Newer
Older
Angus Lothian
committed
Contains the base for operations that are used by B-ASIC.
Angus Lothian
committed
import collections
from abc import abstractmethod
from numbers import Number
Any,
Dict,
Iterable,
List,
Mapping,
MutableMapping,
NewType,
Optional,
Sequence,
Tuple,
Union,
)
from b_asic.graph_component import (
AbstractGraphComponent,
GraphComponent,
GraphID,
Name,
)
from b_asic.port import InputPort, OutputPort, SignalSourceProvider
from b_asic.signal import Signal
if TYPE_CHECKING:
# Conditionally imported to avoid circular imports
from b_asic.core_operations import (
Addition,
ConstantMultiplication,
Division,
Angus Lothian
committed
ResultKey = NewType("ResultKey", str)
ResultMap = Mapping[ResultKey, Optional[Number]]
MutableResultMap = MutableMapping[ResultKey, Optional[Number]]
DelayMap = Mapping[ResultKey, Number]
MutableDelayMap = MutableMapping[ResultKey, Number]
Angus Lothian
committed
class Operation(GraphComponent, SignalSourceProvider):
Angus Lothian
committed
Operations are graph components that perform a certain function.
They are connected to each other by signals through their input/output
Angus Lothian
committed
ports.
Operations can be evaluated independently using evaluate_output().
Operations may specify how to truncate inputs through truncate_input().
def __add__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
"""
Overloads the addition operator to make it return a new Addition operation
Angus Lothian
committed
object that is connected to the self and other objects.
"""
raise NotImplementedError
@abstractmethod
def __radd__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
"""
Overloads the addition operator to make it return a new Addition operation
Angus Lothian
committed
object that is connected to the self and other objects.
"""
raise NotImplementedError
@abstractmethod
def __sub__(
self, src: Union[SignalSourceProvider, Number]
) -> "Subtraction":
"""
Overloads the subtraction operator to make it return a new Subtraction operation
Angus Lothian
committed
object that is connected to the self and other objects.
"""
raise NotImplementedError
@abstractmethod
def __rsub__(
self, src: Union[SignalSourceProvider, Number]
"""
Overloads the subtraction operator to make it return a new Subtraction operation
Angus Lothian
committed
object that is connected to the self and other objects.
"""
raise NotImplementedError
@abstractmethod
def __mul__(
self, src: Union[SignalSourceProvider, Number]
) -> Union["Multiplication", "ConstantMultiplication"]:
"""
Overloads the multiplication operator to make it return a new Multiplication operation
object that is connected to the self and other objects. If *src* is a number, then
Angus Lothian
committed
returns a ConstantMultiplication operation object instead.
"""
Angus Lothian
committed
@abstractmethod
def __rmul__(
self, src: Union[SignalSourceProvider, Number]
) -> Union["Multiplication", "ConstantMultiplication"]:
"""
Overloads the multiplication operator to make it return a new Multiplication operation
object that is connected to the self and other objects. If *src* is a number, then
Angus Lothian
committed
returns a ConstantMultiplication operation object instead.
"""
raise NotImplementedError
@abstractmethod
def __truediv__(
self, src: Union[SignalSourceProvider, Number]
"""
Overloads the division operator to make it return a new Division operation
Angus Lothian
committed
object that is connected to the self and other objects.
"""
raise NotImplementedError
@abstractmethod
def __rtruediv__(
self, src: Union[SignalSourceProvider, Number]
"""
Overloads the division operator to make it return a new Division operation
Angus Lothian
committed
object that is connected to the self and other objects.
"""
raise NotImplementedError
@abstractmethod
def __lshift__(self, src: SignalSourceProvider) -> Signal:
"""
Overloads the left shift operator to make it connect the provided signal source
Angus Lothian
committed
to this operation's input, assuming it has exactly 1 input port.
Returns the new signal.
"""
raise NotImplementedError
@property
@abstractmethod
def input_count(self) -> int:
"""Get the number of input ports."""
raise NotImplementedError
Angus Lothian
committed
@property
@abstractmethod
def output_count(self) -> int:
"""Get the number of output ports."""
raise NotImplementedError
@abstractmethod
Angus Lothian
committed
def input(self, index: int) -> InputPort:
"""Get the input port at the given index."""
raise NotImplementedError
@abstractmethod
Angus Lothian
committed
def output(self, index: int) -> OutputPort:
"""Get the output port at the given index."""
Angus Lothian
committed
@property
Angus Lothian
committed
def inputs(self) -> Sequence[InputPort]:
"""Get all input ports."""
Angus Lothian
committed
@property
@abstractmethod
def outputs(self) -> Sequence[OutputPort]:
"""Get all output ports."""
raise NotImplementedError
@property
@abstractmethod
"""
Get all the signals that are connected to this operation's input ports,
Angus Lothian
committed
in no particular order.
"""
raise NotImplementedError
@property
"""
Get all the signals that are connected to this operation's output ports,
Angus Lothian
committed
in no particular order.
"""
raise NotImplementedError
@abstractmethod
Angus Lothian
committed
def key(self, index: int, prefix: str = "") -> ResultKey:
"""
Get the key used to access the output of a certain output of this operation
Angus Lothian
committed
from the output parameter passed to current_output(s) or evaluate_output(s).
"""
raise NotImplementedError
@abstractmethod
def current_output(
self, index: int, delays: Optional[DelayMap] = None, prefix: str = ""
) -> Optional[Number]:
"""
Get the current output at the given index of this operation, if available.
The *delays* parameter will be used for lookup.
The *prefix* parameter will be used as a prefix for the key string when looking for delays.
current_outputs, evaluate_output, evaluate_outputs
"""
raise NotImplementedError
@abstractmethod
def evaluate_output(
self,
index: int,
input_values: Sequence[Number],
results: Optional[MutableResultMap] = None,
delays: Optional[MutableDelayMap] = None,
prefix: str = "",
bits_override: Optional[int] = None,
truncate: bool = True,
) -> Number:
"""
Evaluate the output at the given index of this operation with the given input values.
The *results* parameter will be used to store any results (including intermediate results)
The *delays* parameter will be used to get the current value of any intermediate delays
that are encountered, and be updated with their new values.
The *prefix* parameter will be used as a prefix for the key string when storing results/delays.
The *bits_override* parameter specifies a word length override when truncating inputs
which ignores the word length specified by the input signal.
The *truncate* parameter specifies whether input truncation should be enabled in the first
place. If set to False, input values will be used directly without any bit truncation.
evaluate_outputs, current_output, current_outputs
Angus Lothian
committed
"""
raise NotImplementedError
@abstractmethod
def current_outputs(
self, delays: Optional[DelayMap] = None, prefix: str = ""
) -> Sequence[Optional[Number]]:
"""
Get all current outputs of this operation, if available.
Angus Lothian
committed
See current_output for more information.
"""
raise NotImplementedError
@abstractmethod
def evaluate_outputs(
self,
input_values: Sequence[Number],
results: Optional[MutableResultMap] = None,
delays: Optional[MutableDelayMap] = None,
prefix: str = "",
bits_override: Optional[int] = None,
truncate: bool = True,
) -> Sequence[Number]:
"""
Evaluate all outputs of this operation given the input values.
Angus Lothian
committed
See evaluate_output for more information.
"""
raise NotImplementedError
@abstractmethod
def split(self) -> Iterable["Operation"]:
"""
Split the operation into multiple operations.
If splitting is not possible, this may return a list containing only the operation itself.
"""
raise NotImplementedError
Angus Lothian
committed
@abstractmethod
"""
Convert the operation into its corresponding SFG.
Angus Lothian
committed
If the operation is composed by multiple operations, the operation will be split.
"""
raise NotImplementedError
@abstractmethod
def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
"""
Get the input indices of all inputs in this operation whose values are
required in order to evaluate the output at the given output index.
Angus Lothian
committed
raise NotImplementedError
@abstractmethod
def truncate_input(self, index: int, value: Number, bits: int) -> Number:
"""
Truncate the value to be used as input at the given index to a certain bit length.
Angus Lothian
committed
raise NotImplementedError
Angus Lothian
committed
def latency(self) -> int:
"""
Get the latency of the operation, which is the longest time it takes from one of
Angus Lothian
committed
the operations inputport to one of the operations outputport.
"""
raise NotImplementedError
@property
@abstractmethod
def latency_offsets(self) -> Dict[str, int]:
"""
Get a dictionary with all the operations ports latency-offsets.
Angus Lothian
committed
"""
raise NotImplementedError
@abstractmethod
def set_latency(self, latency: int) -> None:
"""
Sets the latency of the operation to the specified integer value by setting the
Angus Lothian
committed
latency-offsets of operations input ports to 0 and the latency-offsets of the operations
output ports to the specified value. The latency cannot be a negative integers.
"""
raise NotImplementedError
@abstractmethod
def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None:
"""
Sets the latency-offsets for the operations ports specified in the latency_offsets dictionary.
Angus Lothian
committed
The latency offsets dictionary should be {'in0': 2, 'out1': 4} if you want to set the latency offset
for the inport port with index 0 to 2, and the latency offset of the output port with index 1 to 4.
"""
Get the execution time of the operation, which is the time it takes before the
processing element implementing the operation can be reused for starting another operation.
"""
raise NotImplementedError
@execution_time.setter
@abstractmethod
def execution_time(self, latency: int) -> None:
"""
Sets the execution time of the operation to the specified integer
value. The execution time cannot be a negative integer.
"""
raise NotImplementedError
@abstractmethod
"""
Get a tuple constaining coordinates for the two polygons outlining
the latency and execution time of the operation.
The polygons are corresponding to a start time of 0 and are of height 1.
"""
raise NotImplementedError
@abstractmethod
"""
Get a tuple constaining coordinates for inputs and outputs, respectively.
These maps to the polygons and are corresponding to a start time of 0
and height 1.
"""
raise NotImplementedError
@abstractmethod
def _increase_time_resolution(self, factor: int) -> None:
raise NotImplementedError
@abstractmethod
def _decrease_time_resolution(self, factor: int) -> None:
raise NotImplementedError
class AbstractOperation(Operation, AbstractGraphComponent):
"""
Generic abstract operation base class.
Angus Lothian
committed
Concrete operations should normally derive from this to get the default
behavior.
Angus Lothian
committed
_input_ports: List[InputPort]
_output_ports: List[OutputPort]
def __init__(
self,
input_count: int,
output_count: int,
input_sources: Optional[
Sequence[Optional[SignalSourceProvider]]
] = None,
latency: Optional[int] = None,
latency_offsets: Optional[Dict[str, int]] = None,
execution_time: Optional[int] = None,
"""
Construct an operation with the given input/output count.
Angus Lothian
committed
A list of input sources may be specified to automatically connect
to the input ports.
If provided, the number of sources must match the number of inputs.
The latency offsets may also be specified to be initialized.
"""
Angus Lothian
committed
self._input_ports = [InputPort(self, i) for i in range(input_count)]
self._output_ports = [OutputPort(self, i) for i in range(output_count)]
# Connect given input sources, if any.
if input_sources is not None:
source_count = len(input_sources)
if source_count != input_count:
raise ValueError(
"Wrong number of input sources supplied to Operation"
f" (expected {input_count}, got {source_count})"
)
Angus Lothian
committed
for i, src in enumerate(input_sources):
if src is not None:
self._input_ports[i].connect(src.source)
# Set specific latency_offsets
if latency_offsets is not None:
self.set_latency_offsets(latency_offsets)
Angus Lothian
committed
if latency is not None:
if latency < 0:
raise ValueError("Latency cannot be negative")
Angus Lothian
committed
for inp in self.inputs:
if inp.latency_offset is None:
inp.latency_offset = 0
Angus Lothian
committed
for outp in self.outputs:
if outp.latency_offset is None:
outp.latency_offset = latency
@abstractmethod
def evaluate(self, *inputs) -> Any: # pylint: disable=arguments-differ
Evaluate the operation and generate a list of output values given a
list of input values.
Angus Lothian
committed
def __add__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
# Import here to avoid circular imports.
from b_asic.core_operations import Addition, Constant
return Addition(
self, Constant(src) if isinstance(src, Number) else src
)
Angus Lothian
committed
def __radd__(self, src: Union[SignalSourceProvider, Number]) -> "Addition":
# Import here to avoid circular imports.
from b_asic.core_operations import Addition, Constant
Angus Lothian
committed
return Addition(
Constant(src) if isinstance(src, Number) else src, self
)
def __sub__(
self, src: Union[SignalSourceProvider, Number]
) -> "Subtraction":
Angus Lothian
committed
# Import here to avoid circular imports.
from b_asic.core_operations import Constant, Subtraction
return Subtraction(
self, Constant(src) if isinstance(src, Number) else src
)
def __rsub__(
self, src: Union[SignalSourceProvider, Number]
) -> "Subtraction":
Angus Lothian
committed
# Import here to avoid circular imports.
from b_asic.core_operations import Constant, Subtraction
return Subtraction(
Constant(src) if isinstance(src, Number) else src, self
)
def __mul__(
self, src: Union[SignalSourceProvider, Number]
) -> Union["Multiplication", "ConstantMultiplication"]:
Angus Lothian
committed
# Import here to avoid circular imports.
from b_asic.core_operations import (
ConstantMultiplication,
Multiplication,
)
return (
ConstantMultiplication(src, self)
if isinstance(src, Number)
else Multiplication(self, src)
)
def __rmul__(
self, src: Union[SignalSourceProvider, Number]
) -> Union["Multiplication", "ConstantMultiplication"]:
# Import here to avoid circular imports.
from b_asic.core_operations import (
ConstantMultiplication,
Multiplication,
)
return (
ConstantMultiplication(src, self)
if isinstance(src, Number)
else Multiplication(src, self)
)
def __truediv__(
self, src: Union[SignalSourceProvider, Number]
Angus Lothian
committed
# Import here to avoid circular imports.
from b_asic.core_operations import Constant, Division
return Division(
self, Constant(src) if isinstance(src, Number) else src
)
def __rtruediv__(
self, src: Union[SignalSourceProvider, Number]
Angus Lothian
committed
# Import here to avoid circular imports.
from b_asic.core_operations import Constant, Division
return Division(
Constant(src) if isinstance(src, Number) else src, self
)
Angus Lothian
committed
def __lshift__(self, src: SignalSourceProvider) -> Signal:
if self.input_count != 1:
diff = "more" if self.input_count > 1 else "less"
raise TypeError(
f"{self.__class__.__name__} cannot be used as a destination"
f" because it has {diff} than 1 input"
)
Angus Lothian
committed
return self.input(0).connect(src)
def __str__(self) -> str:
"""Get a string representation of this operation."""
for i, inport in enumerate(self.inputs):
if inport.signal_count == 0:
Angus Lothian
committed
break
dict_ele = []
Angus Lothian
committed
if signal.source:
if signal.source.operation.graph_id:
dict_ele.append(signal.source.operation.graph_id)
else:
Angus Lothian
committed
else:
if signal.graph_id:
dict_ele.append(signal.graph_id)
else:
Angus Lothian
committed
inputs_dict[i] = dict_ele
for i, outport in enumerate(self.outputs):
if outport.signal_count == 0:
Angus Lothian
committed
break
dict_ele = []
Angus Lothian
committed
if signal.destination:
if signal.destination.operation.graph_id:
dict_ele.append(signal.destination.operation.graph_id)
else:
Angus Lothian
committed
else:
if signal.graph_id:
dict_ele.append(signal.graph_id)
else:
Angus Lothian
committed
outputs_dict[i] = dict_ele
return (
super().__str__()
+ f", \tinputs: {str(inputs_dict)}, \toutputs: {str(outputs_dict)}"
)
Angus Lothian
committed
@property
def input_count(self) -> int:
return len(self._input_ports)
Angus Lothian
committed
@property
def output_count(self) -> int:
return len(self._output_ports)
Angus Lothian
committed
def input(self, index: int) -> InputPort:
return self._input_ports[index]
def output(self, index: int) -> OutputPort:
return self._output_ports[index]
Angus Lothian
committed
def inputs(self) -> Sequence[InputPort]:
return self._input_ports
Angus Lothian
committed
@property
def outputs(self) -> Sequence[OutputPort]:
return self._output_ports
@property
Angus Lothian
committed
result = []
for p in self.inputs:
for s in p.signals:
result.append(s)
return result
Angus Lothian
committed
@property
Angus Lothian
committed
result = []
for p in self.outputs:
for s in p.signals:
result.append(s)
return result
def key(self, index: int, prefix: str = "") -> ResultKey:
key = prefix
if self.output_count != 1:
if key:
key += "."
key += str(index)
elif not key:
key = str(index)
Angus Lothian
committed
def current_output(
self, index: int, delays: Optional[DelayMap] = None, prefix: str = ""
) -> Optional[Number]:
Angus Lothian
committed
return None
def evaluate_output(
self,
index: int,
input_values: Sequence[Number],
results: Optional[MutableResultMap] = None,
delays: Optional[MutableDelayMap] = None,
prefix: str = "",
bits_override: Optional[int] = None,
truncate: bool = True,
) -> Number:
Angus Lothian
committed
if index < 0 or index >= self.output_count:
raise IndexError(
"Output index out of range (expected"
f" 0-{self.output_count - 1}, got {index})"
)
Angus Lothian
committed
if len(input_values) != self.input_count:
raise ValueError(
"Wrong number of input values supplied to operation (expected"
f" {self.input_count}, got {len(input_values)})"
)
Angus Lothian
committed
values = self.evaluate(
*(
self.truncate_inputs(input_values, bits_override)
if truncate
else input_values
)
)
Angus Lothian
committed
if isinstance(values, collections.abc.Sequence):
if len(values) != self.output_count:
raise RuntimeError(
"Operation evaluated to incorrect number of outputs"
f" (expected {self.output_count}, got {len(values)})"
)
Angus Lothian
committed
elif isinstance(values, Number):
if self.output_count != 1:
raise RuntimeError(
"Operation evaluated to incorrect number of outputs"
f" (expected {self.output_count}, got 1)"
)
Angus Lothian
committed
values = (values,)
Angus Lothian
committed
raise RuntimeError(
"Operation evaluated to invalid type (expected"
f" Sequence/Number, got {values.__class__.__name__})"
)
Angus Lothian
committed
if results is not None:
for i in range(self.output_count):
results[self.key(i, prefix)] = values[i]
return values[index]
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
def current_outputs(
self, delays: Optional[DelayMap] = None, prefix: str = ""
) -> Sequence[Optional[Number]]:
return [
self.current_output(i, delays, prefix)
for i in range(self.output_count)
]
def evaluate_outputs(
self,
input_values: Sequence[Number],
results: Optional[MutableResultMap] = None,
delays: Optional[MutableDelayMap] = None,
prefix: str = "",
bits_override: Optional[int] = None,
truncate: bool = True,
) -> Sequence[Number]:
return [
self.evaluate_output(
i,
input_values,
results,
delays,
prefix,
bits_override,
truncate,
)
for i in range(self.output_count)
]
Angus Lothian
committed
def split(self) -> Iterable[Operation]:
# Import here to avoid circular imports.
from b_asic.special_operations import Input
Angus Lothian
committed
try:
result = self.evaluate(*([Input()] * self.input_count))
if isinstance(result, collections.abc.Sequence) and all(
Angus Lothian
committed
return result
if isinstance(result, Operation):
return [result]
except TypeError:
pass
except ValueError:
pass
return [self]
Angus Lothian
committed
from b_asic.signal_flow_graph import SFG
Angus Lothian
committed
inputs = [Input() for _ in range(self.input_count)]
Angus Lothian
committed
try:
last_operations = self.evaluate(*inputs)
if isinstance(last_operations, Operation):
last_operations = [last_operations]
outputs = [Output(o) for o in last_operations]
except TypeError:
operation_copy: Operation = self.copy_component()
inputs = []
for i in range(self.input_count):
_input = Input()
operation_copy.input(i).connect(_input)
inputs.append(_input)
outputs = [Output(operation_copy)]
return SFG(inputs=inputs, outputs=outputs)
def copy_component(self, *args, **kwargs) -> GraphComponent:
new_component: Operation = super().copy_component(*args, **kwargs)
for i, inp in enumerate(self.inputs):
new_component.input(i).latency_offset = inp.latency_offset
for i, outp in enumerate(self.outputs):
new_component.output(i).latency_offset = outp.latency_offset
new_component.execution_time = self._execution_time
Angus Lothian
committed
return new_component
def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
if output_index < 0 or output_index >= self.output_count:
raise IndexError(
"Output index out of range (expected"
f" 0-{self.output_count - 1}, got {output_index})"
)
Angus Lothian
committed
# By default, assume each output depends on all inputs.
Angus Lothian
committed
@property
def neighbors(self) -> Iterable[GraphComponent]:
return list(self.input_signals) + list(self.output_signals)
Angus Lothian
committed
@property
def preceding_operations(self) -> Iterable[Operation]:
"""
Return an Iterable of all Operations that are connected to this
Operations input ports.
return [
signal.source.operation
for signal in self.input_signals
if signal.source
]
Angus Lothian
committed
@property
def subsequent_operations(self) -> Iterable[Operation]:
"""
Return an Iterable of all Operations that are connected to this
Operations output ports.
return [
signal.destination.operation
for signal in self.output_signals
if signal.destination
]
Angus Lothian
committed
@property
def source(self) -> OutputPort:
if self.output_count != 1:
diff = "more" if self.output_count > 1 else "less"
raise TypeError(
f"{self.__class__.__name__} cannot be used as an input source"
f" because it has {diff} than 1 output"
)
Angus Lothian
committed
return self.output(0)
def truncate_input(self, index: int, value: Number, bits: int) -> Number:
Angus Lothian
committed
def truncate_inputs(
self,
input_values: Sequence[Number],
bits_override: Optional[int] = None,
) -> Sequence[Number]:
"""
Truncate the values to be used as inputs to the bit lengths specified
by the respective signals connected to each input.
Angus Lothian
committed
args = []
for i, input_port in enumerate(self.inputs):
value = input_values[i]
bits = bits_override
if bits_override is None and input_port.signal_count >= 1:
bits = input_port.signals[0].bits
if bits_override is not None:
if isinstance(value, complex):
raise TypeError(
"Complex value cannot be truncated to {bits} bits as"
" requested by the signal connected to input #{i}"
)
Angus Lothian
committed
value = self.truncate_input(i, value, bits)
args.append(value)
return args
@property
def latency(self) -> int:
if None in [inp.latency_offset for inp in self.inputs] or None in [
outp.latency_offset for outp in self.outputs
]:
Angus Lothian
committed
raise ValueError(
"All native offsets have to set to a non-negative value to"
" calculate the latency."
)
Angus Lothian
committed
return max(
(
(outp.latency_offset - inp.latency_offset)
for outp, inp in it.product(self.outputs, self.inputs)
)
)
Angus Lothian
committed
@property
Angus Lothian
committed
for i, inp in enumerate(self.inputs):
Angus Lothian
committed
for i, outp in enumerate(self.outputs):
latency_offsets[f"out{i}"] = outp.latency_offset
Angus Lothian
committed
return latency_offsets
def set_latency(self, latency: int) -> None:
if latency < 0:
raise ValueError("Latency cannot be negative")
Angus Lothian
committed
for inport in self.inputs:
inport.latency_offset = 0
for outport in self.outputs:
outport.latency_offset = latency
def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None:
for port_str, latency_offset in latency_offsets.items():
port_str = port_str.lower()
if port_str.startswith("in"):
index_str = port_str[2:]
assert index_str.isdigit(), (
"Incorrectly formatted index in string, expected 'in' +"
f" index, got: {port_str!r}"
)
Angus Lothian
committed
self.input(int(index_str)).latency_offset = latency_offset
elif port_str.startswith("out"):
index_str = port_str[3:]
assert index_str.isdigit(), (
"Incorrectly formatted index in string, expected 'out' +"
f" index, got: {port_str!r}"
)
Angus Lothian
committed
self.output(int(index_str)).latency_offset = latency_offset
else:
raise ValueError(
"Incorrectly formatted string, expected 'in' + index or"
f" 'out' + index, got: {port_str!r}"
)
"""Execution time of operation."""
return self._execution_time
@execution_time.setter
def execution_time(self, execution_time: int) -> None:
if execution_time is not None and execution_time < 0:
raise ValueError("Execution time cannot be negative")
self._execution_time = execution_time
def _increase_time_resolution(self, factor: int) -> None:
if self._execution_time is not None:
self._execution_time *= factor
for port in [*self.inputs, *self.outputs]:
port.latency_offset *= factor
def _decrease_time_resolution(self, factor: int) -> None:
if self._execution_time is not None:
self._execution_time = self._execution_time // factor
for port in [*self.inputs, *self.outputs]:
port.latency_offset = port.latency_offset // factor
) -> Tuple[List[List[float]], List[List[float]]]:
# Doc-string inherited
return (
self._get_plot_coordinates_for_latency(),
self._get_plot_coordinates_for_execution_time(),
)
def _get_plot_coordinates_for_execution_time(self) -> List[List[float]]:
# Always a rectangle, but easier if coordinates are returned
execution_time = self._execution_time # Copy for type checking
if execution_time is None:
def _get_plot_coordinates_for_latency(self) -> List[List[float]]:
# Points for latency polygon
latency = []
# Remember starting point
start_point = [self.inputs[0].latency_offset, 0]
latency.append(start_point)
for k in range(1, num_in):
latency.append([self.inputs[k - 1].latency_offset, k / num_in])
latency.append([self.inputs[k].latency_offset, k / num_in])
latency.append([self.inputs[num_in - 1].latency_offset, 1])
latency.append([self.outputs[num_out - 1].latency_offset, 1])
for k in reversed(range(1, num_out)):
latency.append([self.outputs[k].latency_offset, k / num_out])
latency.append([self.outputs[k - 1].latency_offset, k / num_out])
latency.append([self.outputs[0].latency_offset, 0])
# Close the polygon
latency.append(start_point)