Newer
Older
Angus Lothian
committed
return a + b, a - b
Angus Lothian
committed
class MAD(AbstractOperation):
Angus Lothian
committed
Gives the result of multiplying the first input by the second input and
then adding the third input.
.. math:: y = x_0 \times x_1 + x_2
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
Parameters
==========
src0, src1, src2 : SignalSourceProvider, optional
The three signals to determine the multiply-add operation of.
name : Name, optional
Operation name.
latency : int, optional
Operation latency (delay from input to output in time units).
latency_offsets : dict[str, int], optional
Used if inputs have different arrival times or if the inputs should arrive
after the operator has stared. For example, ``{"in0": 0, "in1": 0, "in2": 2}``
which corresponds to *src2*, i.e., the term to be added, arriving two time
units later than *src0* and *src1*. If not provided and *latency* is provided,
set to zero. Hence, the previous example can be written as ``{"in1": 1}``
only.
execution_time : int, optional
Operation execution time (time units before operator can be reused).
See Also
--------
Multiplication
Addition
Angus Lothian
committed
"""
__slots__ = (
"_src0",
"_src1",
"_src2",
"_name",
"_latency",
"_latency_offsets",
"_execution_time",
)
_src0: Optional[SignalSourceProvider]
_src1: Optional[SignalSourceProvider]
_src2: Optional[SignalSourceProvider]
_name: Name
_latency: Optional[int]
_latency_offsets: Optional[Dict[str, int]]
_execution_time: Optional[int]
is_swappable = True
def __init__(
self,
src0: Optional[SignalSourceProvider] = None,
src1: Optional[SignalSourceProvider] = None,
src2: Optional[SignalSourceProvider] = None,
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
Angus Lothian
committed
"""Construct a MAD operation."""
super().__init__(
input_count=3,
output_count=1,
input_sources=[src0, src1, src2],
latency=latency,
latency_offsets=latency_offsets,
execution_time=execution_time,
Angus Lothian
committed
@classmethod
def type_name(cls) -> TypeName:
Angus Lothian
committed
def evaluate(self, a, b, c):
return a * b + c
@property
def is_linear(self) -> bool:
return (
self.input(0).connected_source.operation.is_constant
or self.input(1).connected_source.operation.is_constant
)
def swap_io(self) -> None:
self._input_ports = [
self._input_ports[1],
self._input_ports[0],
self._input_ports[2],
]
for i, p in enumerate(self._input_ports):
p._index = i
class SymmetricTwoportAdaptor(AbstractOperation):
Wave digital filter symmetric twoport-adaptor operation.
.. math::
\begin{eqnarray}
y_0 & = & x_1 + \text{value}\times\left(x_1 - x_0\right)\\
y_1 & = & x_0 + \text{value}\times\left(x_1 - x_0\right)
\end{eqnarray}
__slots__ = (
"_src0",
"_src1",
"_name",
"_latency",
"_latency_offsets",
"_execution_time",
)
_src0: Optional[SignalSourceProvider]
_src1: Optional[SignalSourceProvider]
_name: Name
_latency: Optional[int]
_latency_offsets: Optional[Dict[str, int]]
_execution_time: Optional[int]
is_swappable = True
src0: Optional[SignalSourceProvider] = None,
src1: Optional[SignalSourceProvider] = None,
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
"""Construct a SymmetricTwoportAdaptor operation."""
super().__init__(
input_count=2,
output_count=2,
input_sources=[src0, src1],
latency=latency,
latency_offsets=latency_offsets,
execution_time=execution_time,
@classmethod
def type_name(cls) -> TypeName:
def evaluate(self, a, b):
return b + tmp, a + tmp
@property
"""Get the constant value of this operation."""
return self.param("value")
@value.setter
"""Set the constant value of this operation."""
if -1 <= value <= 1:
self.set_param("value", value)
else:
raise ValueError('value must be between -1 and 1 (inclusive)')
def swap_io(self) -> None:
# Swap inputs and outputs and change sign of coefficient
self._input_ports.reverse()
for i, p in enumerate(self._input_ports):
p._index = i
self._output_ports.reverse()
for i, p in enumerate(self._output_ports):
p._index = i
self.set_param("value", -self.value)
class Reciprocal(AbstractOperation):
r"""
Reciprocal operation.
Gives the reciprocal of its input.
.. math:: y = \frac{1}{x}
Parameters
----------
src0 : :class:`~b_asic.port.SignalSourceProvider`, optional
The signal to compute the reciprocal of.
name : Name, optional
Operation name.
latency : int, optional
Operation latency (delay from input to output in time units).
latency_offsets : dict[str, int], optional
Used if input arrives later than when the operator starts, e.g.,
``{"in0": 0`` which corresponds to *src0* arriving one time unit after the
operator starts. If not provided and *latency* is provided, set to zero.
execution_time : int, optional
Operation execution time (time units before operator can be reused).
See also
========
Division
__slots__ = ("_src0", "_name", "_latency", "_latency_offsets", "_execution_time")
_src0: Optional[SignalSourceProvider]
_name: Name
_latency: Optional[int]
_latency_offsets: Optional[Dict[str, int]]
_execution_time: Optional[int]
def __init__(
self,
src0: Optional[SignalSourceProvider] = None,
name: Name = Name(""),
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
):
"""Construct a Reciprocal operation."""
super().__init__(
input_count=1,
output_count=1,
name=Name(name),
input_sources=[src0],
latency=latency,
latency_offsets=latency_offsets,
execution_time=execution_time,
)
@classmethod
def type_name(cls) -> TypeName:
return TypeName("rec")
def evaluate(self, a):
return 1 / a
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
class RightShift(AbstractOperation):
r"""
Arithmetic right-shift operation.
Shifts the input to the right assuming a fixed-point representation, so
a multiplication by a power of two.
.. math:: y = x \gg \text{value} = 2^{-\text{value}}x \text{ where value} \geq 0
Parameters
----------
value : int
Number of bits to shift right.
src0 : :class:`~b_asic.port.SignalSourceProvider`, optional
The signal to shift right.
name : Name, optional
Operation name.
latency : int, optional
Operation latency (delay from input to output in time units).
latency_offsets : dict[str, int], optional
Used if input arrives later than when the operator starts, e.g.,
``{"in0": 0`` which corresponds to *src0* arriving one time unit after the
operator starts. If not provided and *latency* is provided, set to zero.
execution_time : int, optional
Operation execution time (time units before operator can be reused).
See Also
--------
LeftShift
Shift
"""
__slots__ = (
"_value",
"_src0",
"_name",
"_latency",
"_latency_offsets",
"_execution_time",
)
_value: Num
_src0: Optional[SignalSourceProvider]
_name: Name
_latency: Optional[int]
_latency_offsets: Optional[Dict[str, int]]
_execution_time: Optional[int]
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
is_linear = True
def __init__(
self,
value: int = 0,
src0: Optional[SignalSourceProvider] = None,
name: Name = Name(""),
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
):
"""Construct a RightShift operation with the given value."""
super().__init__(
input_count=1,
output_count=1,
name=Name(name),
input_sources=[src0],
latency=latency,
latency_offsets=latency_offsets,
execution_time=execution_time,
)
self.value = value
@classmethod
def type_name(cls) -> TypeName:
return TypeName("rshift")
def evaluate(self, a):
return a * 2 ** (-self.param("value"))
@property
def value(self) -> int:
"""Get the constant value of this operation."""
return self.param("value")
@value.setter
def value(self, value: int) -> None:
"""Set the constant value of this operation."""
if not isinstance(value, int):
raise TypeError("value must be an int")
if value < 0:
raise ValueError("value must be non-negative")
self.set_param("value", value)
class LeftShift(AbstractOperation):
r"""
Arithmetic left-shift operation.
Shifts the input to the left assuming a fixed-point representation, so
a multiplication by a power of two.
.. math:: y = x \ll \text{value} = 2^{\text{value}}x \text{ where value} \geq 0
Parameters
----------
value : int
Number of bits to shift left.
src0 : :class:`~b_asic.port.SignalSourceProvider`, optional
The signal to shift left.
name : Name, optional
Operation name.
latency : int, optional
Operation latency (delay from input to output in time units).
latency_offsets : dict[str, int], optional
Used if input arrives later than when the operator starts, e.g.,
``{"in0": 0`` which corresponds to *src0* arriving one time unit after the
operator starts. If not provided and *latency* is provided, set to zero.
execution_time : int, optional
Operation execution time (time units before operator can be reused).
See Also
--------
RightShift
Shift
"""
__slots__ = (
"_value",
"_src0",
"_name",
"_latency",
"_latency_offsets",
"_execution_time",
)
_value: Num
_src0: Optional[SignalSourceProvider]
_name: Name
_latency: Optional[int]
_latency_offsets: Optional[Dict[str, int]]
_execution_time: Optional[int]
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
is_linear = True
def __init__(
self,
value: int = 0,
src0: Optional[SignalSourceProvider] = None,
name: Name = Name(""),
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
):
"""Construct a RightShift operation with the given value."""
super().__init__(
input_count=1,
output_count=1,
name=Name(name),
input_sources=[src0],
latency=latency,
latency_offsets=latency_offsets,
execution_time=execution_time,
)
self.value = value
@classmethod
def type_name(cls) -> TypeName:
return TypeName("lshift")
def evaluate(self, a):
return a * 2 ** (self.param("value"))
@property
def value(self) -> int:
"""Get the constant value of this operation."""
return self.param("value")
@value.setter
def value(self, value: int) -> None:
"""Set the constant value of this operation."""
if not isinstance(value, int):
raise TypeError("value must be an int")
if value < 0:
raise ValueError("value must be non-negative")
self.set_param("value", value)
class Shift(AbstractOperation):
r"""
Arithmetic shift operation.
Shifts the input to the left or right assuming a fixed-point representation, so
a multiplication by a power of two. By definition a positive value is a shift to
the left.
.. math:: y = x \ll \text{value} = 2^{\text{value}}x
Parameters
----------
value : int
Number of bits to shift. Positive *value* shifts to the left.
src0 : :class:`~b_asic.port.SignalSourceProvider`, optional
The signal to shift.
name : Name, optional
Operation name.
latency : int, optional
Operation latency (delay from input to output in time units).
latency_offsets : dict[str, int], optional
Used if input arrives later than when the operator starts, e.g.,
``{"in0": 0`` which corresponds to *src0* arriving one time unit after the
operator starts. If not provided and *latency* is provided, set to zero.
execution_time : int, optional
Operation execution time (time units before operator can be reused).
See Also
--------
LeftShift
RightShift
"""
__slots__ = (
"_value",
"_src0",
"_name",
"_latency",
"_latency_offsets",
"_execution_time",
)
_value: Num
_src0: Optional[SignalSourceProvider]
_name: Name
_latency: Optional[int]
_latency_offsets: Optional[Dict[str, int]]
_execution_time: Optional[int]
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
is_linear = True
def __init__(
self,
value: int = 0,
src0: Optional[SignalSourceProvider] = None,
name: Name = Name(""),
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
):
"""Construct a Shift operation with the given value."""
super().__init__(
input_count=1,
output_count=1,
name=Name(name),
input_sources=[src0],
latency=latency,
latency_offsets=latency_offsets,
execution_time=execution_time,
)
self.value = value
@classmethod
def type_name(cls) -> TypeName:
return TypeName("shift")
def evaluate(self, a):
return a * 2 ** (self.param("value"))
@property
def value(self) -> int:
"""Get the constant value of this operation."""
return self.param("value")
@value.setter
def value(self, value: int) -> None:
"""Set the constant value of this operation."""
if not isinstance(value, int):
raise TypeError("value must be an int")
self.set_param("value", value)
class Sink(AbstractOperation):
r"""
Sink operation.
Used for ignoring the output from another operation to avoid dangling output nodes.
Parameters
==========
name : Name, optional
Operation name.
"""
__slots__ = "_name"
_name: Name
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
is_linear = True
def __init__(self, name: Name = ""):
"""Construct a Sink operation."""
super().__init__(
input_count=1,
output_count=0,
name=name,
latency_offsets={"in0": 0},
)
@classmethod
def type_name(cls) -> TypeName:
return TypeName("sink")
def evaluate(self):
raise NotImplementedError
@property
def latency(self) -> int:
return self.latency_offsets["in0"]
def __repr__(self) -> str:
return "Sink()"
def __str__(self) -> str:
return "sink"