Newer
Older
from collections import defaultdict
from itertools import chain
from typing import (
DefaultDict,
Dict,
Iterable,
Iterator,
List,
Optional,
Set,
Tuple,
Type,
import matplotlib.pyplot as plt
from graphviz import Digraph
from b_asic.codegen.vhdl.common import is_valid_vhdl_identifier
from b_asic.operation import Operation
from b_asic.port import InputPort, OutputPort
from b_asic.process import MemoryProcess, MemoryVariable, OperatorProcess, Process
from b_asic.resources import ProcessCollection
def _interconnect_dict() -> int:
# Needed as pickle does not support lambdas
return 0
Base class for architectures and resources.
Parameters
----------
entity_name : str, optional
The name of the resulting entity.
"""
def __init__(self, entity_name: Optional[str] = None):
self._entity_name: Optional[str] = None
if entity_name is not None:
self.set_entity_name(entity_name)
def set_entity_name(self, entity_name: str) -> None:
Parameters
----------
entity_name : str
The entity name.
"""
if not is_valid_vhdl_identifier(entity_name):
raise ValueError(f'{entity_name} is not a valid VHDL identifier')
self._entity_name = entity_name
def write_code(self, path: str) -> None:
"""
Parameters
----------
path : str
Directory to write code in.
"""
raise ValueError("Entity name must be set")
raise NotImplementedError
def _repr_mimebundle_(self, include=None, exclude=None):
return self._digraph()._repr_mimebundle_(include=include, exclude=exclude)
def _repr_jpeg_(self):
return self._digraph()._repr_mimebundle_(include=["image/jpeg"])["image/jpeg"]
def _repr_png_(self):
return self._digraph()._repr_mimebundle_(include=["image/png"])["image/png"]
@property
def entity_name(self) -> str:
if self._entity_name is None:
return "Undefined entity name"
return self._entity_name
def _digraph(self) -> Digraph:
raise NotImplementedError()
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@property
def schedule_time(self) -> int:
"""The schedule time for hardware block"""
raise NotImplementedError()
def write_component_declaration(self, f: TextIOWrapper, indent: int = 1) -> None:
"""
Write component declaration of hardware block.
Parameters
----------
f : TextIOWrapper
File object (or other TextIOWrapper object) to write the declaration to.
indent : int, default: 1
Indentation level to use for this process.
"""
raise NotImplementedError()
def write_component_instantiation(self, f: TextIOWrapper, indent: int = 1) -> None:
"""
Write component instantiation of hardware block.
Parameters
----------
f : TextIOWrapper
File object (or other TextIOWrapper object) to write the instantiation to.
indent : int, default: 1
Indentation level to use for this process.
"""
raise NotImplementedError()
class Resource(HardwareBlock):
"""
Base class for resource.
Parameters
----------
process_collection : :class:`~b_asic.resources.ProcessCollection`
The process collection containing processes to be mapped to resource.
entity_name : str, optional
The name of the resulting entity.
"""
def __init__(
self, process_collection: ProcessCollection, entity_name: Optional[str] = None
):
if not len(process_collection):
raise ValueError("Do not create Resource with empty ProcessCollection")
super().__init__(entity_name=entity_name)
self._collection = process_collection
self._input_count = -1
self._output_count = -1
self._assignment: Optional[List[ProcessCollection]] = None
def __repr__(self):
return self.entity_name
def __iter__(self):
return iter(self._collection)
def _digraph(self) -> Digraph:
dg = Digraph(node_attr={'shape': 'record'})
dg.node(self.entity_name, self._struct_def())
return dg
@property
def input_count(self) -> int:
"""Number of input ports."""
return self._input_count
@property
def output_count(self) -> int:
"""Number of output ports."""
return self._output_count
def _struct_def(self) -> str:
inputs = [f"in{i}" for i in range(self._input_count)]
outputs = [f"out{i}" for i in range(self._output_count)]
ret = ""
if inputs:
instrs = [f"<{instr}> {instr}" for instr in inputs]
ret += f"{{{'|'.join(instrs)}}}|"
if outputs:
outstrs = [f"<{outstr}> {outstr}" for outstr in outputs]
ret += f"|{{{'|'.join(outstrs)}}}"
return "{" + ret + "}"
@property
def schedule_time(self) -> int:
# doc-string inherited
return self._collection.schedule_time
def plot_content(self, ax: plt.Axes, **kwargs) -> None:
"""
Plot the content of the resource.
This plots the assigned processes executed on this resource.
Parameters
----------
ax : Axes
Matplotlib Axes to plot in.
**kwargs
Passed to :meth:`b_asic.resources.ProcessCollection.plot`
"""
if not self.is_assigned:
else:
for i, pc in enumerate(self._assignment): # type: ignore
pc.plot(ax=ax, row=i, **kwargs)
def show_content(self, title=None, **kwargs) -> None:
"""
Display the content of the resource.
This displays the assigned processes executed on this resource.
Parameters
----------
title : str, optional
**kwargs
Passed to :meth:`b_asic.resources.ProcessCollection.plot`
"""
self.plot_content(ax, **kwargs)
if title:
fig.suptitle(title)
@property
def is_assigned(self) -> bool:
return self._assignment is not None
def assign(self, heuristic: str = 'left_edge'):
"""
Perform assignment of processes to resource.
See the specific resource types for more information.
"""
raise NotImplementedError()
"""
Return a graphical representation of the content.
This is visible in enriched shells, but the object itself has no further
meaning (it is a Matplotlib Figure).
"""
fig, ax = plt.subplots()
self.plot_content(ax)
@property
def collection(self) -> ProcessCollection:
return self._collection
@property
def operation_type(self) -> Union[Type[MemoryProcess], Type[OperatorProcess]]:
raise NotImplementedError("ABC Resource does not implement operation_type")
def add_process(self, proc: Process):
"""
Add a :class:`~b_asic.process.Process` to this :class:`Resource`.
Raises :class:`KeyError` if the process being added is not of the same type
as the other processes.
Parameters
----------
proc : :class:`~b_asic.process.Process`
The process to add.
"""
if isinstance(proc, OperatorProcess):
# operation_type marks OperatorProcess associated operation.
if not isinstance(proc._operation, self.operation_type):
raise KeyError(f"{proc} not of type {self.operation_type}")
else:
# operation_type is MemoryVariable or PlainMemoryVariable
if not isinstance(proc, self.operation_type):
raise KeyError(f"{proc} not of type {self.operation_type}")
self.collection.add_process(proc)
def remove_process(self, proc):
self.collection.remove_process(proc)
self._assignment = None
"""
Create a processing element for a ProcessCollection with OperatorProcesses.
Parameters
----------
process_collection : :class:`~b_asic.resources.ProcessCollection`
Process collection containing operations to map to processing element.
entity_name : str, optional
Name of processing element entity.
assign : bool, default True
Perform assignment when creating the ProcessingElement.
self,
process_collection: ProcessCollection,
entity_name: Optional[str] = None,
assign: bool = True,
super().__init__(process_collection=process_collection, entity_name=entity_name)
if not all(
isinstance(operator, OperatorProcess)
for operator in process_collection.collection
):
raise TypeError(
"Can only have OperatorProcesses in ProcessCollection when creating"
" ProcessingElement"
)
ops = [
cast(OperatorProcess, operand).operation
for operand in process_collection.collection
]
op_type = type(ops[0])
if not all(isinstance(op, op_type) for op in ops):
raise TypeError("Different Operation types in ProcessCollection")
self._operation_type = op_type
self._type_name = op_type.type_name()
self._input_count = ops[0].input_count
self._output_count = ops[0].output_count
@property
def processes(self) -> List[OperatorProcess]:
return [cast(OperatorProcess, p) for p in self._collection]
def assign(self, heuristic: str = "left_edge") -> None:
"""
Perform assignment of the processes.
Parameters
----------
heuristic : str, default: 'left_edge'
The assignment algorithm.
* 'left_edge': Left-edge algorithm.
* 'graph_color': Graph-coloring based on exclusion graph.
"""
self._assignment = list(
self._collection.split_on_execution_time(heuristic=heuristic)
)
if len(self._assignment) > 1:
self._assignment = None
raise ValueError("Cannot map ProcessCollection to single ProcessingElement")
@property
def operation_type(self) -> Type[Operation]:
return self._operation_type
"""
Create a memory from a ProcessCollection with memory variables.
Parameters
----------
process_collection : :class:`~b_asic.resources.ProcessCollection`
The ProcessCollection to create a Memory for.
memory_type : {'RAM', 'register'}
The type of memory.
entity_name : str, optional
Name of memory entity.
read_ports : int, optional
Number of read ports for memory.
write_ports : int, optional
Number of write ports for memory.
assign : bool, default False
Perform assignment when creating the Memory (using the default properties).
def __init__(
self,
process_collection: ProcessCollection,
memory_type: str = "RAM",
entity_name: Optional[str] = None,
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
super().__init__(process_collection=process_collection, entity_name=entity_name)
isinstance(operator, MemoryProcess)
for operator in process_collection.collection
):
raise TypeError(
"Can only have MemoryProcess in ProcessCollection when creating Memory"
if memory_type not in ("RAM", "register"):
raise ValueError(
f"memory_type must be 'RAM' or 'register', not {memory_type!r}"
)
read_ports_bound = self._collection.read_ports_bound()
if read_ports is None:
self._output_count = read_ports_bound
else:
if read_ports < read_ports_bound:
raise ValueError(f"At least {read_ports_bound} read ports required")
self._output_count = read_ports
write_ports_bound = self._collection.write_ports_bound()
if write_ports is None:
self._input_count = write_ports_bound
else:
if write_ports < write_ports_bound:
raise ValueError(f"At least {write_ports_bound} write ports required")
self._input_count = write_ports
memory_processes = [
cast(MemoryProcess, process) for process in process_collection
]
mem_proc_type = type(memory_processes[0])
if not all(isinstance(proc, mem_proc_type) for proc in memory_processes):
raise TypeError("Different MemoryProcess types in ProcessCollection")
self._operation_type = mem_proc_type
def __iter__(self) -> Iterator[MemoryVariable]:
# Add information about the iterator type
return cast(Iterator[MemoryVariable], iter(self._collection))
def assign(self, heuristic: str = "left_edge") -> None:
"""
Perform assignment of the memory variables.
Parameters
----------
heuristic : str, default: 'left_edge'
The assignment algorithm. Depending on memory type the following are
available:
* 'RAM'
* 'left_edge': Left-edge algorithm.
* 'graph_color': Graph-coloring based on exclusion graph.
* 'register'
* ...
"""
if self._memory_type == "RAM":
self._assignment = self._collection.split_on_execution_time(
heuristic=heuristic
)
else: # "register"
raise NotImplementedError()
@property
def operation_type(self) -> Type[MemoryProcess]:
return self._operation_type
"""
Class representing an architecture.
Parameters
----------
processing_elements : :class:`~b_asic.architecture.ProcessingElement` or iterable \
of :class:`~b_asic.architecture.ProcessingElement`
The processing elements in the architecture.
memories : :class:`~b_asic.architecture.Memory` or iterable of \
:class:`~b_asic.architecture.Memory`
entity_name : str, default: "arch"
Name for the top-level entity.
direct_interconnects : :class:`~b_asic.resources.ProcessCollection`, optional
Process collection of zero-time memory variables used for direct interconnects.
processing_elements: Union[ProcessingElement, Iterable[ProcessingElement]],
memories: Union[Memory, Iterable[Memory]],
direct_interconnects: Optional[ProcessCollection] = None,
super().__init__(entity_name)
self._processing_elements = (
if isinstance(processing_elements, ProcessingElement)
self._memories = [memories] if isinstance(memories, Memory) else list(memories)
self._direct_interconnects = direct_interconnects
self._variable_inport_to_resource: Dict[InputPort, Tuple[Resource, int]] = {}
self._variable_outport_to_resource: Dict[OutputPort, Tuple[Resource, int]] = {}
self._operation_inport_to_resource: Dict[InputPort, Resource] = {}
self._operation_outport_to_resource: Dict[OutputPort, Resource] = {}
self._schedule_time = self._check_and_get_schedule_time()
# Validate input and output ports
self.validate_ports()
self._build_dicts()
def _check_and_get_schedule_time(self) -> int:
schedule_times = set()
for memory in self._memories:
schedule_times.add(memory.schedule_time)
for pe in self._processing_elements:
schedule_times.add(pe.schedule_time)
if self._direct_interconnects is not None:
schedule_times.add(self._direct_interconnects.schedule_time)
if len(schedule_times) != 1:
raise ValueError(f"Different schedule times: {schedule_times}")
return schedule_times.pop()
self._variable_inport_to_resource: Dict[InputPort, Tuple[Resource, int]] = {}
self._variable_outport_to_resource: Dict[OutputPort, Tuple[Resource, int]] = {}
self._operation_inport_to_resource: Dict[InputPort, Resource] = {}
self._operation_outport_to_resource: Dict[OutputPort, Resource] = {}
for pe in self.processing_elements:
for operator in pe.processes:
for input_port in operator.operation.inputs:
self._operation_inport_to_resource[input_port] = pe
for output_port in operator.operation.outputs:
self._operation_outport_to_resource[output_port] = pe
for memory in self.memories:
for mv in memory:
for read_port in mv.read_ports:
self._variable_inport_to_resource[read_port] = (memory, 0) # Fix
self._variable_outport_to_resource[mv.write_port] = (memory, 0) # Fix
if self._direct_interconnects:
for di in self._direct_interconnects:
di = cast(MemoryVariable, di)
for read_port in di.read_ports:
self._variable_inport_to_resource[read_port] = (
self._operation_outport_to_resource[di.write_port],
di.write_port.index,
)
self._variable_outport_to_resource[di.write_port] = (
self._operation_inport_to_resource[read_port],
read_port.index,
)
# Validate inputs and outputs of memory variables in all the memories in this
# architecture
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
memory_read_ports = set()
memory_write_ports = set()
for memory in self.memories:
for mv in memory:
memory_write_ports.add(mv.write_port)
memory_read_ports.update(mv.read_ports)
if self._direct_interconnects:
for mv in self._direct_interconnects:
mv = cast(MemoryVariable, mv)
memory_write_ports.add(mv.write_port)
memory_read_ports.update(mv.read_ports)
pe_input_ports = set()
pe_output_ports = set()
for pe in self.processing_elements:
for operator in pe.processes:
pe_input_ports.update(operator.operation.inputs)
pe_output_ports.update(operator.operation.outputs)
read_port_diff = memory_read_ports.symmetric_difference(pe_input_ports)
write_port_diff = memory_write_ports.symmetric_difference(pe_output_ports)
if read_port_diff:
raise ValueError(
"Memory read port and PE output port difference:"
f" {[port.name for port in read_port_diff]}"
)
if write_port_diff:
raise ValueError(
"Memory read port and PE output port difference:"
f" {[port.name for port in write_port_diff]}"
)
# Make sure all inputs and outputs in the architecture are in use
def get_interconnects_for_memory(
self, mem: Memory
) -> Tuple[Dict[Resource, int], Dict[Resource, int]]:
"""
Return a dictionary with interconnect information for a Memory.
Parameters
----------
mem : :class:`Memory`
The memory to obtain information about.
Returns
-------
(dict, dict)
A dictionary with the ProcessingElements that are connected to the write and
read ports, respectively, with counts of the number of accesses.
"""
d_in: DefaultDict[Resource, int] = defaultdict(_interconnect_dict)
d_out: DefaultDict[Resource, int] = defaultdict(_interconnect_dict)
for var in mem.collection:
var = cast(MemoryVariable, var)
d_in[self._operation_outport_to_resource[var.write_port]] += 1
for read_port in var.read_ports:
d_out[self._operation_inport_to_resource[read_port]] += 1
return dict(d_in), dict(d_out)
def get_interconnects_for_pe(
self, pe: ProcessingElement
) -> Tuple[
List[Dict[Tuple[Resource, int], int]], List[Dict[Tuple[Resource, int], int]]
]:
"""
Return lists of dictionaries with interconnect information for a
ProcessingElement.
Parameters
----------
pe : :class:`ProcessingElement`
The processing element to get information for.
Returns
-------
list
List of dictionaries indicating the sources for each inport and the
frequency of accesses.
list
List of dictionaries indicating the sources for each outport and the
frequency of accesses.
"""
d_in: List[DefaultDict[Tuple[Resource, int], int]] = [
defaultdict(_interconnect_dict) for _ in range(pe.input_count)
]
d_out: List[DefaultDict[Tuple[Resource, int], int]] = [
defaultdict(_interconnect_dict) for _ in range(pe.output_count)
]
for var in pe.collection:
var = cast(OperatorProcess, var)
for i, input_ in enumerate(var.operation.inputs):
d_in[i][self._variable_inport_to_resource[input_]] += 1
for i, output in enumerate(var.operation.outputs):
d_out[i][self._variable_outport_to_resource[output]] += 1
return [dict(d) for d in d_in], [dict(d) for d in d_out]
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
def resource_from_name(self, name: str):
re = {p.entity_name: p for p in chain(self.memories, self.processing_elements)}
return re[name]
def move_process(
self,
proc: Union[str, Process],
re_from: Union[str, Resource],
re_to: Union[str, Resource],
):
"""
Move a :class:`b_asic.process.Process` from one resource to another in the
architecture.
Both the resource moved from and will become unassigned after a process has been
moved.
Raises :class:`KeyError` if ``proc`` is not present in resource ``re_from``.
Parameters
----------
proc : :class:`b_asic.process.Process` or string
The process (or its given name) to move.
re_from : :class:`b_asic.architecture.Resource` or string
The resource (or its given name) to move the process from.
re_to : :class:`b_asic.architecture.Resource` or string
The resource (or its given name) to move the process to.
"""
# Extract resouces from name
if isinstance(re_from, str):
re_from = self.resource_from_name(re_from)
if isinstance(re_to, str):
re_to = self.resource_from_name(re_to)
# Extract process from name
if isinstance(proc, str):
proc = re_from.collection.from_name(proc)
# Move the process.
re_to.add_process(proc)
re_from.remove_process(proc)
else:
raise KeyError(f"{proc} not in {re_from.entity_name}")
self._build_dicts()
def _digraph(self) -> Digraph:
edges: Set[Tuple[str, str, str]] = set()
dg = Digraph(node_attr={'shape': 'record'})
for i, mem in enumerate(self._memories):
for i, pe in enumerate(self._processing_elements):
for pe in self._processing_elements:
inputs, outputs = self.get_interconnects_for_pe(pe)
for i, inp in enumerate(inputs):
for (source, port), cnt in inp.items():
edges.add(
(
f"{source.entity_name}:out{port}",
f"{pe.entity_name}:in{i}",
f"{cnt}",
)
for o, output in enumerate(outputs):
for (dest, port), cnt in output.items():
edges.add(
(
f"{pe.entity_name}:out{o}",
f"{dest.entity_name}:in{port}",
f"{cnt}",
)
for src_str, dest_str, cnt_str in edges:
dg.edge(src_str, dest_str, label=cnt_str)
@property
return self._memories
@property
def processing_elements(self) -> List[ProcessingElement]:
return self._processing_elements
@property
def direct_interconnects(self) -> Optional[ProcessCollection]:
return self._direct_interconnects
@property
def schedule_time(self) -> int:
# doc-string inherited
return self._schedule_time