Newer
Older

Mikael Henriksson
committed
from typing import Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union
import matplotlib.pyplot as plt
import networkx as nx
from matplotlib.axes import Axes
from matplotlib.ticker import MaxNLocator
from b_asic._preferences import LATENCY_COLOR
from b_asic.process import MemoryVariable, PlainMemoryVariable, Process
# Default latency coloring RGB tuple
_LATENCY_COLOR = tuple(c / 255 for c in LATENCY_COLOR)

Mikael Henriksson
committed
#
# Human-intuitive sorting:
# https://stackoverflow.com/questions/2669059/how-to-sort-alpha-numeric-set-in-python
#
# Typing '_T' to help Pyright propagate type-information
#
_T = TypeVar('_T')

Mikael Henriksson
committed
def _sorted_nicely(to_be_sorted: Iterable[_T]) -> List[_T]:
"""Sort the given iterable in the way that humans expect."""
def convert(text):
return int(text) if text.isdigit() else text
def alphanum_key(key):
return [convert(c) for c in re.split('([0-9]+)', str(key))]
return sorted(to_be_sorted, key=alphanum_key)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def _sanitize_port_option(
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
total_ports: Optional[int] = None,
) -> Tuple[int, int, int]:
"""
General port sanitization function, to test if a port specification makes sense.
Raises ValueError if the port specification is in-proper.
Parameters
----------
read_ports : int, optional
The number of read ports.
write_ports : int, optional
The number of write ports.
total_ports : int, optional
The total number of ports
Returns
-------
Returns a triple int tuple (read_ports, write_ports, total_ports) equal to the input, or sanitized if one of the input equals None.
If total_ports is set to None at the input, it is set to read_ports+write_ports at the output.
If read_ports or write_ports is set to None at the input, it is set to total_ports at the output.
"""
if total_ports is None:
if read_ports is None or write_ports is None:
raise ValueError(
"If total_ports is unset, both read_ports and write_ports"
" must be provided."
)
else:
total_ports = read_ports + write_ports
else:
read_ports = total_ports if read_ports is None else read_ports
write_ports = total_ports if write_ports is None else write_ports
if total_ports < read_ports:
raise ValueError(
f'Total ports ({total_ports}) less then read ports ({read_ports})'
)
if total_ports < write_ports:
raise ValueError(
f'Total ports ({total_ports}) less then write ports ({write_ports})'
)
return (read_ports, write_ports, total_ports)
def draw_exclusion_graph_coloring(
exclusion_graph: nx.Graph,
color_dict: Dict[Process, int],
ax: Optional[Axes] = None,
color_list: Optional[Union[List[str], List[Tuple[float, float, float]]]] = None,
Draw a colored exclusion graph from the memory assignment.
.. code-block:: python
_, ax = plt.subplots(1, 1)
collection = ProcessCollection(...)
exclusion_graph = collection.create_exclusion_graph_from_overlap()
color_dict = nx.greedy_color(exclusion_graph)
draw_exclusion_graph_coloring(exclusion_graph, color_dict, ax=ax[0])
plt.show()
Parameters
----------
exclusion_graph : nx.Graph
A nx.Graph exclusion graph object that is to be drawn.
color_dict : dict
A dict where keys are :class:`~b_asic.process.Process` objects and values are
integers representing colors. These dictionaries are automatically generated by
:func:`networkx.algorithms.coloring.greedy_color`.
A Matplotlib :class:`~matplotlib.axes.Axes` object to draw the exclusion graph.
color_list : iterable of color, optional
A list of colors in Matplotlib format.
Returns
-------
None
"""
COLOR_LIST = [
'#aa0000',
'#00aa00',
'#0000ff',
'#ff00aa',
'#ffaa00',
'#ffffff',
'#00ffaa',
'#aaff00',
'#aa00ff',
'#00aaff',
'#ff0000',
'#00ff00',
'#0000aa',
'#aaaa00',
'#aa00aa',
'#00aaaa',
'#666666',
]
if color_list is None:
node_color_dict = {k: COLOR_LIST[v] for k, v in color_dict.items()}
else:
node_color_dict = {k: color_list[v] for k, v in color_dict.items()}
node_color_list = [node_color_dict[node] for node in exclusion_graph]
nx.draw_networkx(
exclusion_graph,
node_color=node_color_list,
ax=ax,
pos=nx.spring_layout(exclusion_graph, seed=1),
)
class ProcessCollection:
"""
Collection of one or more processes
Parameters
----------
collection : set of :class:`~b_asic.process.Process` objects
The Process objects forming this ProcessCollection.

Mikael Henriksson
committed
schedule_time : int
Length of the time-axis in the generated graph.
cyclic : bool, default: False
If the processes operates cyclically, i.e., if time 0 == time *schedule_time*.
def __init__(
self,
collection: Set[Process],
schedule_time: int,
cyclic: bool = False,
):
self._collection = collection
self._schedule_time = schedule_time
self._cyclic = cyclic
@property
def collection(self):
return self._collection
def __len__(self):
def add_process(self, process: Process):
"""
Add a new process to this process collection.
Parameters
----------
process : Process
The process object to be added to the collection.
self,
ax: Optional[Axes] = None,
show_name: bool = True,
bar_color: Union[str, Tuple[float, ...]] = _LATENCY_COLOR,
marker_color: Union[str, Tuple[float, ...]] = "black",
marker_read: str = "X",
marker_write: str = "o",
show_markers: bool = True,
row: Optional[int] = None,
Parameters
----------
ax : :class:`matplotlib.axes.Axes`, optional
Matplotlib :class:`~matplotlib.axes.Axes` object to draw this lifetime chart
onto. If not provided (i.e., set to None), this method will return a new
Axes object.
show_name : bool, default: True
Show name of all processes in the lifetime chart.
bar_color : color, optional
Bar color in lifetime chart.
marker_color : color, default 'black'
Color for read and write marker.
marker_write : str, default 'x'
Marker at write time in the lifetime chart.
marker_read : str, default 'o'
Marker at read time in the lifetime chart.
show_markers : bool, default True
Show markers at read and write times.
row : int, optional
Render all processes in this collection on a specified row in the matplotlib axes object.
Defaults to None, which renders all processes on separate rows. This option is useful when
drawing cell assignments.
ax: Associated Matplotlib Axes (or array of Axes) object
if ax is None:
_, _ax = plt.subplots()
else:
_ax = ax

Mikael Henriksson
committed
# Lifetime chart left and right padding
max_execution_time = max(process.execution_time for process in self._collection)
if max_execution_time > self._schedule_time:
# Schedule time needs to be greater than or equal to the maximum process
# lifetime
f'Error: Schedule time: {self._schedule_time} < Max execution'
f' time: {max_execution_time}'

Mikael Henriksson
committed
# Generate the life-time chart
for i, process in enumerate(_sorted_nicely(self._collection)):
bar_row = i if row == None else row
bar_start = process.start_time % self._schedule_time

Mikael Henriksson
committed
bar_end = process.start_time + process.execution_time

Mikael Henriksson
committed
bar_end
if bar_end == self._schedule_time
else bar_end % self._schedule_time
)
if show_markers:
_ax.scatter( # type: ignore
y=bar_row + 1,
marker=marker_write,
color=marker_color,
zorder=10,
)
_ax.scatter( # type: ignore
y=bar_row + 1,
marker=marker_read,
color=marker_color,
zorder=10,
)
if bar_end >= bar_start:
_ax.broken_barh( # type: ignore
(bar_row + 0.55, 0.9),
color=bar_color,
_ax.broken_barh( # type: ignore
[
(
PAD_L + bar_start,
self._schedule_time - bar_start - PAD_L,
)
],
(bar_row + 0.55, 0.9),
color=bar_color,
)
_ax.broken_barh( # type: ignore
[(0, bar_end - PAD_R)], (bar_row + 0.55, 0.9), color=bar_color
_ax.annotate( # type: ignore
(bar_start + PAD_L + 0.025, bar_row + 1.00),
_ax.grid(True) # type: ignore
_ax.xaxis.set_major_locator(MaxNLocator(integer=True)) # type: ignore
_ax.yaxis.set_major_locator(MaxNLocator(integer=True)) # type: ignore
_ax.set_xlim(0, self._schedule_time) # type: ignore
if row == None:
_ax.set_ylim(0.25, len(self._collection) + 0.75) # type: ignore
else:
pass

Mikael Henriksson
committed
def create_exclusion_graph_from_ports(
self,
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
total_ports: Optional[int] = None,
Create an exclusion graph based on a number of read/write ports.

Mikael Henriksson
committed
read_ports : int
The number of read ports used when splitting process collection based on
memory variable access.

Mikael Henriksson
committed
write_ports : int
The number of write ports used when splitting process collection based on
memory variable access.

Mikael Henriksson
committed
total_ports : int
The total number of ports used when splitting process collection based on
memory variable access.

Mikael Henriksson
committed
Returns
-------
nx.Graph
"""
read_ports, write_ports, total_ports = _sanitize_port_option(
read_ports, write_ports, total_ports
)

Mikael Henriksson
committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Guard for proper read/write port settings
if read_ports != 1 or write_ports != 1:
raise ValueError(
"Splitting with read and write ports not equal to one with the"
" graph coloring heuristic does not make sense."
)
if total_ports not in (1, 2):
raise ValueError(
"Total ports should be either 1 (non-concurrent reads/writes)"
" or 2 (concurrent read/writes) for graph coloring heuristic."
)
# Create new exclusion graph. Nodes are Processes
exclusion_graph = nx.Graph()
exclusion_graph.add_nodes_from(self._collection)
for node1 in exclusion_graph:
for node2 in exclusion_graph:
if node1 == node2:
continue
else:
node1_stop_time = node1.start_time + node1.execution_time
node2_stop_time = node2.start_time + node2.execution_time
if total_ports == 1:
# Single-port assignment
if node1.start_time == node2.start_time:
exclusion_graph.add_edge(node1, node2)
elif node1_stop_time == node2_stop_time:
exclusion_graph.add_edge(node1, node2)
elif node1.start_time == node2_stop_time:
exclusion_graph.add_edge(node1, node2)
elif node1_stop_time == node2.start_time:
exclusion_graph.add_edge(node1, node2)
else:
# Dual-port assignment
if node1.start_time == node2.start_time:
exclusion_graph.add_edge(node1, node2)
elif node1_stop_time == node2_stop_time:
exclusion_graph.add_edge(node1, node2)
return exclusion_graph
def create_exclusion_graph_from_execution_time(self) -> nx.Graph:
"""
Generate exclusion graph based on processes overlapping in time
An nx.Graph exclusion graph where nodes are processes and arcs
between two processes indicated overlap in time
"""
exclusion_graph = nx.Graph()
exclusion_graph.add_nodes_from(self._collection)
for process1 in self._collection:
for process2 in self._collection:
if process1 == process2:
continue
else:
t1 = set(
range(
process1.start_time,
min(
process1.start_time + process1.execution_time,
self._schedule_time,
),
)
).union(
set(
range(
0,
process1.start_time
+ process1.execution_time
- self._schedule_time,
)
min(
process2.start_time + process2.execution_time,
self._schedule_time,
),
)
).union(
set(
range(
0,
process2.start_time
+ process2.execution_time
- self._schedule_time,
)
)
)
if t1.intersection(t2):
exclusion_graph.add_edge(process1, process2)
return exclusion_graph

Mikael Henriksson
committed
def split_execution_time(
self,
heuristic: str = "graph_color",
coloring_strategy: str = "saturation_largest_first",

Mikael Henriksson
committed
) -> Set["ProcessCollection"]:
"""
Split a ProcessCollection based on overlapping execution time.
Parameters
----------
heuristic : {'graph_color', 'left_edge'}, default: 'graph_color'

Mikael Henriksson
committed
The heuristic used when splitting based on execution times.
coloring_strategy : str, default: 'saturation_largest_first'
Node ordering strategy passed to :func:`networkx.coloring.greedy_color`.
This parameter is only considered if *heuristic* is set to 'graph_color'.

Mikael Henriksson
committed
One of
* 'largest_first'
* 'random_sequential'
* 'smallest_last'
* 'independent_set'
* 'connected_sequential_bfs'
* 'connected_sequential_dfs' or 'connected_sequential'
* 'saturation_largest_first' or 'DSATUR'

Mikael Henriksson
committed
Returns
-------
A set of new ProcessCollection objects with the process splitting.
"""
if heuristic == "graph_color":
exclusion_graph = self.create_exclusion_graph_from_execution_time()
coloring = nx.coloring.greedy_color(
exclusion_graph, strategy=coloring_strategy
)
return self._split_from_graph_coloring(coloring)
elif heuristic == "left_edge":
raise NotImplementedError()
else:
raise ValueError(f"Invalid heuristic '{heuristic}'")
def split_ports(
self,
heuristic: str = "graph_color",
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
total_ports: Optional[int] = None,
) -> Set["ProcessCollection"]:
"""
Split this process storage based on concurrent read/write times according to some heuristic.
Parameters
----------
heuristic : str, default: "graph_color"
The heuristic used when splitting this ProcessCollection.
The number of read ports used when splitting process collection based on
memory variable access.
The number of write ports used when splitting process collection based on
memory variable access.
The total number of ports used when splitting process collection based on
memory variable access.
A set of new ProcessCollection objects with the process splitting.
read_ports, write_ports, total_ports = _sanitize_port_option(
read_ports, write_ports, total_ports
)
return self._split_ports_graph_color(read_ports, write_ports, total_ports)

Mikael Henriksson
committed
raise ValueError("Invalid heuristic provided.")

Mikael Henriksson
committed
def _split_ports_graph_color(
self,
read_ports: int,
write_ports: int,
total_ports: int,
coloring_strategy: str = "saturation_largest_first",
) -> Set["ProcessCollection"]:
"""
Parameters
----------

Mikael Henriksson
committed
read_ports : int
The number of read ports used when splitting process collection based on
memory variable access.

Mikael Henriksson
committed
write_ports : int
The number of write ports used when splitting process collection based on
memory variable access.

Mikael Henriksson
committed
total_ports : int
The total number of ports used when splitting process collection based on
memory variable access.
coloring_strategy : str, default: 'saturation_largest_first'
Node ordering strategy passed to :func:`networkx.coloring.greedy_color`

Mikael Henriksson
committed
One of
* 'largest_first'
* 'random_sequential'
* 'smallest_last'
* 'independent_set'
* 'connected_sequential_bfs'
* 'connected_sequential_dfs' or 'connected_sequential'
* 'saturation_largest_first' or 'DSATUR'

Mikael Henriksson
committed
exclusion_graph = self.create_exclusion_graph_from_ports(
read_ports, write_ports, total_ports
)

Mikael Henriksson
committed
# Perform assignment from coloring and return result
coloring = nx.coloring.greedy_color(exclusion_graph, strategy=coloring_strategy)

Mikael Henriksson
committed
return self._split_from_graph_coloring(coloring)
def _split_from_graph_coloring(
self,
coloring: Dict[Process, int],
) -> Set["ProcessCollection"]:
"""
Split :class:`Process` objects into a set of :class:`ProcessesCollection` objects based on a provided graph coloring.
Resulting :class:`ProcessCollection` will have the same schedule time and cyclic
property as self.

Mikael Henriksson
committed
Parameters
----------

Mikael Henriksson
committed
Process->int (color) mappings

Mikael Henriksson
committed
Returns
-------
A set of new ProcessCollections.
"""
process_collection_set_list = [set() for _ in range(max(coloring.values()) + 1)]
process_collection_set_list[color].add(process)
ProcessCollection(process_collection_set, self._schedule_time, self._cyclic)
for process_collection_set in process_collection_set_list
Generate an SVG_ of the resource collection. This is automatically displayed in
e.g. Jupyter Qt console.
self.plot(ax=ax, show_markers=False)
fig.savefig(f, format="svg") # type: ignore
def __repr__(self):
return (
f"ProcessCollection({self._collection}, {self._schedule_time},"
f" {self._cyclic})"
)
def __iter__(self):
return iter(self._collection)
def graph_color_cell_assignment(
self,
coloring_strategy: str = "saturation_largest_first",
) -> Set["ProcessCollection"]:
"""
Perform cell assignment of the processes in this collection using graph coloring with networkx.coloring.greedy_color.
Two or more processes can share a single cell if, and only if, they have no overlaping time alive.
Parameters
----------
coloring_strategy : str, default: "saturation_largest_first"
Graph coloring strategy passed to networkx.coloring.greedy_color().
Returns
-------
A set of ProcessCollection
"""
cell_assignment: Dict[int, ProcessCollection] = dict()
exclusion_graph = self.create_exclusion_graph_from_execution_time()
coloring: Dict[Process, int] = nx.coloring.greedy_color(
exclusion_graph, strategy=coloring_strategy
)
for process, cell in coloring.items():
try:
cell_assignment[cell].add_process(process)
except:
cell_assignment[cell] = ProcessCollection(set(), self._schedule_time)
cell_assignment[cell].add_process(process)
return set(cell_assignment.values())
def left_edge_cell_assignment(self) -> Dict[int, "ProcessCollection"]:
"""
Perform cell assignment of the processes in this collection using the left-edge algorithm.
Two or more processes can share a single cell if, and only if, they have no overlaping time alive.
Returns
-------
Dict[int, ProcessCollection]
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
"""
next_empty_cell = 0
cell_assignment: Dict[int, ProcessCollection] = dict()
for next_process in sorted(self):
insert_to_new_cell = True
for cell in cell_assignment:
insert_to_this_cell = True
for process in cell_assignment[cell]:
next_process_stop_time = (
next_process.start_time + next_process.execution_time
) % self._schedule_time
if (
next_process.start_time
< process.start_time + process.execution_time
or next_process_stop_time < next_process.start_time
and next_process_stop_time > process.start_time
):
insert_to_this_cell = False
break
if insert_to_this_cell:
cell_assignment[cell].add_process(next_process)
insert_to_new_cell = False
break
if insert_to_new_cell:
cell_assignment[next_empty_cell] = ProcessCollection(
collection=set(), schedule_time=self._schedule_time
)
cell_assignment[next_empty_cell].add_process(next_process)
next_empty_cell += 1
return cell_assignment
def generate_memory_based_storage_vhdl(
self,
filename: str,
word_length: int,
assignment: Set['ProcessCollection'],
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
total_ports: Optional[int] = None,
):
"""
Generate VHDL code for memory based storage of processes (MemoryVariables).
Parameters
----------
filename : str
Filename of output file.
word_length: int
Word length of the memory variable objects.
assignment: set
A possible cell assignment to use when generating the memory based storage.
The cell assignment is a dictionary int to ProcessCollection where the integer
corresponds to the cell to assign all MemoryVariables in corresponding process
collection.
If unset, each MemoryVariable will be assigned to a unique single cell.
read_ports : int, optional
The number of read ports used when splitting process collection based on
memory variable access. If total ports in unset, this parameter has to be set
and total_ports is assumed to be read_ports + write_ports.
write_ports : int, optional
The number of write ports used when splitting process collection based on
memory variable access. If total ports is unset, this parameter has to be set
and total_ports is assumed to be read_ports + write_ports.
total_ports : int, optional
The total number of ports used when splitting process collection based on
memory variable access.
# Check that this is a ProcessCollection of (Plain)MemoryVariables
is_memory_variable = all(
isinstance(process, MemoryVariable) for process in self._collection
)
is_plain_memory_variable = all(
isinstance(process, PlainMemoryVariable) for process in self._collection
)
if not (is_memory_variable or is_plain_memory_variable):
raise ValueError(
"HDL can only be generated for ProcessCollection of"
" (Plain)MemoryVariables"
)
# Sanitize port settings
read_ports, write_ports, total_ports = _sanitize_port_option(
read_ports, write_ports, total_ports
)
# Make sure that concurrent reads/writes do not surpass the port setting
for mv in self:
filter_write = lambda p: p.start_time == mv.start_time
filter_read = (
lambda p: (p.start_time + p.execution_time) % self._schedule_time
== mv.start_time + mv.execution_time % self._schedule_time
)
needed_write_ports = len(list(filter(filter_write, self)))
needed_read_ports = len(list(filter(filter_read, self)))
if needed_write_ports > write_ports + 1:
raise ValueError(
f'More than {write_ports} write ports needed ({needed_write_ports})'
' to generate HDL for this ProcessCollection'
if needed_read_ports > read_ports + 1:
raise ValueError(
f'More than {read_ports} read ports needed ({needed_read_ports}) to'
' generate HDL for this ProcessCollection'
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
with open(filename, 'w') as f:
from b_asic.codegen import vhdl
vhdl.common.write_b_asic_vhdl_preamble(f)
vhdl.common.write_ieee_header(f)
vhdl.entity.write_memory_based_architecture(
f, collection=self, word_length=word_length
)
vhdl.architecture.write_memory_based_architecture(
f,
assignment=assignment,
word_length=word_length,
read_ports=read_ports,
write_ports=write_ports,
total_ports=total_ports,
)
def generate_register_based_storage_vhdl(
self,
filename: str,
word_length: int,
assignment: Set['ProcessCollection'],
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
total_ports: Optional[int] = None,
):
"""
Generate VHDL code for register based storages of processes based on the Forward-Backward Register Allocation [1].
[1]: K. Parhi: VLSI Digital Signal Processing Systems: Design and Implementation, Ch. 6.3.2
Parameters
----------
filename : str
Filename of output file.
word_length: int
Word length of the memory variable objects.
assignment: set
A possible cell assignment to use when generating the memory based storage.
The cell assignment is a dictionary int to ProcessCollection where the integer
corresponds to the cell to assign all MemoryVariables in corresponding process
collection.
If unset, each MemoryVariable will be assigned to a unique single cell.
read_ports : int, optional
The number of read ports used when splitting process collection based on
memory variable access. If total ports in unset, this parameter has to be set
and total_ports is assumed to be read_ports + write_ports.
write_ports : int, optional
The number of write ports used when splitting process collection based on
memory variable access. If total ports is unset, this parameter has to be set
and total_ports is assumed to be read_ports + write_ports.
total_ports : int, optional
The total number of ports used when splitting process collection based on
memory variable access.
"""
pass