Skip to content
Snippets Groups Projects
operation.py 35.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • """
    B-ASIC Operation Module.
    
    
    Contains the base for operations that are used by B-ASIC.
    
    Frans Skarman's avatar
    Frans Skarman committed
    import collections.abc
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    import itertools as it
    
    from abc import abstractmethod
    from numbers import Number
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from typing import (
    
        TYPE_CHECKING,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        Dict,
        Iterable,
        List,
        Mapping,
        MutableMapping,
        NewType,
        Optional,
        Sequence,
        Tuple,
        Union,
    
    Frans Skarman's avatar
    Frans Skarman committed
        overload,
    
    from b_asic.graph_component import AbstractGraphComponent, GraphComponent, GraphID, Name
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    from b_asic.port import InputPort, OutputPort, SignalSourceProvider
    from b_asic.signal import Signal
    
    from b_asic.types import Num
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
    if TYPE_CHECKING:
        from b_asic.signal_flow_graph import SFG
    
    
    
    Frans Skarman's avatar
    Frans Skarman committed
    ResultMap = Mapping[ResultKey, Optional[Num]]
    MutableResultMap = MutableMapping[ResultKey, Optional[Num]]
    DelayMap = Mapping[ResultKey, Num]
    MutableDelayMap = MutableMapping[ResultKey, Num]
    
    class Operation(GraphComponent, SignalSourceProvider):
    
        """
        Operation interface.
    
    
        Operations are graph components that perform a certain function.
    
        They are connected to each other by signals through their input/output
    
        ports.
    
        Operations can be evaluated independently using evaluate_output().
    
        Operations may specify how to quantize inputs through quantize_input().
    
        def __ilshift__(self, src: SignalSourceProvider) -> "Operation":
    
            Overload the inline left shift operator to make it connect the provided signal
            source to this operation's input, assuming it has exactly one input port.
    
        @abstractmethod
        def input_count(self) -> int:
            """Get the number of input ports."""
            raise NotImplementedError
    
    
        @abstractmethod
        def output_count(self) -> int:
            """Get the number of output ports."""
            raise NotImplementedError
    
        @abstractmethod
    
        def input(self, index: int) -> InputPort:
            """Get the input port at the given index."""
    
            raise NotImplementedError
    
        @abstractmethod
    
        def output(self, index: int) -> OutputPort:
            """Get the output port at the given index."""
    
            raise NotImplementedError
    
    
        @abstractmethod
    
        def inputs(self) -> Sequence[InputPort]:
            """Get all input ports."""
    
            raise NotImplementedError
    
    
        @property
        @abstractmethod
        def outputs(self) -> Sequence[OutputPort]:
            """Get all output ports."""
            raise NotImplementedError
    
        @property
        @abstractmethod
    
        def input_signals(self) -> Sequence[Signal]:
    
            Get all the signals that are connected to this operation's input ports.
    
            The signals are ore not ordered.
    
        @abstractmethod
    
        def output_signals(self) -> Sequence[Signal]:
    
            Get all the signals that are connected to this operation's output ports.
    
            The signals are ore not ordered.
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
        def key(self, index: int, prefix: str = "") -> ResultKey:
    
            Get the key used to access the output of a certain index.
    
            This keu can be used to access the simulation results and used as
            the *output* parameter passed to current_output(s) or evaluate_output(s).
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_output(
            self, index: int, delays: Optional[DelayMap] = None, prefix: str = ""
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Optional[Num]:
    
            """
            Get the current output at the given index of this operation, if available.
    
            The *delays* parameter will be used for lookup.
    
            The *prefix* parameter will be used as a prefix for the key string when looking
            for delays.
    
            current_outputs, evaluate_output, evaluate_outputs
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_output(
            self,
            index: int,
    
    Frans Skarman's avatar
    Frans Skarman committed
            input_values: Sequence[Num],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
    
            quantize: bool = True,
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Num:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            Evaluate the output at the given index with the given input values.
    
    
            Parameters
            ----------
            index : int
                Which output to return the value for.
            input_values : array of float or complex
                The input values.
            results : MutableResultMap. optional
                Used to store any results (including intermediate results)
                for caching.
            delays : MutableDelayMap. optional
                Used to get the current value of any intermediate delay elements
                that are encountered, and be updated with their new values.
            prefix : str, optional
                Used as a prefix for the key string when storing results/delays.
    
            bits_override : int, optional
    
                Specifies a word length override when truncating inputs
                which ignores the word length specified by the input signal.
    
            quantize : bool, default: True
    
                Specifies whether input truncation should be enabled in the first
    
                place. If set to False, input values will be used directly without any
                bit truncation.
    
            evaluate_outputs, current_output, current_outputs
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_outputs(
            self, delays: Optional[DelayMap] = None, prefix: str = ""
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Sequence[Optional[Num]]:
    
            """
            Get all current outputs of this operation, if available.
    
            current_output
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_outputs(
            self,
    
    Frans Skarman's avatar
    Frans Skarman committed
            input_values: Sequence[Num],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
    
            quantize: bool = True,
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Sequence[Num]:
    
            """
            Evaluate all outputs of this operation given the input values.
    
    
            See Also
            --------
            evaluate_output
    
            """
            raise NotImplementedError
    
        @abstractmethod
        def split(self) -> Iterable["Operation"]:
    
            """
            Split the operation into multiple operations.
    
    
            If splitting is not possible, this may return a list containing only the
            operation itself.
    
            """
            raise NotImplementedError
    
    
        def to_sfg(self) -> "SFG":
    
            """
            Convert the operation into its corresponding SFG.
    
    
            If the operation is composed by multiple operations, the operation will be
            split.
    
            """
            raise NotImplementedError
    
        @abstractmethod
        def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
    
            """
            Get the input indices of all inputs in this operation whose values are
            required in order to evaluate the output at the given output index.
    
        def quantize_input(self, index: int, value: Num, bits: int) -> Num:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            Quantize the value to be used as input at the given index to a certain bit
    
        @property
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            Get the latency of the operation.
    
            This is the longest time it takes from one of the input ports to one of the
            output ports.
    
        def latency_offsets(self) -> Dict[str, Optional[int]]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Get a dictionary with all the operations ports latency-offsets.
    
            """
            raise NotImplementedError
    
        @abstractmethod
        def set_latency(self, latency: int) -> None:
    
            Set the latency of the operation to the specified integer value.
    
    
            This is done by setting the latency-offsets of operations input ports to 0
            and the latency-offsets of the operations output ports to the specified value.
    
    
            The latency is the time it takes to produce an output from the corresponding
            input of the underlying operator.
    
    
            The latency cannot be a negative integer.
    
    
            Parameters
            ----------
            latency : int
                Non-negative int corresponding to the latency of the operation.
    
            """
            raise NotImplementedError
    
        @abstractmethod
        def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None:
    
            Set the latency-offsets for the operations port.
    
    
            The latency offsets dictionary should be {'in0': 2, 'out1': 4} if you want to
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            set the latency offset for the input port with index 0 to 2, and the latency
    
            offset of the output port with index 1 to 4.
    
            """
            raise NotImplementedError
    
    
        @property
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def execution_time(self) -> Optional[int]:
    
            Get the execution time of the operation.
    
    
            The execution time is the time between executing two operations on the
            underlying operator. This is also called initiation interval.
    
            """
            raise NotImplementedError
    
        @execution_time.setter
        @abstractmethod
    
        def execution_time(self, execution_time: Optional[int]) -> None:
    
            Set the execution time of the operation.
    
            The execution time is the time between executing two operations on the
            underlying operator. This is also called initiation interval.
    
            The execution time cannot be a negative integer.
    
            Parameters
            ----------
            execution_time : int or None
                Non-negative integer corresponding to the execution time of the operation.
                Unset execution time by passing ``None``.
    
            """
            raise NotImplementedError
    
        @abstractmethod
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def get_plot_coordinates(
            self,
    
        ) -> Tuple[Tuple[Tuple[float, float], ...], Tuple[Tuple[float, float], ...]]:
    
            Return coordinates for the latency and execution time polygons.
    
            This returns a tuple containing coordinates for the two polygons outlining
    
            the latency and execution time of the operation.
            The polygons are corresponding to a start time of 0 and are of height 1.
            """
            raise NotImplementedError
    
    
        @abstractmethod
        def get_input_coordinates(
            self,
        ) -> Tuple[Tuple[float, float], ...]:
            """
            Return coordinates for inputs.
    
            These maps to the polygons and are corresponding to a start time of 0
            and height 1.
    
    
            get_output_coordinates
            """
            raise NotImplementedError
    
        @abstractmethod
        def get_output_coordinates(
            self,
        ) -> Tuple[Tuple[float, float], ...]:
            """
            Return coordinates for outputs.
    
            These maps to the polygons and are corresponding to a start time of 0
            and height 1.
    
    
            """
            raise NotImplementedError
    
    
        @property
        @abstractmethod
        def source(self) -> OutputPort:
            """
            Return the OutputPort if there is only one output port.
    
            If not, raise a TypeError.
            """
            raise NotImplementedError
    
        @property
        @abstractmethod
        def destination(self) -> InputPort:
            """
            Return the InputPort if there is only one input port.
    
            If not, raise a TypeError.
            """
            raise NotImplementedError
    
    
        @abstractmethod
        def _increase_time_resolution(self, factor: int) -> None:
            raise NotImplementedError
    
        @abstractmethod
        def _decrease_time_resolution(self, factor: int) -> None:
            raise NotImplementedError
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        @abstractmethod
        def _check_all_latencies_set(self) -> None:
            raise NotImplementedError
    
    
        @property
        @abstractmethod
        def is_linear(self) -> bool:
            """
            Return True if the operation is linear.
            """
            raise NotImplementedError
    
        @property
        @abstractmethod
        def is_constant(self) -> bool:
            """
    
            Return True if the output(s) of the operation is(are) constant.
    
            """
            raise NotImplementedError
    
    
        @property
        @abstractmethod
        def is_commutative(self) -> bool:
            """
            Return True if the operation is commutative.
            """
            raise NotImplementedError
    
        @property
        @abstractmethod
        def is_distributive(self) -> bool:
            """
            Return True if the operation is distributive.
            """
            raise NotImplementedError
    
    
        @property
        @abstractmethod
        def is_swappable(self) -> bool:
            """
    
            Return True if the inputs (and outputs) to the operation can be swapped.
    
            Swapping require that the operation retains the same function, but it is allowed
            to modify values to do so.
    
            """
            raise NotImplementedError
    
        @abstractmethod
        def swap_io(self) -> None:
            """
            Swap inputs (and outputs) of operation.
    
            Errors if :meth:`is_swappable` is False.
            """
            raise NotImplementedError
    
    
    class AbstractOperation(Operation, AbstractGraphComponent):
    
        """
        Generic abstract operation base class.
    
    
        Concrete operations should normally derive from this to get the default
        behavior.
    
        __slots__ = ("_input_ports", "_output_ports", "_execution_time")
    
        _input_ports: List[InputPort]
        _output_ports: List[OutputPort]
    
        _execution_time: Optional[int]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def __init__(
            self,
            input_count: int,
            output_count: int,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            name: Name = Name(""),
    
            input_sources: Optional[Sequence[Optional[SignalSourceProvider]]] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency: Optional[int] = None,
            latency_offsets: Optional[Dict[str, int]] = None,
    
            execution_time: Optional[int] = None,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        ):
    
            """
            Construct an operation with the given input/output count.
    
    
            A list of input sources may be specified to automatically connect
            to the input ports.
            If provided, the number of sources must match the number of inputs.
    
            The latency offsets may also be specified to be initialized.
            """
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            super().__init__(Name(name))
    
    
            self._input_ports = [InputPort(self, i) for i in range(input_count)]
            self._output_ports = [OutputPort(self, i) for i in range(output_count)]
    
            # Connect given input sources, if any.
            if input_sources is not None:
                source_count = len(input_sources)
                if source_count != input_count:
                    raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Wrong number of input sources supplied to Operation"
                        f" (expected {input_count}, got {source_count})"
                    )
    
                for i, src in enumerate(input_sources):
                    if src is not None:
    
                        if isinstance(src, Signal):
                            # Already existing signal
                            src.set_destination(self._input_ports[i])
                        else:
                            self._input_ports[i].connect(src.source)
    
            # Set specific latency_offsets
            if latency_offsets is not None:
                self.set_latency_offsets(latency_offsets)
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                # Set the latency for all ports initially.
    
                if latency < 0:
                    raise ValueError("Latency cannot be negative")
    
                    if inp.latency_offset is None:
                        inp.latency_offset = 0
    
                for output in self.outputs:
                    if output.latency_offset is None:
                        output.latency_offset = latency
    
            self._execution_time = execution_time
    
    
    Frans Skarman's avatar
    Frans Skarman committed
        @overload
    
        @abstractmethod
    
    Frans Skarman's avatar
    Frans Skarman committed
        def evaluate(
            self, *inputs: Operation
        ) -> List[Operation]:  # pylint: disable=arguments-differ
            ...
    
        @overload
        @abstractmethod
    
        def evaluate(self, *inputs: Num) -> List[Num]:  # pylint: disable=arguments-differ
    
    Frans Skarman's avatar
    Frans Skarman committed
            ...
    
        @abstractmethod
        def evaluate(self, *inputs):  # pylint: disable=arguments-differ
    
            Evaluate the operation and generate a list of output values.
    
            Parameters
            ----------
            *inputs
                List of input values.
    
            raise NotImplementedError
    
    
        def __ilshift__(self, src: SignalSourceProvider) -> "Operation":
    
            if self.input_count != 1:
                diff = "more" if self.input_count > 1 else "less"
                raise TypeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    f"{self.__class__.__name__} cannot be used as a destination"
                    f" because it has {diff} than 1 input"
                )
    
            self.input(0).connect(src)
            return self
    
    
        def __str__(self) -> str:
            """Get a string representation of this operation."""
    
            inputs_dict: Dict[int, Union[List[GraphID], str]] = {}
    
            for i, current_input in enumerate(self.inputs):
                if current_input.signal_count == 0:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    inputs_dict[i] = "-"
    
                for signal in current_input.signals:
    
                        if signal.source_operation.graph_id:
                            dict_ele.append(signal.source_operation.graph_id)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
                    else:
                        if signal.graph_id:
                            dict_ele.append(signal.graph_id)
                        else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
            outputs_dict: Dict[int, Union[List[GraphID], str]] = {}
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            for i, outport in enumerate(self.outputs):
                if outport.signal_count == 0:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    outputs_dict[i] = "-"
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                for signal in outport.signals:
    
                        if signal.destination_operation.graph_id:
                            dict_ele.append(signal.destination_operation.graph_id)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
                    else:
                        if signal.graph_id:
                            dict_ele.append(signal.graph_id)
                        else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            dict_ele.append(GraphID("no_id"))
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return (
                super().__str__()
                + f", \tinputs: {str(inputs_dict)}, \toutputs: {str(outputs_dict)}"
            )
    
        def input_count(self) -> int:
            return len(self._input_ports)
    
    
        def output_count(self) -> int:
            return len(self._output_ports)
    
    
        def input(self, index: int) -> InputPort:
            return self._input_ports[index]
    
        def output(self, index: int) -> OutputPort:
            return self._output_ports[index]
    
    
        @property
    
        def inputs(self) -> Sequence[InputPort]:
            return self._input_ports
    
        @property
        def outputs(self) -> Sequence[OutputPort]:
            return self._output_ports
    
        @property
    
        def input_signals(self) -> Sequence[Signal]:
    
            result = []
            for p in self.inputs:
                for s in p.signals:
                    result.append(s)
            return result
    
        def output_signals(self) -> Sequence[Signal]:
    
            result = []
            for p in self.outputs:
                for s in p.signals:
                    result.append(s)
            return result
    
        def key(self, index: int, prefix: str = "") -> ResultKey:
            key = prefix
            if self.output_count != 1:
                if key:
                    key += "."
                key += str(index)
            elif not key:
                key = str(index)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return ResultKey(key)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_output(
            self, index: int, delays: Optional[DelayMap] = None, prefix: str = ""
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Optional[Num]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def evaluate_output(
            self,
            index: int,
    
    Frans Skarman's avatar
    Frans Skarman committed
            input_values: Sequence[Num],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
    
            quantize: bool = True,
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Num:
    
            if index < 0 or index >= self.output_count:
                raise IndexError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Output index out of range (expected"
                    f" 0-{self.output_count - 1}, got {index})"
                )
    
            if len(input_values) != self.input_count:
                raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Wrong number of input values supplied to operation (expected"
                    f" {self.input_count}, got {len(input_values)})"
                )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                *(
    
                    self.quantize_inputs(input_values, bits_override)
                    if quantize
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    else input_values
                )
            )
    
            if isinstance(values, collections.abc.Sequence):
                if len(values) != self.output_count:
                    raise RuntimeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Operation evaluated to incorrect number of outputs"
                        f" (expected {self.output_count}, got {len(values)})"
                    )
    
            elif isinstance(values, Number):
                if self.output_count != 1:
                    raise RuntimeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Operation evaluated to incorrect number of outputs"
                        f" (expected {self.output_count}, got 1)"
                    )
    
            else:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Operation evaluated to invalid type (expected"
                    f" Sequence/Number, got {values.__class__.__name__})"
                )
    
            if results is not None:
                for i in range(self.output_count):
                    results[self.key(i, prefix)] = values[i]
            return values[index]
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def current_outputs(
            self, delays: Optional[DelayMap] = None, prefix: str = ""
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Sequence[Optional[Num]]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
    
                self.current_output(i, delays, prefix) for i in range(self.output_count)
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            ]
    
        def evaluate_outputs(
            self,
    
    Frans Skarman's avatar
    Frans Skarman committed
            input_values: Sequence[Num],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            results: Optional[MutableResultMap] = None,
            delays: Optional[MutableDelayMap] = None,
            prefix: str = "",
            bits_override: Optional[int] = None,
    
            quantize: bool = True,
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Sequence[Num]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
                self.evaluate_output(
                    i,
                    input_values,
                    results,
                    delays,
                    prefix,
                    bits_override,
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                )
                for i in range(self.output_count)
            ]
    
        def split(self) -> Iterable[Operation]:
            # Import here to avoid circular imports.
            from b_asic.special_operations import Input
    
    Frans Skarman's avatar
    Frans Skarman committed
            result = self.evaluate(*([Input()] * self.input_count))
            if isinstance(result, collections.abc.Sequence) and all(
                isinstance(e, Operation) for e in result
            ):
                return cast(List[Operation], result)
    
        def to_sfg(self) -> "SFG":
    
            # Import here to avoid circular imports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            from b_asic.special_operations import Input, Output
    
            inputs = [Input() for _ in range(self.input_count)]
    
    
            try:
                last_operations = self.evaluate(*inputs)
                if isinstance(last_operations, Operation):
                    last_operations = [last_operations]
                outputs = [Output(o) for o in last_operations]
            except TypeError:
    
                operation_copy: Operation = cast(Operation, self.copy())
    
                    input_ = Input()
                    operation_copy.input(i).connect(input_)
                    inputs.append(input_)
    
    
                outputs = [Output(operation_copy)]
    
            return SFG(inputs=inputs, outputs=outputs)
    
    
        def copy(self, *args, **kwargs) -> GraphComponent:
            new_component: Operation = cast(Operation, super().copy(*args, **kwargs))
    
            for i, _input in enumerate(self.inputs):
                new_component.input(i).latency_offset = _input.latency_offset
    
            for i, output in enumerate(self.outputs):
                new_component.output(i).latency_offset = output.latency_offset
    
            new_component.execution_time = self._execution_time
    
            return new_component
    
        def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
            if output_index < 0 or output_index >= self.output_count:
                raise IndexError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "Output index out of range (expected"
                    f" 0-{self.output_count - 1}, got {output_index})"
                )
    
            # By default, assume each output depends on all inputs.
    
            return list(range(self.input_count))
    
        @property
        def neighbors(self) -> Iterable[GraphComponent]:
            return list(self.input_signals) + list(self.output_signals)
    
        @property
        def preceding_operations(self) -> Iterable[Operation]:
    
            """
            Return an Iterable of all Operations that are connected to this
            Operations input ports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
    
                signal.source_operation for signal in self.input_signals if signal.source
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            ]
    
    
        @property
        def subsequent_operations(self) -> Iterable[Operation]:
    
            """
            Return an Iterable of all Operations that are connected to this
            Operations output ports.
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return [
                signal.destination.operation
                for signal in self.output_signals
                if signal.destination
            ]
    
    
        @property
        def source(self) -> OutputPort:
            if self.output_count != 1:
                diff = "more" if self.output_count > 1 else "less"
                raise TypeError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    f"{self.__class__.__name__} cannot be used as an input source"
    
                    f" because it has {diff} than one output"
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                )
    
        def destination(self) -> InputPort:
    
            if self.input_count != 1:
                diff = "more" if self.input_count > 1 else "less"
                raise TypeError(
                    f"{self.__class__.__name__} cannot be used as an output"
                    f" destination because it has {diff} than one input"
                )
            return self.input(0)
    
    
        def quantize_input(self, index: int, value: Num, bits: int) -> Num:
    
    Frans Skarman's avatar
    Frans Skarman committed
            if isinstance(value, (float, int)):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                b = 2**bits
                return round((value + 1) * b % (2 * b) - b) / b
    
    Frans Skarman's avatar
    Frans Skarman committed
            else:
                raise TypeError
    
        def quantize_inputs(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            self,
    
    Frans Skarman's avatar
    Frans Skarman committed
            input_values: Sequence[Num],
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            bits_override: Optional[int] = None,
    
    Frans Skarman's avatar
    Frans Skarman committed
        ) -> Sequence[Num]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            Quantize the values to be used as inputs.
    
            The bit lengths are specified
    
            by the respective signals connected to each input.
    
            args = []
            for i, input_port in enumerate(self.inputs):
                value = input_values[i]
                if bits_override is None and input_port.signal_count >= 1:
    
                    bits_override = input_port.signals[0].bits
    
                if bits_override is not None:
                    if isinstance(value, complex):
                        raise TypeError(
    
                            "Complex value cannot be quantized to {bits} bits as"
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                            " requested by the signal connected to input #{i}"
                        )
    
                    value = self.quantize_input(i, value, bits_override)
    
                args.append(value)
            return args
    
        @property
        def latency(self) -> int:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            if None in [inp.latency_offset for inp in self.inputs] or None in [
    
                output.latency_offset for output in self.outputs
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            ]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                    "All native offsets have to set to a non-negative value to"
                    " calculate the latency."
                )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return max(
                (
    
                    (cast(int, output.latency_offset) - cast(int, input_.latency_offset))
                    for output, input_ in it.product(self.outputs, self.inputs)
    
        def latency_offsets(self) -> Dict[str, Optional[int]]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            latency_offsets = {}
    
            for i, input_ in enumerate(self.inputs):
                latency_offsets[f"in{i}"] = input_.latency_offset
    
            for i, output in enumerate(self.outputs):
                latency_offsets[f"out{i}"] = output.latency_offset
    
    Frans Skarman's avatar
    Frans Skarman committed
        def _check_all_latencies_set(self) -> None:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            """
            Raises an exception if an input or output does not have a latency offset.
    
    Frans Skarman's avatar
    Frans Skarman committed
            """
            self.input_latency_offsets()
            self.output_latency_offsets()
    
        def input_latency_offsets(self) -> List[int]:
            latency_offsets = [i.latency_offset for i in self.inputs]
    
            if any(val is None for val in latency_offsets):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                missing = [
                    i for (i, latency) in enumerate(latency_offsets) if latency is None
                ]
                raise ValueError(f"Missing latencies for input(s) {missing}")
    
    Frans Skarman's avatar
    Frans Skarman committed
    
            return cast(List[int], latency_offsets)
    
        def output_latency_offsets(self) -> List[int]:
            latency_offsets = [i.latency_offset for i in self.outputs]
    
            if any(val is None for val in latency_offsets):
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                missing = [
                    i for (i, latency) in enumerate(latency_offsets) if latency is None
                ]
                raise ValueError(f"Missing latencies for output(s) {missing}")
    
    Frans Skarman's avatar
    Frans Skarman committed
    
            return cast(List[int], latency_offsets)
    
    
        def set_latency(self, latency: int) -> None:
    
            if latency < 0:
                raise ValueError("Latency cannot be negative")
    
            for current_input in self.inputs:
                current_input.latency_offset = 0
    
            for outport in self.outputs:
                outport.latency_offset = latency
    
        def set_latency_offsets(self, latency_offsets: Dict[str, int]) -> None:
            for port_str, latency_offset in latency_offsets.items():
                port_str = port_str.lower()
                if port_str.startswith("in"):
                    index_str = port_str[2:]
    
                    if not index_str.isdigit():
                        raise ValueError(
                            "Incorrectly formatted index in string, expected 'in'"
                            f" + index, got: {port_str!r}"
                        )
    
                    self.input(int(index_str)).latency_offset = latency_offset
                elif port_str.startswith("out"):
                    index_str = port_str[3:]
    
                    if not index_str.isdigit():
                        raise ValueError(
                            "Incorrectly formatted index in string, expected"
                            f" 'out' + index, got: {port_str!r}"
                        )
    
                    self.output(int(index_str)).latency_offset = latency_offset
                else:
                    raise ValueError(
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
                        "Incorrectly formatted string, expected 'in' + index or"
                        f" 'out' + index, got: {port_str!r}"
                    )
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def execution_time(self) -> Optional[int]:
    
            """Execution time of operation."""
    
            return self._execution_time
    
        @execution_time.setter
        def execution_time(self, execution_time: int) -> None:
    
            if execution_time is not None and execution_time < 0:
                raise ValueError("Execution time cannot be negative")
    
            self._execution_time = execution_time
    
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def _increase_time_resolution(self, factor: int) -> None:
    
            if self._execution_time is not None:
                self._execution_time *= factor
            for port in [*self.inputs, *self.outputs]:
    
                if port.latency_offset is not None:
                    port.latency_offset *= factor
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def _decrease_time_resolution(self, factor: int) -> None:
    
            if self._execution_time is not None:
                self._execution_time = self._execution_time // factor
            for port in [*self.inputs, *self.outputs]:
    
                if port.latency_offset is not None:
                    port.latency_offset = port.latency_offset // factor
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
        def get_plot_coordinates(
            self,
    
        ) -> Tuple[Tuple[Tuple[float, float], ...], Tuple[Tuple[float, float], ...]]:
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            # Doc-string inherited
    
    Oscar Gustafsson's avatar
    Oscar Gustafsson committed
            return (