Newer
Older
===============================
LDLT matrix inversion algorithm
===============================
This provides some examples of the different list-based schedulers that are
available in B-ASIC.
Simon Bjurek
committed
from b_asic.architecture import Memory, ProcessingElement
from b_asic.core_operations import MADS, Reciprocal
Simon Bjurek
committed
from b_asic.list_schedulers import (
EarliestDeadlineScheduler,
HybridScheduler,
LeastSlackTimeScheduler,
MaxFanOutScheduler,
)
from b_asic.schedule import Schedule
Simon Bjurek
committed
from b_asic.scheduler import ALAPScheduler, ASAPScheduler
from b_asic.sfg_generators import ldlt_matrix_inverse
from b_asic.special_operations import Input, Output
sfg = ldlt_matrix_inverse(N=3)
# %%
# The SFG is
sfg
# %%
# Set latencies and execution times.
sfg.set_latency_of_type(MADS.type_name(), 3)
sfg.set_latency_of_type(Reciprocal.type_name(), 2)
sfg.set_execution_time_of_type(MADS.type_name(), 1)
sfg.set_execution_time_of_type(Reciprocal.type_name(), 1)
# %%
# Create an ASAP schedule.
schedule = Schedule(sfg, scheduler=ASAPScheduler())
print("Scheduling time:", schedule.schedule_time)
schedule.show()
# %%
# Create an ALAP schedule.
schedule = Schedule(sfg, scheduler=ALAPScheduler())
print("Scheduling time:", schedule.schedule_time)
schedule.show()
# %%
# Create an earliest deadline schedule that uses one MADS and one Reciprocal PE.
resources = {MADS.type_name(): 1, Reciprocal.type_name(): 1}
schedule = Schedule(sfg, scheduler=EarliestDeadlineScheduler(resources))
print("Scheduling time:", schedule.schedule_time)
schedule.show()
# %%
# Create a least slack-time schedule that uses one MADS and one Reciprocal PE.
schedule = Schedule(sfg, scheduler=LeastSlackTimeScheduler(resources))
print("Scheduling time:", schedule.schedule_time)
schedule.show()
# %%
# Create a max fan-out schedule that uses one MADS and one Reciprocal PE.
schedule = Schedule(sfg, scheduler=MaxFanOutScheduler(resources))
print("Scheduling time:", schedule.schedule_time)
schedule.show()
# %%
# Create a HybridScheduler schedule that one MADS and one Reciprocal PE with
# custom IO times.
# This is the schedule we will synthesize an architecture for.
input_times = {
"in0": 0,
"in1": 1,
"in2": 2,
"in3": 3,
"in4": 4,
"in5": 5,
}
output_delta_times = {
"out0": 0,
"out1": 1,
"out2": 2,
"out3": 3,
"out4": 4,
"out5": 5,
}
schedule = Schedule(
sfg,
scheduler=HybridScheduler(
resources, input_times=input_times, output_delta_times=output_delta_times
),
print("Scheduling time:", schedule.schedule_time)
schedule.show()
# %%
operations = schedule.get_operations()
mads = operations.get_by_type_name(MADS.type_name())
mads.show(title="MADS executions")
reciprocals = operations.get_by_type_name(Reciprocal.type_name())
reciprocals.show(title="Reciprocal executions")
inputs = operations.get_by_type_name(Input.type_name())
inputs.show(title="Input executions")
outputs = operations.get_by_type_name(Output.type_name())
outputs.show(title="Output executions")
mads_pe = ProcessingElement(mads, entity_name="mad")
reciprocal_pe = ProcessingElement(reciprocals, entity_name="rec")
pe_in = ProcessingElement(inputs, entity_name='input')
pe_out = ProcessingElement(outputs, entity_name='output')
mem_vars = schedule.get_memory_variables()
mem_vars.show(title="All memory variables")
direct, mem_vars = mem_vars.split_on_length()
mem_vars.show(title="Non-zero time memory variables")
Simon Bjurek
committed
mem_vars_set = mem_vars.split_on_ports(
read_ports=1, write_ports=1, total_ports=2, heuristic="graph_color"
)
# %%
memories = []
for i, mem in enumerate(mem_vars_set):
memory = Memory(mem, memory_type="RAM", entity_name=f"memory{i}")
memories.append(memory)
mem.show(title=f"{memory.entity_name}")
memory.assign("left_edge")
memory.show_content(title=f"Assigned {memory.entity_name}")
direct.show(title="Direct interconnects")