Skip to content
Snippets Groups Projects
operation.py 34.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • """
    B-ASIC Operation Module.
    
    
    Contains the base for operations that are used by B-ASIC.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    import itertools as it
    
    from abc import abstractmethod
    from numbers import Number
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from typing import (
    
        TYPE_CHECKING,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        Any,
        Dict,
        Iterable,
        List,
        Mapping,
        MutableMapping,
        NewType,
        Optional,
        Sequence,
        Tuple,
        Union,
    )
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.graph_component import (
        AbstractGraphComponent,
        GraphComponent,
        GraphID,
        Name,
    )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.port import InputPort, OutputPort, SignalSourceProvider
    from b_asic.signal import Signal
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    if TYPE_CHECKING:
        # Conditionally imported to avoid circular imports
        from b_asic.core_operations import (
            Addition,
            ConstantMultiplication,
            Division,
    
            Multiplication,
            Subtraction,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        )
        from b_asic.signal_flow_graph import SFG
    
    
    
    ResultKey = NewType("ResultKey", str)
    ResultMap = Mapping[ResultKey, Optional[Number]]
    MutableResultMap = MutableMapping[ResultKey, Optional[Number]]
    DelayMap = Mapping[ResultKey, Number]
    MutableDelayMap = MutableMapping[ResultKey, Number]
    
    class Operation(GraphComponent, SignalSourceProvider):
    
        """
        Operation interface.
    
    
        Operations are graph components that perform a certain function.
    
        They are connected to each other by signals through their input/output
    
        ports.
    
        Operations can be evaluated independently using evaluate_output().
        Operations may specify how to truncate inputs through truncate_input().
    
        """
    
        @abstractmethod
    
        def __add__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
    
            """
            Overloads the addition operator to make it return a new Addition operation
    
            object that is connected to the self and other objects.
            """
            raise NotImplementedError
    
        @abstractmethod
    
        def __radd__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
    
            """
            Overloads the addition operator to make it return a new Addition operation
    
            object that is connected to the self and other objects.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __sub__(
            self, src: Union[SignalSourceProvider, Number]
        ) -> "Subtraction":
    
            """
            Overloads the subtraction operator to make it return a new Subtraction operation
    
            object that is connected to the self and other objects.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __rsub__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> "Subtraction":
    
            """
            Overloads the subtraction operator to make it return a new Subtraction operation
    
            object that is connected to the self and other objects.
            """
    
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __mul__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> Union["Multiplication", "ConstantMultiplication"]:
    
            """
            Overloads the multiplication operator to make it return a new Multiplication operation
    
            object that is connected to the self and other objects. If *src* is a number, then
    
            returns a ConstantMultiplication operation object instead.
            """
    
            raise NotImplementedError
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __rmul__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> Union["Multiplication", "ConstantMultiplication"]:
    
            """
            Overloads the multiplication operator to make it return a new Multiplication operation
            object that is connected to the self and other objects. If *src* is a number, then
    
            returns a ConstantMultiplication operation object instead.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __truediv__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> "Division":
    
            """
            Overloads the division operator to make it return a new Division operation
    
            object that is connected to the self and other objects.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __rtruediv__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> "Division":
    
            """
            Overloads the division operator to make it return a new Division operation
    
            object that is connected to the self and other objects.
            """
            raise NotImplementedError
    
        @abstractmethod
        def __lshift__(self, src: SignalSourceProvider) -> Signal:
    
            """
            Overloads the left shift operator to make it connect the provided signal source
    
            to this operation's input, assuming it has exactly 1 input port.
            Returns the new signal.
            """
            raise NotImplementedError
    
        @property
    
        @abstractmethod
        def input_count(self) -> int:
            """Get the number of input ports."""
            raise NotImplementedError
    
    
        @abstractmethod
        def output_count(self) -> int:
            """Get the number of output ports."""
            raise NotImplementedError
    
        @abstractmethod
    
        def input(self, index: int) -> InputPort:
            """Get the input port at the given index."""
    
            raise NotImplementedError
    
        @abstractmethod
    
        def output(self, index: int) -> OutputPort:
            """Get the output port at the given index."""
    
            raise NotImplementedError
    
    
        @abstractmethod
    
        def inputs(self) -> Sequence[InputPort]:
            """Get all input ports."""
    
            raise NotImplementedError
    
    
        @property
        @abstractmethod
        def outputs(self) -> Sequence[OutputPort]:
            """Get all output ports."""
            raise NotImplementedError
    
        @property
        @abstractmethod
    
        def input_signals(self) -> Sequence[Signal]:
    
            """
            Get all the signals that are connected to this operation's input ports,
    
            in no particular order.
            """
            raise NotImplementedError
    
        @property
    
        @abstractmethod
    
        def output_signals(self) -> Sequence[Signal]:
    
            """
            Get all the signals that are connected to this operation's output ports,
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
        def key(self, index: int, prefix: str = "") -> ResultKey:
    
            """
            Get the key used to access the output of a certain output of this operation
    
            from the output parameter passed to current_output(s) or evaluate_output(s).
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_output(
            self, index: int, delays: Optional[DelayMap] = None, prefix: str = ""
        ) -> Optional[Number]:
    
            """
            Get the current output at the given index of this operation, if available.
    
            The *delays* parameter will be used for lookup.
            The *prefix* parameter will be used as a prefix for the key string when looking for delays.
    
            current_outputs, evaluate_output, evaluate_outputs
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_output(
            self,
            index: int,
            input_values: Sequence[Number],
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
            truncate: bool = True,
        ) -> Number:
    
            """
            Evaluate the output at the given index of this operation with the given input values.
    
            The *results* parameter will be used to store any results (including intermediate results)
    
            for caching.
    
            The *delays* parameter will be used to get the current value of any intermediate delays
    
            that are encountered, and be updated with their new values.
    
            The *prefix* parameter will be used as a prefix for the key string when storing results/delays.
            The *bits_override* parameter specifies a word length override when truncating inputs
    
            which ignores the word length specified by the input signal.
    
            The *truncate* parameter specifies whether input truncation should be enabled in the first
    
            place. If set to False, input values will be used directly without any bit truncation.
    
            See also
            ========
    
            evaluate_outputs, current_output, current_outputs
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_outputs(
            self, delays: Optional[DelayMap] = None, prefix: str = ""
        ) -> Sequence[Optional[Number]]:
    
            """
            Get all current outputs of this operation, if available.
    
            See current_output for more information.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_outputs(
            self,
            input_values: Sequence[Number],
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
            truncate: bool = True,
        ) -> Sequence[Number]:
    
            """
            Evaluate all outputs of this operation given the input values.
    
            See evaluate_output for more information.
            """
            raise NotImplementedError
    
        @abstractmethod
        def split(self) -> Iterable["Operation"]:
    
            """
            Split the operation into multiple operations.
    
            If splitting is not possible, this may return a list containing only the operation itself.
            """
            raise NotImplementedError
    
    
        def to_sfg(self) -> "SFG":
    
            """
            Convert the operation into its corresponding SFG.
    
            If the operation is composed by multiple operations, the operation will be split.
            """
            raise NotImplementedError
    
        @abstractmethod
        def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
    
            """
            Get the input indices of all inputs in this operation whose values are
            required in order to evaluate the output at the given output index.
    
            raise NotImplementedError
    
        @abstractmethod
        def truncate_input(self, index: int, value: Number, bits: int) -> Number:
    
            """
            Truncate the value to be used as input at the given index to a certain bit length.
    
        @property
        @abstractmethod
    
            """
            Get the latency of the operation, which is the longest time it takes from one of
    
            the operations inputport to one of the operations outputport.
            """
            raise NotImplementedError
    
        @property
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def latency_offsets(self) -> Dict[str, int]:
            """
            Get a dictionary with all the operations ports latency-offsets.
    
            """
            raise NotImplementedError
    
        @abstractmethod
        def set_latency(self, latency: int) -> None:
    
            """
            Sets the latency of the operation to the specified integer value  by setting the
    
            latency-offsets of operations input ports to 0 and the latency-offsets of the operations
            output ports to the specified value. The latency cannot be a negative integers.
            """
            raise NotImplementedError
    
        @abstractmethod
        def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None:
    
            """
            Sets the latency-offsets for the operations ports specified in the latency_offsets dictionary.
    
            The latency offsets dictionary should be {'in0': 2, 'out1': 4} if you want to set the latency offset
            for the inport port with index 0 to 2, and the latency offset of the output port with index 1 to 4.
    
            """
            raise NotImplementedError
    
    
        @property
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def execution_time(self) -> Optional[int]:
    
            """
            Get the execution time of the operation, which is the time it takes before the
    
            processing element implementing the operation can be reused for starting another operation.
            """
            raise NotImplementedError
    
        @execution_time.setter
        @abstractmethod
        def execution_time(self, latency: int) -> None:
    
            """
            Sets the execution time of the operation to the specified integer
    
            value. The execution time cannot be a negative integer.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def get_plot_coordinates(
            self,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ) -> Tuple[List[List[float]], List[List[float]]]:
    
            """
            Get a tuple constaining coordinates for the two polygons outlining
    
            the latency and execution time of the operation.
            The polygons are corresponding to a start time of 0 and are of height 1.
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def get_io_coordinates(
            self,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ) -> Tuple[List[List[float]], List[List[float]]]:
    
            """
            Get a tuple constaining coordinates for inputs and outputs, respectively.
    
            These maps to the polygons and are corresponding to a start time of 0
            and height 1.
            """
            raise NotImplementedError
    
    
        @abstractmethod
        def _increase_time_resolution(self, factor: int) -> None:
            raise NotImplementedError
    
        @abstractmethod
        def _decrease_time_resolution(self, factor: int) -> None:
            raise NotImplementedError
    
    
    
    class AbstractOperation(Operation, AbstractGraphComponent):
    
        """
        Generic abstract operation base class.
    
    
        Concrete operations should normally derive from this to get the default
        behavior.
    
        _input_ports: List[InputPort]
        _output_ports: List[OutputPort]
    
    Andreas Bolin's avatar
    Andreas Bolin committed
        _execution_time: Union[int, None] = None
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            input_count: int,
            output_count: int,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            input_sources: Optional[
                Sequence[Optional[SignalSourceProvider]]
            ] = None,
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """
            Construct an operation with the given input/output count.
    
    
            A list of input sources may be specified to automatically connect
            to the input ports.
            If provided, the number of sources must match the number of inputs.
    
            The latency offsets may also be specified to be initialized.
            """
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(Name(name))
    
    
            self._input_ports = [InputPort(self, i) for i in range(input_count)]
            self._output_ports = [OutputPort(self, i) for i in range(output_count)]
    
            # Connect given input sources, if any.
            if input_sources is not None:
                source_count = len(input_sources)
                if source_count != input_count:
                    raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Wrong number of input sources supplied to Operation"
                        f" (expected {input_count}, got {source_count})"
                    )
    
                for i, src in enumerate(input_sources):
                    if src is not None:
                        self._input_ports[i].connect(src.source)
    
    
            # Set specific latency_offsets
            if latency_offsets is not None:
                self.set_latency_offsets(latency_offsets)
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                # Set the latency for all ports initially.
    
                if latency < 0:
                    raise ValueError("Latency cannot be negative")
    
                    if inp.latency_offset is None:
                        inp.latency_offset = 0
    
                    if outp.latency_offset is None:
                        outp.latency_offset = latency
    
            self._execution_time = execution_time
    
    
        @abstractmethod
        def evaluate(self, *inputs) -> Any:  # pylint: disable=arguments-differ
    
            Evaluate the operation and generate a list of output values given a
            list of input values.
    
            raise NotImplementedError
    
    
        def __add__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
            # Import here to avoid circular imports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            from b_asic.core_operations import Addition, Constant
    
            return Addition(
                self, Constant(src) if isinstance(src, Number) else src
            )
    
    
        def __radd__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
            # Import here to avoid circular imports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            from b_asic.core_operations import Addition, Constant
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return Addition(
                Constant(src) if isinstance(src, Number) else src, self
            )
    
        def __sub__(
            self, src: Union[SignalSourceProvider, Number]
        ) -> "Subtraction":
    
            # Import here to avoid circular imports.
            from b_asic.core_operations import Constant, Subtraction
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return Subtraction(
                self, Constant(src) if isinstance(src, Number) else src
            )
    
        def __rsub__(
            self, src: Union[SignalSourceProvider, Number]
        ) -> "Subtraction":
    
            # Import here to avoid circular imports.
            from b_asic.core_operations import Constant, Subtraction
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return Subtraction(
                Constant(src) if isinstance(src, Number) else src, self
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __mul__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> Union["Multiplication", "ConstantMultiplication"]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            from b_asic.core_operations import (
                ConstantMultiplication,
                Multiplication,
            )
    
            return (
                ConstantMultiplication(src, self)
                if isinstance(src, Number)
                else Multiplication(self, src)
            )
    
        def __rmul__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> Union["Multiplication", "ConstantMultiplication"]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            # Import here to avoid circular imports.
            from b_asic.core_operations import (
                ConstantMultiplication,
                Multiplication,
            )
    
            return (
                ConstantMultiplication(src, self)
                if isinstance(src, Number)
                else Multiplication(src, self)
            )
    
        def __truediv__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> "Division":
    
            # Import here to avoid circular imports.
            from b_asic.core_operations import Constant, Division
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return Division(
                self, Constant(src) if isinstance(src, Number) else src
            )
    
        def __rtruediv__(
            self, src: Union[SignalSourceProvider, Number]
    
        ) -> "Division":
    
            # Import here to avoid circular imports.
            from b_asic.core_operations import Constant, Division
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    
            return Division(
                Constant(src) if isinstance(src, Number) else src, self
            )
    
    
        def __lshift__(self, src: SignalSourceProvider) -> Signal:
            if self.input_count != 1:
                diff = "more" if self.input_count > 1 else "less"
                raise TypeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    f"{self.__class__.__name__} cannot be used as a destination"
                    f" because it has {diff} than 1 input"
                )
    
            return self.input(0).connect(src)
    
        def __str__(self) -> str:
            """Get a string representation of this operation."""
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            inputs_dict = {}
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for i, inport in enumerate(self.inputs):
                if inport.signal_count == 0:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    inputs_dict[i] = "-"
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                for signal in inport.signals:
    
                    if signal.source:
                        if signal.source.operation.graph_id:
                            dict_ele.append(signal.source.operation.graph_id)
                        else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
                    else:
                        if signal.graph_id:
                            dict_ele.append(signal.graph_id)
                        else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            outputs_dict = {}
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for i, outport in enumerate(self.outputs):
                if outport.signal_count == 0:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    outputs_dict[i] = "-"
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                for signal in outport.signals:
    
                    if signal.destination:
                        if signal.destination.operation.graph_id:
                            dict_ele.append(signal.destination.operation.graph_id)
                        else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
                    else:
                        if signal.graph_id:
                            dict_ele.append(signal.graph_id)
                        else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return (
                super().__str__()
                + f", \tinputs: {str(inputs_dict)}, \toutputs: {str(outputs_dict)}"
            )
    
        def input_count(self) -> int:
            return len(self._input_ports)
    
    
        def output_count(self) -> int:
            return len(self._output_ports)
    
    
        def input(self, index: int) -> InputPort:
            return self._input_ports[index]
    
        def output(self, index: int) -> OutputPort:
            return self._output_ports[index]
    
    
        @property
    
        def inputs(self) -> Sequence[InputPort]:
            return self._input_ports
    
        @property
        def outputs(self) -> Sequence[OutputPort]:
            return self._output_ports
    
        @property
    
        def input_signals(self) -> Sequence[Signal]:
    
            result = []
            for p in self.inputs:
                for s in p.signals:
                    result.append(s)
            return result
    
        def output_signals(self) -> Sequence[Signal]:
    
            result = []
            for p in self.outputs:
                for s in p.signals:
                    result.append(s)
            return result
    
        def key(self, index: int, prefix: str = "") -> ResultKey:
            key = prefix
            if self.output_count != 1:
                if key:
                    key += "."
                key += str(index)
            elif not key:
                key = str(index)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return ResultKey(key)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_output(
            self, index: int, delays: Optional[DelayMap] = None, prefix: str = ""
        ) -> Optional[Number]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_output(
            self,
            index: int,
            input_values: Sequence[Number],
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
            truncate: bool = True,
        ) -> Number:
    
            if index < 0 or index >= self.output_count:
                raise IndexError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Output index out of range (expected"
                    f" 0-{self.output_count - 1}, got {index})"
                )
    
            if len(input_values) != self.input_count:
                raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Wrong number of input values supplied to operation (expected"
                    f" {self.input_count}, got {len(input_values)})"
                )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                *(
                    self.truncate_inputs(input_values, bits_override)
                    if truncate
                    else input_values
                )
            )
    
            if isinstance(values, collections.abc.Sequence):
                if len(values) != self.output_count:
                    raise RuntimeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Operation evaluated to incorrect number of outputs"
                        f" (expected {self.output_count}, got {len(values)})"
                    )
    
            elif isinstance(values, Number):
                if self.output_count != 1:
                    raise RuntimeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Operation evaluated to incorrect number of outputs"
                        f" (expected {self.output_count}, got 1)"
                    )
    
            else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Operation evaluated to invalid type (expected"
                    f" Sequence/Number, got {values.__class__.__name__})"
                )
    
            if results is not None:
                for i in range(self.output_count):
                    results[self.key(i, prefix)] = values[i]
            return values[index]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_outputs(
            self, delays: Optional[DelayMap] = None, prefix: str = ""
        ) -> Sequence[Optional[Number]]:
            return [
                self.current_output(i, delays, prefix)
                for i in range(self.output_count)
            ]
    
        def evaluate_outputs(
            self,
            input_values: Sequence[Number],
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
            truncate: bool = True,
        ) -> Sequence[Number]:
            return [
                self.evaluate_output(
                    i,
                    input_values,
                    results,
                    delays,
                    prefix,
                    bits_override,
                    truncate,
                )
                for i in range(self.output_count)
            ]
    
        def split(self) -> Iterable[Operation]:
            # Import here to avoid circular imports.
            from b_asic.special_operations import Input
    
            try:
                result = self.evaluate(*([Input()] * self.input_count))
    
                if isinstance(result, collections.abc.Sequence) and all(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    isinstance(e, Operation) for e in result
                ):
    
                    return result
                if isinstance(result, Operation):
                    return [result]
            except TypeError:
                pass
            except ValueError:
                pass
            return [self]
    
        def to_sfg(self) -> "SFG":
    
            # Import here to avoid circular imports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            from b_asic.special_operations import Input, Output
    
            inputs = [Input() for _ in range(self.input_count)]
    
    
            try:
                last_operations = self.evaluate(*inputs)
                if isinstance(last_operations, Operation):
                    last_operations = [last_operations]
                outputs = [Output(o) for o in last_operations]
            except TypeError:
                operation_copy: Operation = self.copy_component()
                inputs = []
                for i in range(self.input_count):
                    _input = Input()
                    operation_copy.input(i).connect(_input)
                    inputs.append(_input)
    
                outputs = [Output(operation_copy)]
    
            return SFG(inputs=inputs, outputs=outputs)
    
        def copy_component(self, *args, **kwargs) -> GraphComponent:
            new_component: Operation = super().copy_component(*args, **kwargs)
            for i, inp in enumerate(self.inputs):
                new_component.input(i).latency_offset = inp.latency_offset
            for i, outp in enumerate(self.outputs):
                new_component.output(i).latency_offset = outp.latency_offset
    
            new_component.execution_time = self._execution_time
    
            return new_component
    
        def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
            if output_index < 0 or output_index >= self.output_count:
                raise IndexError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Output index out of range (expected"
                    f" 0-{self.output_count - 1}, got {output_index})"
                )
    
            # By default, assume each output depends on all inputs.
    
            return list(range(self.input_count))
    
        @property
        def neighbors(self) -> Iterable[GraphComponent]:
            return list(self.input_signals) + list(self.output_signals)
    
        @property
        def preceding_operations(self) -> Iterable[Operation]:
    
            """
            Return an Iterable of all Operations that are connected to this
            Operations input ports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
                signal.source.operation
                for signal in self.input_signals
                if signal.source
            ]
    
    
        @property
        def subsequent_operations(self) -> Iterable[Operation]:
    
            """
            Return an Iterable of all Operations that are connected to this
            Operations output ports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
                signal.destination.operation
                for signal in self.output_signals
                if signal.destination
            ]
    
    
        @property
        def source(self) -> OutputPort:
            if self.output_count != 1:
                diff = "more" if self.output_count > 1 else "less"
                raise TypeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    f"{self.__class__.__name__} cannot be used as an input source"
                    f" because it has {diff} than 1 output"
                )
    
            return self.output(0)
    
        def truncate_input(self, index: int, value: Number, bits: int) -> Number:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return int(value) & ((2**bits) - 1)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def truncate_inputs(
            self,
            input_values: Sequence[Number],
            bits_override: Optional[int] = None,
        ) -> Sequence[Number]:
    
            """
            Truncate the values to be used as inputs to the bit lengths specified
            by the respective signals connected to each input.
    
            args = []
            for i, input_port in enumerate(self.inputs):
                value = input_values[i]
                bits = bits_override
                if bits_override is None and input_port.signal_count >= 1:
                    bits = input_port.signals[0].bits
                if bits_override is not None:
                    if isinstance(value, complex):
                        raise TypeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            "Complex value cannot be truncated to {bits} bits as"
                            " requested by the signal connected to input #{i}"
                        )
    
                    value = self.truncate_input(i, value, bits)
                args.append(value)
            return args
    
        @property
        def latency(self) -> int:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            if None in [inp.latency_offset for inp in self.inputs] or None in [
                outp.latency_offset for outp in self.outputs
            ]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "All native offsets have to set to a non-negative value to"
                    " calculate the latency."
                )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return max(
                (
                    (outp.latency_offset - inp.latency_offset)
                    for outp, inp in it.product(self.outputs, self.inputs)
                )
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def latency_offsets(self) -> Dict[str, int]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency_offsets = {}
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                latency_offsets[f"in{i}"] = inp.latency_offset
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                latency_offsets[f"out{i}"] = outp.latency_offset
    
    
            return latency_offsets
    
        def set_latency(self, latency: int) -> None:
    
            if latency < 0:
                raise ValueError("Latency cannot be negative")
    
            for inport in self.inputs:
                inport.latency_offset = 0
            for outport in self.outputs:
                outport.latency_offset = latency
    
        def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None:
            for port_str, latency_offset in latency_offsets.items():
                port_str = port_str.lower()
                if port_str.startswith("in"):
                    index_str = port_str[2:]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    assert index_str.isdigit(), (
                        "Incorrectly formatted index in string, expected 'in' +"
                        f" index, got: {port_str!r}"
                    )
    
                    self.input(int(index_str)).latency_offset = latency_offset
                elif port_str.startswith("out"):
                    index_str = port_str[3:]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    assert index_str.isdigit(), (
                        "Incorrectly formatted index in string, expected 'out' +"
                        f" index, got: {port_str!r}"
                    )
    
                    self.output(int(index_str)).latency_offset = latency_offset
                else:
                    raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Incorrectly formatted string, expected 'in' + index or"
                        f" 'out' + index, got: {port_str!r}"
                    )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def execution_time(self) -> Optional[int]:
    
            """Execution time of operation."""
    
            return self._execution_time
    
        @execution_time.setter
        def execution_time(self, execution_time: int) -> None:
    
            if execution_time is not None and execution_time < 0:
                raise ValueError("Execution time cannot be negative")
    
            self._execution_time = execution_time
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def _increase_time_resolution(self, factor: int) -> None:
    
            if self._execution_time is not None:
                self._execution_time *= factor
            for port in [*self.inputs, *self.outputs]:
                port.latency_offset *= factor
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def _decrease_time_resolution(self, factor: int) -> None:
    
            if self._execution_time is not None:
                self._execution_time = self._execution_time // factor
            for port in [*self.inputs, *self.outputs]:
                port.latency_offset = port.latency_offset // factor
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def get_plot_coordinates(
            self,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ) -> Tuple[List[List[float]], List[List[float]]]:
            # Doc-string inherited
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return (
                self._get_plot_coordinates_for_latency(),
                self._get_plot_coordinates_for_execution_time(),
            )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def _get_plot_coordinates_for_execution_time(self) -> List[List[float]]:
    
            # Always a rectangle, but easier if coordinates are returned
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            execution_time = self._execution_time  # Copy for type checking
            if execution_time is None:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
                [0, 0],
                [0, 1],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                [execution_time, 1],
                [execution_time, 0],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                [0, 0],
            ]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def _get_plot_coordinates_for_latency(self) -> List[List[float]]:
    
            # Points for latency polygon
            latency = []
            # Remember starting point
            start_point = [self.inputs[0].latency_offset, 0]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            num_in = self.input_count
    
            latency.append(start_point)
            for k in range(1, num_in):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                latency.append([self.inputs[k - 1].latency_offset, k / num_in])
                latency.append([self.inputs[k].latency_offset, k / num_in])
            latency.append([self.inputs[num_in - 1].latency_offset, 1])
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            num_out = self.output_count
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency.append([self.outputs[num_out - 1].latency_offset, 1])
    
            for k in reversed(range(1, num_out)):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                latency.append([self.outputs[k].latency_offset, k / num_out])
                latency.append([self.outputs[k - 1].latency_offset, k / num_out])
    
            latency.append([self.outputs[0].latency_offset, 0])
            # Close the polygon
            latency.append(start_point)