Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#define NOMINMAX
#include "compile.h"
#include "../algorithm.h"
#include "../debug.h"
#include "../span.h"
#include "format_code.h"
#include <Python.h>
#include <fmt/format.h>
#include <limits>
#include <optional>
#include <string_view>
#include <tuple>
#include <unordered_map>
#include <utility>
namespace py = pybind11;
namespace asic {
[[nodiscard]] static result_key key_base(py::handle op, std::string_view prefix) {
auto const graph_id = op.attr("graph_id").cast<std::string_view>();
return (prefix.empty()) ? result_key{graph_id} : fmt::format("{}.{}", prefix, graph_id);
}
[[nodiscard]] static result_key key_of_output(py::handle op, std::size_t output_index, std::string_view prefix) {
auto const base = key_base(op, prefix);
if (base.empty()) {
return fmt::to_string(output_index);
}
if (op.attr("output_count").cast<std::size_t>() == 1) {
return base;
}
return fmt::format("{}.{}", base, output_index);
}
class compiler final {
public:
simulation_code compile(py::handle sfg) {
ASIC_DEBUG_MSG("Compiling code...");
this->initialize_code(sfg.attr("input_count").cast<std::size_t>(), sfg.attr("output_count").cast<std::size_t>());
auto deferred_delays = delay_queue{};
this->add_outputs(sfg, deferred_delays);
this->add_deferred_delays(std::move(deferred_delays));
this->resolve_invalid_result_indices();
ASIC_DEBUG_MSG("Compiled code:\n{}\n", format_compiled_simulation_code(m_code));
return std::move(m_code);
}
private:
struct sfg_info final {
py::handle sfg;
std::size_t prefix_length;
sfg_info(py::handle sfg, std::size_t prefix_length)
: sfg(sfg)
, prefix_length(prefix_length) {}
[[nodiscard]] std::size_t find_input_operation_index(py::handle op) const {
for (auto const& [i, in] : enumerate(sfg.attr("input_operations"))) {
if (in.is(op)) {
return i;
}
}
throw py::value_error{"Stray Input operation in simulation SFG"};
}
};
using sfg_info_stack = std::vector<sfg_info>;
using delay_queue = std::vector<std::tuple<std::size_t, py::handle, std::string, sfg_info_stack>>;
using added_output_cache = std::unordered_set<PyObject const*>;
using added_result_cache = std::unordered_map<PyObject const*, result_index_t>;
using added_custom_operation_cache = std::unordered_map<PyObject const*, std::size_t>;
static constexpr auto no_result_index = std::numeric_limits<result_index_t>::max();
void initialize_code(std::size_t input_count, std::size_t output_count) {
m_code.required_stack_size = 0;
m_code.input_count = input_count;
m_code.output_count = output_count;
}
void add_outputs(py::handle sfg, delay_queue& deferred_delays) {
for (auto const i : range(m_code.output_count)) {
this->add_operation_output(sfg, i, std::string_view{}, sfg_info_stack{}, deferred_delays);
}
}
void add_deferred_delays(delay_queue&& deferred_delays) {
while (!deferred_delays.empty()) {
auto new_deferred_delays = delay_queue{};
for (auto const& [delay_index, op, prefix, sfg_stack] : deferred_delays) {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
this->add_instruction(instruction_type::update_delay, no_result_index, -1).index = delay_index;
}
deferred_delays = new_deferred_delays;
}
}
void resolve_invalid_result_indices() {
for (auto& instruction : m_code.instructions) {
if (instruction.result_index == no_result_index) {
instruction.result_index = static_cast<result_index_t>(m_code.result_keys.size());
}
}
}
[[nodiscard]] static sfg_info_stack push_sfg(sfg_info_stack const& sfg_stack, py::handle sfg, std::size_t prefix_length) {
auto const new_size = static_cast<std::size_t>(sfg_stack.size() + 1);
auto new_sfg_stack = sfg_info_stack{};
new_sfg_stack.reserve(new_size);
for (auto const& info : sfg_stack) {
new_sfg_stack.push_back(info);
}
new_sfg_stack.emplace_back(sfg, prefix_length);
return new_sfg_stack;
}
[[nodiscard]] static sfg_info_stack pop_sfg(sfg_info_stack const& sfg_stack) {
ASIC_ASSERT(!sfg_stack.empty());
auto const new_size = static_cast<std::size_t>(sfg_stack.size() - 1);
auto new_sfg_stack = sfg_info_stack{};
new_sfg_stack.reserve(new_size);
for (auto const& info : span{sfg_stack}.first(new_size)) {
new_sfg_stack.push_back(info);
}
return new_sfg_stack;
}
instruction& add_instruction(instruction_type type, result_index_t result_index, std::ptrdiff_t stack_diff) {
m_stack_depth += stack_diff;
if (m_stack_depth < 0) {
throw py::value_error{"Detected input/output count mismatch in simulation SFG"};
}
if (auto const stack_size = static_cast<std::size_t>(m_stack_depth); stack_size > m_code.required_stack_size) {
m_code.required_stack_size = stack_size;
}
auto& instruction = m_code.instructions.emplace_back();
instruction.type = type;
instruction.result_index = result_index;
return instruction;
}
[[nodiscard]] std::optional<result_index_t> begin_operation_output(py::handle op, std::size_t output_index, std::string_view prefix) {
auto const pointer = op.attr("outputs")[py::int_{output_index}].ptr();
if (m_incomplete_outputs.count(pointer) != 0) {
// Make sure the output doesn't depend on its own value, unless it's a delay operation.
if (op.attr("type_name")().cast<std::string_view>() != "t") {
throw py::value_error{"Direct feedback loop detected in simulation SFG"};
}
}
// Try to add a new result.
auto const [it, inserted] = m_added_results.try_emplace(pointer, static_cast<result_index_t>(m_code.result_keys.size()));
if (inserted) {
if (m_code.result_keys.size() >= static_cast<std::size_t>(std::numeric_limits<result_index_t>::max())) {
throw py::value_error{fmt::format("Simulation SFG requires too many outputs to be stored (limit: {})",
std::numeric_limits<result_index_t>::max())};
}
m_code.result_keys.push_back(key_of_output(op, output_index, prefix));
m_incomplete_outputs.insert(pointer);
return it->second;
}
// If the result has already been added, we re-use the old result and
// return std::nullopt to indicate that we don't need to add all the required instructions again.
this->add_instruction(instruction_type::push_result, it->second, 1).index = static_cast<std::size_t>(it->second);
return std::nullopt;
}
void end_operation_output(py::handle op, std::size_t output_index) {
auto const pointer = op.attr("outputs")[py::int_{output_index}].ptr();
[[maybe_unused]] auto const erased = m_incomplete_outputs.erase(pointer);
ASIC_ASSERT(erased == 1);
}
[[nodiscard]] std::size_t try_add_custom_operation(py::handle op) {
auto const [it, inserted] = m_added_custom_operations.try_emplace(op.ptr(), m_added_custom_operations.size());
if (inserted) {
auto& custom_operation = m_code.custom_operations.emplace_back();
custom_operation.evaluate_output = op.attr("evaluate_output");
custom_operation.input_count = op.attr("input_count").cast<std::size_t>();
custom_operation.output_count = op.attr("output_count").cast<std::size_t>();
}
return it->second;
}
[[nodiscard]] std::size_t add_delay_info(number initial_value, result_index_t result_index) {
auto const delay_index = m_code.delays.size();
auto& delay = m_code.delays.emplace_back();
delay.initial_value = initial_value;
delay.result_index = result_index;
return delay_index;
}
void add_source(py::handle op, std::size_t input_index, std::string_view prefix, sfg_info_stack const& sfg_stack,
delay_queue& deferred_delays) {
auto const signal = py::object{op.attr("inputs")[py::int_{input_index}].attr("signals")[py::int_{0}]};
auto const src = py::handle{signal.attr("source")};
auto const operation = py::handle{src.attr("operation")};
auto const index = src.attr("index").cast<std::size_t>();
this->add_operation_output(operation, index, prefix, sfg_stack, deferred_delays);
if (!signal.attr("bits").is_none()) {
auto const bits = signal.attr("bits").cast<std::size_t>();
if (bits > 64) {
throw py::value_error{"Cannot truncate to more than 64 bits"};
}
this->add_instruction(instruction_type::truncate, no_result_index, 0).bit_mask = static_cast<std::int64_t>(std::int64_t{1}
<< bits);
}
}
void add_unary_operation_output(py::handle op, result_index_t result_index, std::string_view prefix, sfg_info_stack const& sfg_stack,
delay_queue& deferred_delays, instruction_type type) {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
this->add_instruction(type, result_index, 0);
}
void add_binary_operation_output(py::handle op, result_index_t result_index, std::string_view prefix, sfg_info_stack const& sfg_stack,
delay_queue& deferred_delays, instruction_type type) {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
this->add_source(op, 1, prefix, sfg_stack, deferred_delays);
this->add_instruction(type, result_index, -1);
}
void add_operation_output(py::handle op, std::size_t output_index, std::string_view prefix, sfg_info_stack const& sfg_stack,
delay_queue& deferred_delays) {
auto const type_name = op.attr("type_name")().cast<std::string_view>();
if (type_name == "out") {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
} else if (auto const result_index = this->begin_operation_output(op, output_index, prefix)) {
if (type_name == "c") {
this->add_instruction(instruction_type::push_constant, *result_index, 1).value = op.attr("value").cast<number>();
} else if (type_name == "add") {
this->add_binary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::addition);
} else if (type_name == "sub") {
this->add_binary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::subtraction);
} else if (type_name == "mul") {
this->add_binary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::multiplication);
} else if (type_name == "div") {
this->add_binary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::division);
} else if (type_name == "min") {
this->add_binary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::min);
} else if (type_name == "max") {
this->add_binary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::max);
} else if (type_name == "sqrt") {
this->add_unary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::square_root);
} else if (type_name == "conj") {
this->add_unary_operation_output(
op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::complex_conjugate);
} else if (type_name == "abs") {
this->add_unary_operation_output(op, *result_index, prefix, sfg_stack, deferred_delays, instruction_type::absolute);
} else if (type_name == "cmul") {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
this->add_instruction(instruction_type::constant_multiplication, *result_index, 0).value = op.attr("value").cast<number>();
} else if (type_name == "bfly") {
if (output_index == 0) {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
this->add_source(op, 1, prefix, sfg_stack, deferred_delays);
this->add_instruction(instruction_type::addition, *result_index, -1);
} else {
this->add_source(op, 0, prefix, sfg_stack, deferred_delays);
this->add_source(op, 1, prefix, sfg_stack, deferred_delays);
this->add_instruction(instruction_type::subtraction, *result_index, -1);
}
} else if (type_name == "in") {
if (sfg_stack.empty()) {
throw py::value_error{"Encountered Input operation outside SFG in simulation"};
}
auto const& info = sfg_stack.back();
auto const input_index = info.find_input_operation_index(op);
if (sfg_stack.size() == 1) {
this->add_instruction(instruction_type::push_input, *result_index, 1).index = input_index;
} else {
this->add_source(info.sfg, input_index, prefix.substr(0, info.prefix_length), pop_sfg(sfg_stack), deferred_delays);
this->add_instruction(instruction_type::forward_value, *result_index, 0);
}
} else if (type_name == "t") {
auto const delay_index = this->add_delay_info(op.attr("initial_value").cast<number>(), *result_index);
deferred_delays.emplace_back(delay_index, op, std::string{prefix}, sfg_stack);
this->add_instruction(instruction_type::push_delay, *result_index, 1).index = delay_index;
} else if (type_name == "sfg") {
auto const output_op = py::handle{op.attr("output_operations")[py::int_{output_index}]};
this->add_source(output_op, 0, key_base(op, prefix), push_sfg(sfg_stack, op, prefix.size()), deferred_delays);
this->add_instruction(instruction_type::forward_value, *result_index, 0);
} else {
auto const custom_operation_index = this->try_add_custom_operation(op);
auto const& custom_operation = m_code.custom_operations[custom_operation_index];
for (auto const i : range(custom_operation.input_count)) {
this->add_source(op, i, prefix, sfg_stack, deferred_delays);
}
auto const custom_source_index = m_code.custom_sources.size();
auto& custom_source = m_code.custom_sources.emplace_back();
custom_source.custom_operation_index = custom_operation_index;
custom_source.output_index = output_index;
auto const stack_diff = std::ptrdiff_t{1} - static_cast<std::ptrdiff_t>(custom_operation.input_count);
this->add_instruction(instruction_type::custom, *result_index, stack_diff).index = custom_source_index;
}
this->end_operation_output(op, output_index);
}
}
simulation_code m_code;
added_output_cache m_incomplete_outputs;
added_result_cache m_added_results;
added_custom_operation_cache m_added_custom_operations;
std::ptrdiff_t m_stack_depth = 0;
};
simulation_code compile_simulation(pybind11::handle sfg) {
return compiler{}.compile(sfg);
}
} // namespace asic