, graph_id: GraphID) -> Tuple[int, int]:
"""
Return the backward and forward slacks of operation *graph_id*.
That is, how much the operation can be moved backward and forward in time.
Parameters
----------
graph_id : GraphID
The graph id of the operation.
Returns
-------
tuple(int, int)
The backward and forward slacks, respectively.
.. note:: The backward slack is positive, but a call to :func:`move_operation`
should be negative to move the operation backward.
See Also
--------
backward_slack
forward_slack
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
return self.backward_slack(graph_id), self.forward_slack(graph_id)
def print_slacks(self, order: int = 0) -> None:
"""
Print the slack times for all operations in the schedule.
Parameters
----------
order : int, default: 0
Sorting order.
* 0: alphabetical on Graph ID
* 1: backward slack
* 2: forward slack
"""
res: List[Tuple[GraphID, int, int]] = [
(
op.graph_id,
cast(int, self.backward_slack(op.graph_id)),
self.forward_slack(op.graph_id),
)
for op in self._sfg.operations
]
res.sort(key=lambda tup: tup[order])
res_str = [
(
r[0],
f"{r[1]}".rjust(8) if r[1] < sys.maxsize else "oo".rjust(8),
f"{r[2]}".rjust(8) if r[2] < sys.maxsize else "oo".rjust(8),
)
for r in res
]
print("Graph ID | Backward | Forward")
print("---------|----------|---------")
for r in res_str:
print(f"{r[0]:8} | {r[1]} | {r[2]}")
def set_schedule_time(self, time: int) -> "Schedule":
"""
Set a new schedule time.
Parameters
----------
time : int
The new schedule time. If it is too short, a ValueError will be raised.
See Also
--------
get_max_time
"""
max_end_time = self.get_max_end_time()
if time < max_end_time:
raise ValueError(
f"New schedule time ({time}) too short, minimum: {max_end_time}."
)
self._schedule_time = time
return self
def swap_io_of_operation(self, operation_id: GraphID) -> None:
"""
Swap the inputs (and outputs) of operation.
Parameters
----------
operation_id : GraphID
The GraphID of the operation to swap.
"""
self._sfg.swap_io_of_operation(operation_id)
@property
def sfg(self) -> SFG:
"""The SFG corresponding to the current schedule."""
reconstructed_sfg = self._reintroduce_delays()
simplified_sfg = reconstructed_sfg.simplify_delay_element_placement()
return simplified_sfg
@property
def start_times(self) -> Dict[GraphID, int]:
"""The start times of the operations in the schedule."""
return self._start_times
@start_times.setter
def start_times(self, start_times: dict[GraphID, int]) -> None:
if not isinstance(start_times, dict):
raise TypeError("start_times must be a dict")
for key, value in start_times.items():
if not isinstance(key, str) or not isinstance(value, int):
raise TypeError("start_times must be a dict[GraphID, int]")
self._start_times = start_times
@property
def laps(self) -> Dict[GraphID, int]:
"""
The number of laps for the start times of the operations in the schedule.
"""
return self._laps
@property
def schedule_time(self) -> int:
"""The schedule time of the current schedule."""
return self._schedule_time
@property
def cyclic(self) -> bool:
"""If the current schedule is cyclic."""
return self._cyclic
def edit(self, inplace=False) -> "Schedule":
"""
Edit schedule in GUI and return new schedule.
Parameters
----------
inplace : bool, default: False
If True, replace the current schedule.
"""
from b_asic.scheduler_gui.main_window import start_scheduler
new_schedule = start_scheduler(self)
if inplace:
self._start_times = new_schedule._start_times
self._laps = new_schedule._laps
self._schedule_time = new_schedule._schedule_time
self._y_locations = new_schedule._y_locations
return new_schedule
def increase_time_resolution(self, factor: int) -> "Schedule":
"""
Increase time resolution for a schedule.
Parameters
----------
factor : int
The time resolution increment.
"""
self._start_times = {k: factor * v for k, v in self._start_times.items()}
for graph_id in self._start_times:
cast(Operation, self._sfg.find_by_id(graph_id))._increase_time_resolution(
factor
)
self._schedule_time *= factor
return self
def _get_all_times(self) -> List[int]:
"""
Return a list of all times for the schedule.
Used to check how the resolution can be modified.
"""
# Local values
ret = [self._schedule_time, *self._start_times.values()]
# Loop over operations
for graph_id in self._start_times:
operation = cast(Operation, self._sfg.find_by_id(graph_id))
ret += [
cast(int, operation.execution_time),
*operation.latency_offsets.values(),
]
# Remove not set values (None)
ret = [v for v in ret if v is not None]
return ret
def get_possible_time_resolution_decrements(self) -> List[int]:
"""Return a list with possible factors to reduce time resolution."""
vals = self._get_all_times()
max_loop = min(val for val in vals if val)
if max_loop <= 1:
return [1]
ret = [1]
for candidate in range(2, max_loop + 1):
if not any(val % candidate for val in vals):
ret.append(candidate)
return ret
def decrease_time_resolution(self, factor: int) -> "Schedule":
"""
Decrease time resolution for a schedule.
Parameters
----------
factor : int
The time resolution decrement.
See Also
--------
get_possible_time_resolution_decrements
"""
possible_values = self.get_possible_time_resolution_decrements()
if factor not in possible_values:
raise ValueError(
f"Not possible to decrease resolution with {factor}. Possible"
f" values are {possible_values}"
)
self._start_times = {k: v // factor for k, v in self._start_times.items()}
for graph_id in self._start_times:
cast(Operation, self._sfg.find_by_id(graph_id))._decrease_time_resolution(
factor
)
self._schedule_time = self._schedule_time // factor
return self
def set_execution_time_of_type(
self, type_name: TypeName, execution_time: int
) -> None:
"""
Set the execution time of all operations with the given type name.
Parameters
----------
type_name : TypeName
The type name of the operation. For example, obtained as
``Addition.type_name()``.
execution_time : int
The execution time of the operation.
"""
self._sfg.set_execution_time_of_type(type_name, execution_time)
def set_latency_of_type(self, type_name: TypeName, latency: int) -> None:
"""
Set the latency of all operations with the given type name.
Parameters
----------
type_name : TypeName
The type name of the operation. For example, obtained as
``Addition.type_name()``.
latency : int
The latency of the operation.
"""
passed = True
for op in self._sfg.operations:
if type_name == op.type_name() or type_name == op.graph_id:
change_in_latency = latency - op.latency
if change_in_latency > (self.forward_slack(op.graph_id)):
passed = False
raise ValueError(
f"Error: Can't increase latency for all components. Try increasing forward slack time by rescheduling. "
f"Error in: {op.graph_id}"
)
break
if change_in_latency < 0 or passed:
for op in self._sfg.operations:
if type_name == op.type_name() or type_name == op.graph_id:
cast(Operation, op).set_latency(latency)
def move_y_location(
self, graph_id: GraphID, new_y: int, insert: bool = False
) -> None:
"""
Move operation in y-direction and remove any empty rows.
Parameters
----------
graph_id : GraphID
The GraphID of the operation to move.
new_y : int
The new y-position of the operation.
insert : bool, optional
If True, all operations on that y-position will be moved one position.
The default is False.
"""
if insert:
for gid in self._y_locations:
if self.get_y_location(gid) >= new_y:
self.set_y_location(gid, self.get_y_location(gid) + 1)
self.set_y_location(graph_id, new_y)
used_locations = {*self._y_locations.values()}
possible_locations = set(range(round(max(used_locations)) + 1))
if not possible_locations - used_locations:
return
remapping = {}
offset = 0
for loc in possible_locations:
if loc in used_locations:
remapping[loc] = loc - offset
else:
offset += 1
for gid, y_location in self._y_locations.items():
self._y_locations[gid] = remapping[self._y_locations[gid]]
def get_y_location(self, graph_id: GraphID) -> int:
"""
Get the y-position of the Operation with GraphID *graph_id*.
Parameters
----------
graph_id : GraphID
The GraphID of the operation.
Returns
-------
int
The y-position of the operation.
"""
return self._y_locations[graph_id]
def set_y_location(self, graph_id: GraphID, y_location: int) -> None:
"""
Set the y-position of the Operation with GraphID *graph_id* to *y_location*.
Parameters
----------
graph_id : GraphID
The GraphID of the operation to move.
y_location : int
The new y-position of the operation.
"""
self._y_locations[graph_id] = y_location
def _get_minimum_height(
self, operation_height: float = 1.0, operation_gap: float = OPERATION_GAP
):
max_pos_graph_id = max(self._y_locations, key=self._y_locations.get)
return self._get_y_position(max_pos_graph_id, operation_height, operation_gap)
def place_operation(self, op: Operation, time: int) -> None:
"""Schedule the given operation in given time.
Parameters
----------
op : Operation
Operation to schedule.
time : int
Time slot to schedule the operation in.
If time > schedule_time -> schedule cyclically.
"""
start = time % self._schedule_time if self._schedule_time else time
self._start_times[op.graph_id] = start
if not self.schedule_time:
return
# Update input laps
input_slacks = self._backward_slacks(op.graph_id)
for in_port, signal_slacks in input_slacks.items():
for signal, signal_slack in signal_slacks.items():
new_slack = signal_slack
laps = 0
while new_slack < 0:
laps += 1
new_slack += self._schedule_time
self._laps[signal.graph_id] = laps
if (
start == 0
and isinstance(op, Output)
and self._laps[op.input(0).signals[0].graph_id] != 0
):
start = self._schedule_time
self._laps[op.input(0).signals[0].graph_id] -= 1
self._start_times[op.graph_id] = start
def move_operation(self, graph_id: GraphID, time: int) -> "Schedule":
"""
Move an operation in the schedule.
Parameters
----------
graph_id : GraphID
The graph id of the operation to move.
time : int
The time to move. If positive move forward, if negative move backward.
"""
if graph_id not in self._start_times:
raise ValueError(f"No operation with graph_id {graph_id!r} in schedule")
if time == 0:
return self
(backward_slack, forward_slack) = self.slacks(graph_id)
if not -backward_slack <= time <= forward_slack:
raise ValueError(
f"Operation {graph_id!r} got incorrect move: {time}. Must be"
f" between {-backward_slack} and {forward_slack}."
)
old_start = self._start_times[graph_id]
tmp_start = old_start + time
new_start = tmp_start % self._schedule_time
# Update input laps
input_slacks = self._backward_slacks(graph_id)
for in_port, signal_slacks in input_slacks.items():
tmp_usage = tmp_start + cast(int, in_port.latency_offset)
new_usage = tmp_usage % self._schedule_time
for signal, signal_slack in signal_slacks.items():
# New slack
new_slack = signal_slack + time
# Compute a lower limit on laps
laps = new_slack // self._schedule_time
# Compensate for cases where above is not correct
tmp_prev_available = tmp_usage - new_slack
prev_available = tmp_prev_available % self._schedule_time
# If prev_available == 0 it will come from previous lap, unless it comes
# from an Input
source_op = signal.source_operation
if prev_available == 0 and not isinstance(source_op, Input):
prev_available = self._schedule_time
# Usage time (new_usage) < available time (prev_available) within a
# schedule period
if new_usage < prev_available:
laps += 1
self._laps[signal.graph_id] = laps
# Update output laps
output_slacks = self._forward_slacks(graph_id)
for out_port, signal_slacks in output_slacks.items():
tmp_available = tmp_start + cast(int, out_port.latency_offset)
new_available = tmp_available % self._schedule_time
for signal, signal_slack in signal_slacks.items():
# New slack
new_slack = signal_slack - time
# Compute a lower limit on laps
laps = new_slack // self._schedule_time
# Compensate for cases where above is not correct
tmp_next_usage = tmp_available + new_slack
next_usage = tmp_next_usage % self._schedule_time
# Usage time (new_usage) < available time (prev_available) within a
# schedule period
if new_available == 0 and (new_slack > 0 or next_usage == 0):
new_available = self._schedule_time
if (
next_usage < new_available
and self._start_times[signal.destination_operation.graph_id]
!= self.schedule_time
):
laps += 1
self._laps[signal.graph_id] = laps
# Outputs should not start at 0, but at schedule time
op = self._sfg.find_by_id(graph_id)
if (
new_start == 0
and isinstance(op, Output)
and self._laps[op.input(0).signals[0].graph_id] != 0
):
new_start = self._schedule_time
self._laps[op.input(0).signals[0].graph_id] -= 1
# Set new start time
self._start_times[graph_id] = new_start
return self
def move_operation_alap(self, graph_id: GraphID) -> "Schedule":
"""
Move an operation as late as possible in the schedule.
This is basically the same as::
schedule.move_operation(graph_id, schedule.forward_slack(graph_id))
but operations with no succeeding operation (Outputs) will only move to the end
of the schedule.
Parameters
----------
graph_id : GraphID
The graph id of the operation to move.
"""
forward_slack = self.forward_slack(graph_id)
if forward_slack == sys.maxsize:
self.move_operation(
graph_id, self.schedule_time - self._start_times[graph_id]
)
else:
self.move_operation(graph_id, forward_slack)
return self
def move_operation_asap(self, graph_id: GraphID) -> "Schedule":
"""
Move an operation as soon as possible in the schedule.
This is basically the same as::
schedule.move_operation(graph_id, -schedule.backward_slack(graph_id))
but operations that do not have a preceding operation (Inputs and Constants)
will only move to the start of the schedule.
Parameters
----------
graph_id : GraphID
The graph id of the operation to move.
"""
backward_slack = self.backward_slack(graph_id)
if backward_slack == sys.maxsize:
self.move_operation(graph_id, -self._start_times[graph_id])
else:
self.move_operation(graph_id, -backward_slack)
return self
def _remove_delays_no_laps(self) -> None:
"""Remove delay elements without updating laps. Used when loading schedule."""
delay_list = self._sfg.find_by_type_name(Delay.type_name())
while delay_list:
delay_op = cast(Delay, delay_list[0])
self._sfg = cast(SFG, self._sfg.remove_operation(delay_op.graph_id))
delay_list = self._sfg.find_by_type_name(Delay.type_name())
def remove_delays(self) -> None:
"""Remove delay elements and update laps. Used after scheduling algorithm."""
delay_list = self._sfg.find_by_type_name(Delay.type_name())
while delay_list:
delay_op = cast(Delay, delay_list[0])
delay_input_id = delay_op.input(0).signals[0].graph_id
delay_output_ids = [sig.graph_id for sig in delay_op.output(0).signals]
self._sfg = cast(SFG, self._sfg.remove_operation(delay_op.graph_id))
for output_id in delay_output_ids:
self._laps[output_id] += 1 + self._laps[delay_input_id]
del self._laps[delay_input_id]
delay_list = self._sfg.find_by_type_name(Delay.type_name())
def _reintroduce_delays(self) -> SFG:
"""
Reintroduce delay elements to each signal according to the ``_laps`` variable.
"""
new_sfg = self._sfg()
destination_laps = []
for signal_id, lap in self._laps.items():
port = new_sfg.find_by_id(signal_id).destination
destination_laps.append((port.operation.graph_id, port.index, lap))
for op, port, lap in destination_laps:
for delays in range(lap):
new_sfg = new_sfg.insert_operation_before(op, Delay(), port)
return new_sfg()
def _get_memory_variables_list(self) -> List[MemoryVariable]:
ret: List[MemoryVariable] = []
for graph_id, start_time in self._start_times.items():
slacks = self._forward_slacks(graph_id)
for outport, signals in slacks.items():
reads = {
cast(InputPort, signal.destination): slack
for signal, slack in signals.items()
}
ret.append(
MemoryVariable(
(start_time + cast(int, outport.latency_offset))
% self.schedule_time,
outport,
reads,
outport.name,
)
)
return ret
def get_memory_variables(self) -> ProcessCollection:
"""
Return a ProcessCollection containing all memory variables.
Returns
-------
:class:`~b_asic.resources.ProcessCollection`
"""
return ProcessCollection(
set(self._get_memory_variables_list()), self.schedule_time
)
def get_operations(self) -> ProcessCollection:
"""
Return a ProcessCollection containing all operations.
Returns
-------
:class:`~b_asic.resources.ProcessCollection`
"""
return ProcessCollection(
{
OperatorProcess(
start_time, cast(Operation, self._sfg.find_by_id(graph_id))
)
for graph_id, start_time in self._start_times.items()
},
self.schedule_time,
self.cyclic,
)
def get_used_type_names(self) -> List[TypeName]:
"""Get a list of all TypeNames used in the Schedule."""
return self._sfg.get_used_type_names()
def _get_y_position(
self, graph_id, operation_height=1.0, operation_gap=OPERATION_GAP
) -> float:
y_location = self._y_locations[graph_id]
if y_location is None:
# Assign the lowest row number not yet in use
used = {loc for loc in self._y_locations.values() if loc is not None}
possible = set(range(len(self._start_times))) - used
y_location = min(possible)
self._y_locations[graph_id] = y_location
return operation_gap + y_location * (operation_height + operation_gap)
def sort_y_locations_on_start_times(self):
for i, graph_id in enumerate(
sorted(self._start_times, key=self._start_times.get)
):
self.set_y_location(graph_id, i)
def _plot_schedule(self, ax: Axes, operation_gap: float = OPERATION_GAP) -> None:
"""Draw the schedule."""
line_cache = []
def _draw_arrow(
start: Sequence[float], end: Sequence[float], name: str = "", laps: int = 0
) -> None:
"""Draw an arrow from *start* to *end*."""
if end[0] < start[0] or laps > 0: # Wrap around
if start not in line_cache:
line = Line2D(
[start[0], self._schedule_time + SCHEDULE_OFFSET],
[start[1], start[1]],
color=_SIGNAL_COLOR,
lw=SIGNAL_LINEWIDTH,
)
ax.add_line(line)
ax.text(
self._schedule_time + SCHEDULE_OFFSET,
start[1],
name,
verticalalignment="center",
)
line = Line2D(
[-SCHEDULE_OFFSET, end[0]],
[end[1], end[1]],
color=_SIGNAL_COLOR,
lw=SIGNAL_LINEWIDTH,
)
ax.add_line(line)
ax.text(
-SCHEDULE_OFFSET,
end[1],
f"{name}: {laps}",
verticalalignment="center",
horizontalalignment="right",
)
line_cache.append(start)
else:
if end[0] == start[0]:
path = Path(
[
start,
[start[0] + SPLINE_OFFSET, start[1]],
[start[0] + SPLINE_OFFSET, (start[1] + end[1]) / 2],
[start[0], (start[1] + end[1]) / 2],
[start[0] - SPLINE_OFFSET, (start[1] + end[1]) / 2],
[start[0] - SPLINE_OFFSET, end[1]],
end,
],
[Path.MOVETO] + [Path.CURVE4] * 6,
)
else:
path = Path(
[
start,
[(start[0] + end[0]) / 2, start[1]],
[(start[0] + end[0]) / 2, end[1]],
end,
],
[Path.MOVETO] + [Path.CURVE4] * 3,
)
path_patch = PathPatch(
path,
fc='none',
ec=_SIGNAL_COLOR,
lw=SIGNAL_LINEWIDTH,
zorder=10,
)
ax.add_patch(path_patch)
def _draw_offset_arrow(
start: Sequence[float],
end: Sequence[float],
start_offset: Sequence[float],
end_offset: Sequence[float],
name: str = "",
laps: int = 0,
) -> None:
"""Draw an arrow from *start* to *end*, but with an offset."""
_draw_arrow(
[start[0] + start_offset[0], start[1] + start_offset[1]],
[end[0] + end_offset[0], end[1] + end_offset[1]],
name=name,
laps=laps,
)
ytickpositions = []
yticklabels = []
ax.set_axisbelow(True)
ax.grid()
for graph_id, op_start_time in self._start_times.items():
y_pos = self._get_y_position(graph_id, operation_gap=operation_gap)
operation = cast(Operation, self._sfg.find_by_id(graph_id))
# Rewrite to make better use of NumPy
(
latency_coordinates,
execution_time_coordinates,
) = operation.get_plot_coordinates()
_x, _y = zip(*latency_coordinates)
x = np.array(_x)
y = np.array(_y)
xy = np.stack((x + op_start_time, y + y_pos))
ax.add_patch(Polygon(xy.T, fc=_LATENCY_COLOR))
if 'in' in str(graph_id):
ax.annotate(
graph_id,
xy=(op_start_time - 0.48, y_pos + 0.7),
color="black",
size=10 - (0.05 * len(self._start_times)),
)
else:
ax.annotate(
graph_id,
xy=(op_start_time + 0.03, y_pos + 0.7),
color="black",
size=10 - (0.05 * len(self._start_times)),
)
if execution_time_coordinates:
_x, _y = zip(*execution_time_coordinates)
x = np.array(_x)
y = np.array(_y)
ax.plot(
x + op_start_time,
y + y_pos,
color=_EXECUTION_TIME_COLOR,
linewidth=3,
)
ytickpositions.append(y_pos + 0.5)
yticklabels.append(cast(Operation, self._sfg.find_by_id(graph_id)).name)
for graph_id, op_start_time in self._start_times.items():
operation = cast(Operation, self._sfg.find_by_id(graph_id))
out_coordinates = operation.get_output_coordinates()
source_y_pos = self._get_y_position(graph_id, operation_gap=operation_gap)
for output_port in operation.outputs:
for output_signal in output_port.signals:
destination = cast(InputPort, output_signal.destination)
destination_op = destination.operation
destination_start_time = self._start_times[destination_op.graph_id]
destination_y_pos = self._get_y_position(
destination_op.graph_id, operation_gap=operation_gap
)
destination_in_coordinates = (
destination.operation.get_input_coordinates()
)
_draw_offset_arrow(
out_coordinates[output_port.index],
destination_in_coordinates[destination.index],
[op_start_time, source_y_pos],
[destination_start_time, destination_y_pos],
name=graph_id,
laps=self._laps[output_signal.graph_id],
)
ax.set_yticks(ytickpositions)
ax.set_yticklabels(yticklabels)
# Get operation with maximum position
max_pos_graph_id = max(self._y_locations, key=self._y_locations.get)
y_position_max = (
self._get_y_position(max_pos_graph_id, operation_gap=operation_gap)
+ 1
+ (OPERATION_GAP if operation_gap is None else operation_gap)
)
ax.axis([-1, self._schedule_time + 1, y_position_max, 0]) # Inverted y-axis
ax.xaxis.set_major_locator(MaxNLocator(integer=True, min_n_ticks=1))
ax.axvline(
0,
linestyle="--",
color="black",
)
ax.axvline(
self._schedule_time,
linestyle="--",
color="black",
)
def reset_y_locations(self) -> None:
"""Reset all the y-locations in the schedule to None"""
self._y_locations = defaultdict(_y_locations_default)
def plot(self, ax: Axes, operation_gap: float = OPERATION_GAP) -> None:
"""
Plot the schedule in a :class:`matplotlib.axes.Axes` or subclass.
Parameters
----------
ax : :class:`~matplotlib.axes.Axes`
The :class:`matplotlib.axes.Axes` to plot in.
operation_gap : float, optional
The vertical distance between operations in the schedule. The height of
the operation is always 1.
"""
self._plot_schedule(ax, operation_gap=operation_gap)
def show(
self, operation_gap: float = OPERATION_GAP, title: Optional[str] = None
) -> None:
"""
Show the schedule. Will display based on the current Matplotlib backend.
Parameters
----------
operation_gap : float, optional
The vertical distance between operations in the schedule. The height of
the operation is always 1.
title : str, optional
Figure title.
"""
fig = self._get_figure(operation_gap=operation_gap)
if title:
fig.suptitle(title)
fig.show()
def _get_figure(self, operation_gap: float = OPERATION_GAP) -> Figure:
"""
Create a Figure and an Axes and plot schedule in the Axes.
Parameters
----------
operation_gap : float, optional
The vertical distance between operations in the schedule. The height of
the operation is always 1.
Returns
-------
The Matplotlib Figure.
"""
height = len(self._start_times) * 0.3 + 2
fig, ax = plt.subplots(figsize=(12, height))
self._plot_schedule(ax, operation_gap=operation_gap)
return fig
def _repr_svg_(self) -> str:
"""
Generate an SVG of the schedule. This is automatically displayed in e.g.
Jupyter Qt console.
"""
height = len(self._start_times) * 0.3 + 2
fig, ax = plt.subplots(figsize=(12, height))
self._plot_schedule(ax)
buffer = io.StringIO()
fig.savefig(buffer, format="svg")
return buffer.getvalue()
# SVG is valid HTML. This is useful for e.g. sphinx-gallery
_repr_html_ = _repr_svg_