Skip to content
Snippets Groups Projects
signal_flow_graph.py 35.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • """@package docstring
    
    B-ASIC Signal Flow Graph Module.
    TODO: More info.
    """
    
    
    from typing import List, Iterable, Sequence, Dict, Optional, DefaultDict, MutableSet
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
    from numbers import Number
    
    from collections import defaultdict, deque
    
    from io import StringIO
    from queue import PriorityQueue
    import itertools
    
    from b_asic.port import SignalSourceProvider, OutputPort
    
    from b_asic.operation import Operation, AbstractOperation, MutableOutputMap, MutableRegisterMap
    
    Kevin Scott's avatar
    Kevin Scott committed
    from b_asic.signal import Signal
    
    from b_asic.graph_component import GraphID, GraphIDNumber, GraphComponent, Name, TypeName
    
    from b_asic.special_operations import Input, Output, Register
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
    
    
    class GraphIDGenerator:
        """A class that generates Graph IDs for objects."""
    
        _next_id_number: DefaultDict[TypeName, GraphIDNumber]
    
        def __init__(self, id_number_offset: GraphIDNumber = 0):
            self._next_id_number = defaultdict(lambda: id_number_offset)
    
        def next_id(self, type_name: TypeName) -> GraphID:
    
            """Get the next graph id for a certain graph id type."""
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            self._next_id_number[type_name] += 1
            return type_name + str(self._next_id_number[type_name])
    
        @property
        def id_number_offset(self) -> GraphIDNumber:
            """Get the graph id number offset of this generator."""
    
            return self._next_id_number.default_factory()  # pylint: disable=not-callable
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
        """Signal flow graph.
        TODO: More info.
        """
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
        _components_by_id: Dict[GraphID, GraphComponent]
        _components_by_name: DefaultDict[Name, List[GraphComponent]]
    
        _components_dfs_order: List[GraphComponent]
        _operations_dfs_order: List[Operation]
        _operations_topological_order: List[Operation]
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
        _graph_id_generator: GraphIDGenerator
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
        _input_operations: List[Input]
        _output_operations: List[Output]
    
        _original_components_to_new: MutableSet[GraphComponent]
    
        _original_input_signals_to_indices: Dict[Signal, int]
        _original_output_signals_to_indices: Dict[Signal, int]
    
        _precedence_list: Optional[List[List[OutputPort]]]
    
        def __init__(self, input_signals: Optional[Sequence[Signal]] = None, output_signals: Optional[Sequence[Signal]] = None,
                     inputs: Optional[Sequence[Input]] = None, outputs: Optional[Sequence[Output]] = None,
                     id_number_offset: GraphIDNumber = 0, name: Name = "",
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
                     input_sources: Optional[Sequence[Optional[SignalSourceProvider]]] = None):
    
            input_signal_count = 0 if input_signals is None else len(input_signals)
            input_operation_count = 0 if inputs is None else len(inputs)
    
            output_signal_count = 0 if output_signals is None else len(
                output_signals)
    
            output_operation_count = 0 if outputs is None else len(outputs)
    
            super().__init__(input_count=input_signal_count + input_operation_count,
                             output_count=output_signal_count + output_operation_count,
                             name=name, input_sources=input_sources)
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
    
            self._components_by_id = dict()
            self._components_by_name = defaultdict(list)
    
            self._components_dfs_order = []
            self._operations_dfs_order = []
            self._operations_topological_order = []
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            self._graph_id_generator = GraphIDGenerator(id_number_offset)
            self._input_operations = []
            self._output_operations = []
    
            self._original_components_to_new = {}
            self._original_input_signals_to_indices = {}
            self._original_output_signals_to_indices = {}
    
            if input_signals is not None:
                for input_index, signal in enumerate(input_signals):
                    assert signal not in self._original_components_to_new, "Duplicate input signals supplied to SFG construcctor."
                    new_input_op = self._add_component_unconnected_copy(Input())
                    new_signal = self._add_component_unconnected_copy(signal)
                    new_signal.set_source(new_input_op.output(0))
                    self._input_operations.append(new_input_op)
                    self._original_input_signals_to_indices[signal] = input_index
    
            # Setup input operations, starting from indices ater input signals.
            if inputs is not None:
                for input_index, input_op in enumerate(inputs, input_signal_count):
                    assert input_op not in self._original_components_to_new, "Duplicate input operations supplied to SFG constructor."
                    new_input_op = self._add_component_unconnected_copy(input_op)
                    for signal in input_op.output(0).signals:
                        assert signal not in self._original_components_to_new, "Duplicate input signals connected to input ports supplied to SFG construcctor."
                        new_signal = self._add_component_unconnected_copy(signal)
                        new_signal.set_source(new_input_op.output(0))
                        self._original_input_signals_to_indices[signal] = input_index
    
                    self._input_operations.append(new_input_op)
    
            if output_signals is not None:
                for output_index, signal in enumerate(output_signals):
                    new_output_op = self._add_component_unconnected_copy(Output())
                    if signal in self._original_components_to_new:
                        # Signal was already added when setting up inputs.
                        new_signal = self._original_components_to_new[signal]
                        new_signal.set_destination(new_output_op.input(0))
    
                        # New signal has to be created.
                        new_signal = self._add_component_unconnected_copy(signal)
                        new_signal.set_destination(new_output_op.input(0))
    
                    self._output_operations.append(new_output_op)
                    self._original_output_signals_to_indices[signal] = output_index
    
            # Setup output operations, starting from indices after output signals.
            if outputs is not None:
                for output_index, output_op in enumerate(outputs, output_signal_count):
                    assert output_op not in self._original_components_to_new, "Duplicate output operations supplied to SFG constructor."
                    new_output_op = self._add_component_unconnected_copy(output_op)
                    for signal in output_op.input(0).signals:
                        new_signal = None
                        if signal in self._original_components_to_new:
                            # Signal was already added when setting up inputs.
                            new_signal = self._original_components_to_new[signal]
                        else:
                            # New signal has to be created.
    
                            new_signal = self._add_component_unconnected_copy(
                                signal)
    
    
                        new_signal.set_destination(new_output_op.input(0))
                        self._original_output_signals_to_indices[signal] = output_index
    
                    self._output_operations.append(new_output_op)
    
    
            output_operations_set = set(self._output_operations)
    
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            # Search the graph inwards from each input signal.
    
            for signal, input_index in self._original_input_signals_to_indices.items():
    
                new_signal = self._original_components_to_new[signal]
                if new_signal.destination is None:
                    if signal.destination is None:
    
                        raise ValueError(
                            f"Input signal #{input_index} is missing destination in SFG")
    
                    if signal.destination.operation not in self._original_components_to_new:
    
                        self._add_operation_connected_tree_copy(
                            signal.destination.operation)
    
                elif new_signal.destination.operation in output_operations_set:
                    # Add directly connected input to output to ordered list.
    
                        [new_signal.source.operation, new_signal, new_signal.destination.operation])
    
                        [new_signal.source.operation, new_signal.destination.operation])
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
    
            # Search the graph inwards from each output signal.
    
            for signal, output_index in self._original_output_signals_to_indices.items():
    
                new_signal = self._original_components_to_new[signal]
                if new_signal.source is None:
                    if signal.source is None:
    
                        raise ValueError(
                            f"Output signal #{output_index} is missing source in SFG")
    
                    if signal.source.operation not in self._original_components_to_new:
    
                        self._add_operation_connected_tree_copy(
                            signal.source.operation)
    
        def __str__(self) -> str:
            """Get a string representation of this SFG."""
    
            string_io = StringIO()
            string_io.write(super().__str__() + "\n")
            string_io.write("Internal Operations:\n")
            line = "-" * 100 + "\n"
            string_io.write(line)
    
            for operation in self.get_operations_topological_order():
                string_io.write(str(operation) + "\n")
    
            string_io.write(line)
    
            return string_io.getvalue()
    
    
        def __call__(self, *src: Optional[SignalSourceProvider], name: Name = "") -> "SFG":
            """Get a new independent SFG instance that is identical to this SFG except without any of its external connections."""
    
            return SFG(inputs=self._input_operations, outputs=self._output_operations,
                       id_number_offset=self.id_number_offset, name=name, input_sources=src if src else None)
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
        @classmethod
        def type_name(cls) -> TypeName:
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            return "sfg"
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
        def evaluate(self, *args):
    
            result = self.evaluate_outputs(args, {}, {}, "")
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            n = len(result)
            return None if n == 0 else result[0] if n == 1 else result
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
        def evaluate_output(self, index: int, input_values: Sequence[Number], results: Optional[MutableOutputMap] = None, registers: Optional[MutableRegisterMap] = None, prefix: str = "") -> Number:
    
            if index < 0 or index >= self.output_count:
    
                raise IndexError(
                    f"Output index out of range (expected 0-{self.output_count - 1}, got {index})")
    
                raise ValueError(
                    f"Wrong number of inputs supplied to SFG for evaluation (expected {self.input_count}, got {len(input_values)})")
    
            if results is None:
                results = {}
            if registers is None:
                registers = {}
    
            # Set the values of our input operations to the given input values.
            for op, arg in zip(self._input_operations, self.truncate_inputs(input_values)):
                op.value = arg
    
    
            value = self._evaluate_source(self._output_operations[index].input(
                0).signals[0].source, results, registers, prefix)
    
            results[self.key(index, prefix)] = value
            return value
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
        def connect_external_signals_to_components(self) -> bool:
    
            """ Connects any external signals to this SFG's internal operations. This SFG becomes unconnected to the SFG
    
            it is a component off, causing it to become invalid afterwards. Returns True if succesful, False otherwise. """
            if len(self.inputs) != len(self.input_operations):
                raise IndexError(f"Number of inputs does not match the number of input_operations in SFG.")
            if len(self.outputs) != len(self.output_operations):
                raise IndexError(f"Number of outputs does not match the number of output_operations SFG.")
            if len(self.input_signals) == 0:
                return False
            if len(self.output_signals) == 0:
                return False
    
            # For each input_signal, connect it to the corresponding operation
            for port, input_operation in zip(self.inputs, self.input_operations):
                dest = input_operation.output(0).signals[0].destination
                dest.clear()
                port.signals[0].set_destination(dest)
    
            # For each output_signal, connect it to the corresponding operation
    
            for port, output_operation in zip(self.outputs, self.output_operations):
                src = output_operation.input(0).signals[0].source
                src.clear()
                port.signals[0].set_source(src)
            return True
    
        @property
        def input_operations(self) -> Sequence[Operation]:
            """Get the internal input operations in the same order as their respective input ports."""
            return self._input_operations
    
        @property
        def output_operations(self) -> Sequence[Operation]:
            """Get the internal output operations in the same order as their respective output ports."""
            return self._output_operations
    
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
        def split(self) -> Iterable[Operation]:
    
        def to_sfg(self) -> 'SFG':
            return self
    
    
        def inputs_required_for_output(self, output_index: int) -> Iterable[int]:
            if output_index < 0 or output_index >= self.output_count:
    
                raise IndexError(
                    f"Output index out of range (expected 0-{self.output_count - 1}, got {output_index})")
    
            input_indexes_required = []
            sfg_input_operations_to_indexes = {
                input_op: index for index, input_op in enumerate(self._input_operations)}
            output_op = self._output_operations[output_index]
            queue = deque([output_op])
            visited = set([output_op])
            while queue:
                op = queue.popleft()
                if isinstance(op, Input):
                    if op in sfg_input_operations_to_indexes:
                        input_indexes_required.append(
                            sfg_input_operations_to_indexes[op])
                        del sfg_input_operations_to_indexes[op]
    
                for input_port in op.inputs:
                    for signal in input_port.signals:
                        if signal.source is not None:
                            new_op = signal.source.operation
                            if new_op not in visited:
                                queue.append(new_op)
                                visited.add(new_op)
    
            return input_indexes_required
    
    
        def copy_component(self, *args, **kwargs) -> GraphComponent:
    
            return super().copy_component(*args, **kwargs, inputs=self._input_operations, outputs=self._output_operations,
                                          id_number_offset=self.id_number_offset, name=self.name)
    
    
        @property
        def id_number_offset(self) -> GraphIDNumber:
            """Get the graph id number offset of the graph id generator for this SFG."""
            return self._graph_id_generator.id_number_offset
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
        @property
        def components(self) -> Iterable[GraphComponent]:
    
            """Get all components of this graph in depth-first order."""
    
    
        @property
        def operations(self) -> Iterable[Operation]:
            """Get all operations of this graph in depth-first order."""
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
        def get_components_with_type_name(self, type_name: TypeName) -> List[GraphComponent]:
            """Get a list with all components in this graph with the specified type_name.
    
            Keyword arguments:
            type_name: The type_name of the desired components.
            """
            i = self.id_number_offset + 1
            components = []
            found_comp = self.find_by_id(type_name + str(i))
            while found_comp is not None:
                components.append(found_comp)
                i += 1
                found_comp = self.find_by_id(type_name + str(i))
    
            return components
    
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
        def find_by_id(self, graph_id: GraphID) -> Optional[GraphComponent]:
    
            """Find the graph component with the specified ID.
            Returns None if the component was not found.
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
            Keyword arguments:
    
            graph_id: Graph ID of the desired component.
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
            """
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            return self._components_by_id.get(graph_id, None)
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
    
        def find_by_name(self, name: Name) -> Sequence[GraphComponent]:
            """Find all graph components with the specified name.
            Returns an empty sequence if no components were found.
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
    
            Keyword arguments:
    
    Jacob Wahlman's avatar
    Jacob Wahlman committed
            """
    
    Ivar Härnqvist's avatar
    Ivar Härnqvist committed
            return self._components_by_name.get(name, [])
    
    
        def _add_component_unconnected_copy(self, original_component: GraphComponent) -> GraphComponent:
            assert original_component not in self._original_components_to_new, "Tried to add duplicate SFG component"
            new_component = original_component.copy_component()
            self._original_components_to_new[original_component] = new_component
    
            new_id = self._graph_id_generator.next_id(new_component.type_name())
    
            new_component.graph_id = new_id
            self._components_by_id[new_id] = new_component
            self._components_by_name[new_component.name].append(new_component)
            return new_component
    
        def _add_operation_connected_tree_copy(self, start_op: Operation) -> None:
    
            op_stack = deque([start_op])
            while op_stack:
                original_op = op_stack.pop()
    
                # Add or get the new copy of the operation.
    
                if original_op not in self._original_components_to_new:
                    new_op = self._add_component_unconnected_copy(original_op)
    
                    self._components_dfs_order.append(new_op)
                    self._operations_dfs_order.append(new_op)
    
                    new_op = self._original_components_to_new[original_op]
    
                for original_input_port in original_op.inputs:
                    if original_input_port.signal_count < 1:
                        raise ValueError("Unconnected input port in SFG")
    
                    for original_signal in original_input_port.signals:
    
                        # Check if the signal is one of the SFG's input signals.
                        if original_signal in self._original_input_signals_to_indices:
                            # New signal already created during first step of constructor.
                            new_signal = self._original_components_to_new[original_signal]
    
                            new_signal.set_destination(new_op.input(original_input_port.index))
    
                            self._components_dfs_order.extend([new_signal, new_signal.source.operation])
                            self._operations_dfs_order.append(new_signal.source.operation)
    
                        # Check if the signal has not been added before.
                        elif original_signal not in self._original_components_to_new:
    
                                raise ValueError("Dangling signal without source in SFG")
    
                            new_signal = self._add_component_unconnected_copy(original_signal)
                            new_signal.set_destination(new_op.input(original_input_port.index))
    
                            self._components_dfs_order.append(new_signal)
    
    
                            original_connected_op = original_signal.source.operation
    
                            # Check if connected Operation has been added before.
                            if original_connected_op in self._original_components_to_new:
                                # Set source to the already added operations port.
    
                                new_signal.set_source(self._original_components_to_new[original_connected_op].output(
                                    original_signal.source.index))
    
                                # Create new operation, set signal source to it.
    
                                new_connected_op = self._add_component_unconnected_copy(original_connected_op)
                                new_signal.set_source(new_connected_op.output(original_signal.source.index))
    
                                self._components_dfs_order.append(new_connected_op)
                                self._operations_dfs_order.append(new_connected_op)
    
                                # Add connected operation to queue of operations to visit.
    
                for original_output_port in original_op.outputs:
                    for original_signal in original_output_port.signals:
                        # Check if the signal is one of the SFG's output signals.
    
                        if original_signal in self._original_output_signals_to_indices:
    
                            # New signal already created during first step of constructor.
    
                            new_signal = self._original_components_to_new[original_signal]
    
                            new_signal.set_source(new_op.output(original_output_port.index))
    
                            self._components_dfs_order.extend([new_signal, new_signal.destination.operation])
                            self._operations_dfs_order.append(new_signal.destination.operation)
    
                        elif original_signal not in self._original_components_to_new:
    
                                raise ValueError("Dangling signal without source in SFG")
    
                            new_signal = self._add_component_unconnected_copy(original_signal)
                            new_signal.set_source(new_op.output(original_output_port.index))
    
                            self._components_dfs_order.append(new_signal)
    
    
                            original_connected_op = original_signal.destination.operation
                            # Check if connected operation has been added.
    
                            if original_connected_op in self._original_components_to_new:
                                # Set destination to the already connected operations port.
    
                                new_signal.set_destination(self._original_components_to_new[original_connected_op].input(
                                    original_signal.destination.index))
    
                            else:
                                # Create new operation, set destination to it.
    
                                new_connected_op = self._add_component_unconnected_copy(original_connected_op)
                                new_signal.set_destination(new_connected_op.input(original_signal.destination.index))
    
                                self._components_dfs_order.append(new_connected_op)
                                self._operations_dfs_order.append(new_connected_op)
    
                                # Add connected operation to the queue of operations to visit.
    
        def replace_component(self, component: Operation, _id: GraphID):
    
            """Find and replace all components matching either on GraphID, Type or both.
            Then return a new deepcopy of the sfg with the replaced component.
    
            Arguments:
            component: The new component(s), e.g Multiplication
            _id: The GraphID to match the component to replace.
            """
    
    
            _sfg_copy = self()
            _component = _sfg_copy.find_by_id(_id)
    
    
            assert _component is not None and isinstance(_component, Operation), \
                "No operation matching the criteria found"
            assert _component.output_count == component.output_count, \
                "The output count may not differ between the operations"
            assert _component.input_count == component.input_count, \
                "The input count may not differ between the operations"
    
            for index_in, _inp in enumerate(_component.inputs):
                for _signal in _inp.signals:
                    _signal.remove_destination()
                    _signal.set_destination(component.input(index_in))
    
            for index_out, _out in enumerate(_component.outputs):
                for _signal in _out.signals:
                    _signal.remove_source()
                    _signal.set_source(component.output(index_out))
    
            # The old SFG will be deleted by Python GC
    
            return _sfg_copy()
    
    
        def insert_operation(self, component: Operation, output_comp_id: GraphID) -> Optional["SFG"]:
    
            """Insert an operation in the SFG after a given source operation.
            The source operation output count must match the input count of the operation as well as the output
            Then return a new deepcopy of the sfg with the inserted component.
    
            Arguments:
            component: The new component, e.g Multiplication.
            output_comp_id: The source operation GraphID to connect from.
            """
    
            # Preserve the original SFG by creating a copy.
            sfg_copy = self()
            output_comp = sfg_copy.find_by_id(output_comp_id)
            if output_comp is None:
                return None
    
            assert not isinstance(output_comp, Output), \
                "Source operation can not be an output operation."
            assert len(output_comp.output_signals) == component.input_count, \
                "Source operation output count does not match input count for component."
            assert len(output_comp.output_signals) == component.output_count, \
                "Destination operation input count does not match output for component."
    
            for index, signal_in in enumerate(output_comp.output_signals):
                destination = signal_in.destination
                signal_in.set_destination(component.input(index))
                destination.connect(component.output(index))
    
            # Recreate the newly coupled SFG so that all attributes are correct.
            return sfg_copy()
    
        def remove_operation(self, operation_id: GraphID) -> "SFG":
            """Returns a version of the SFG where the operation with the specified GraphID removed.
            The operation has to have the same amount of input- and output ports or a ValueError will 
            be raised. If no operation with the entered operation_id is found then returns None and does nothing."""
            sfg_copy = self()
            operation = sfg_copy.find_by_id(operation_id)
            if operation is None:
                return None
    
            if operation.input_count != operation.output_count:
                raise ValueError("Different number of input and output ports of operation with the specified id")
    
            for i, outport in enumerate(operation.outputs):
                if outport.signal_count > 0:
                    if operation.input(i).signal_count > 0 and operation.input(i).signals[0].source is not None:
                        in_sig = operation.input(i).signals[0]
                        source_port = in_sig.source
                        source_port.remove_signal(in_sig)
                        operation.input(i).remove_signal(in_sig)
                        for out_sig in outport.signals.copy():
                            out_sig.set_source(source_port)
                    else:
                        for out_sig in outport.signals.copy():
                            out_sig.remove_source()
                else:
                    if operation.input(i).signal_count > 0:
                        in_sig = operation.input(i).signals[0]
                        operation.input(i).remove_signal(in_sig)
    
            return sfg_copy()
    
    
        def _evaluate_source(self, src: OutputPort, results: MutableOutputMap, registers: MutableRegisterMap, prefix: str) -> Number:
    
            src_prefix = prefix
            if src_prefix:
                src_prefix += "."
            src_prefix += src.operation.graph_id
    
            key = src.operation.key(src.index, src_prefix)
            if key in results:
                value = results[key]
                if value is None:
    
                    raise RuntimeError(f"Direct feedback loop detected when evaluating operation.")
    
            results[key] = src.operation.current_output(src.index, registers, src_prefix)
    
            input_values = [self._evaluate_source(
                input_port.signals[0].source, results, registers, prefix) for input_port in src.operation.inputs]
    
            value = src.operation.evaluate_output(src.index, input_values, results, registers, src_prefix)
    
        def get_precedence_list(self) -> List[List[OutputPort]]:
            """Returns a Precedence list of the SFG where each element in n:th the list consists
            of elements that are executed in the n:th step. If the precedence list already has been
            calculated for the current SFG then returns the cached version."""
    
                return self._precedence_list
    
            # Find all operations with only outputs and no inputs.
            no_input_ops = list(filter(lambda op: op.input_count == 0, self.operations))
            reg_ops = self.get_components_with_type_name(Register.type_name())
    
            # Find all first iter output ports for precedence
            first_iter_ports = [op.output(i) for op in (no_input_ops + reg_ops) for i in range(op.output_count)]
    
            self._precedence_list = self._traverse_for_precedence_list(first_iter_ports)
    
            return self._precedence_list
    
    
        def _traverse_for_precedence_list(self, first_iter_ports: List[OutputPort]) -> List[List[OutputPort]]:
    
            # Find dependencies of output ports and input ports.
    
            remaining_inports_per_operation = {op: op.input_count for op in self.operations}
    
    
            # Traverse output ports for precedence
            curr_iter_ports = first_iter_ports
            precedence_list = []
    
            while curr_iter_ports:
                # Add the found ports to the current iter
                precedence_list.append(curr_iter_ports)
    
                next_iter_ports = []
    
                for outport in curr_iter_ports:
                    for signal in outport.signals:
                        new_inport = signal.destination
                        # Don't traverse over Registers
                        if new_inport is not None and not isinstance(new_inport.operation, Register):
    
                            new_op = new_inport.operation
                            remaining_inports_per_operation[new_op] -= 1
                            if remaining_inports_per_operation[new_op] == 0:
                                next_iter_ports.extend(new_op.outputs)
    
    
                curr_iter_ports = next_iter_ports
    
            return precedence_list
    
        def show_precedence_graph(self) -> None:
            p_list = self.get_precedence_list()
            pg = Digraph()
            pg.attr(rankdir = 'LR')
    
            # Creates nodes for each output port in the precedence list
            for i in range(len(p_list)):
                ports = p_list[i]
                with pg.subgraph(name='cluster_' + str(i)) as sub:
                    sub.attr(label='N' + str(i + 1))
                    for port in ports:
                        sub.node(port.operation.graph_id + '.' + str(port.index))
            # Creates edges for each output port and creates nodes for each operation and edges for them as well
            for i in range(len(p_list)):
                ports = p_list[i]
                for port in ports:
                    for signal in port.signals:
                        pg.edge(port.operation.graph_id + '.' + str(port.index), signal.destination.operation.graph_id)
                        pg.node(signal.destination.operation.graph_id, shape = 'square')
                    pg.edge(port.operation.graph_id, port.operation.graph_id + '.' + str(port.index))
                    pg.node(port.operation.graph_id, shape = 'square')
    
            pg.view()  
    
    
        def print_precedence_graph(self) -> None:
            """Prints a representation of the SFG's precedence list to the standard out.
            If the precedence list already has been calculated then it uses the cached version,
            otherwise it calculates the precedence list and then prints it."""
            precedence_list = self.get_precedence_list()
    
            line = "-" * 120
            out_str = StringIO()
            out_str.write(line)
    
            printed_ops = set()
    
            for iter_num, iter in enumerate(precedence_list, start=1):
                for outport_num, outport in enumerate(iter, start=1):
                    if outport not in printed_ops:
                        # Only print once per operation, even if it has multiple outports
                        out_str.write("\n")
                        out_str.write(str(iter_num))
                        out_str.write(".")
                        out_str.write(str(outport_num))
                        out_str.write(" \t")
                        out_str.write(str(outport.operation))
                        printed_ops.add(outport)
    
                out_str.write("\n")
                out_str.write(line)
    
            print(out_str.getvalue())
    
        def get_operations_topological_order(self) -> Iterable[Operation]:
            """Returns an Iterable of the Operations in the SFG in Topological Order.
            Feedback loops makes an absolutely correct Topological order impossible, so an 
            approximative Topological Order is returned in such cases in this implementation."""
            if self._operations_topological_order:
                return self._operations_topological_order
    
            no_inputs_queue = deque(list(filter(lambda op: op.input_count == 0, self.operations)))
            remaining_inports_per_operation = {op: op.input_count for op in self.operations}
    
            # Maps number of input counts to a queue of seen objects with such a size.
            seen_with_inputs_dict = defaultdict(deque)
            seen = set()
            top_order = []
    
            assert len(no_inputs_queue) > 0, "Illegal SFG state, dangling signals in SFG."
    
            first_op = no_inputs_queue.popleft()
            visited = set([first_op])
            p_queue = PriorityQueue()
            p_queue.put((-first_op.output_count, first_op))  # Negative priority as max-heap popping is wanted
            operations_left = len(self.operations) - 1
    
            seen_but_not_visited_count = 0
    
            while operations_left > 0:
                while not p_queue.empty():
                    op = p_queue.get()[1]
    
                    operations_left -= 1
                    top_order.append(op)
                    visited.add(op)
    
                    for neighbor_op in op.subsequent_operations:
                        if neighbor_op not in visited:
                            remaining_inports_per_operation[neighbor_op] -= 1
                            remaining_inports = remaining_inports_per_operation[neighbor_op]
    
                            if remaining_inports == 0:
                                p_queue.put((-neighbor_op.output_count, neighbor_op))
    
                            elif remaining_inports > 0:
                                if neighbor_op in seen:
                                    seen_with_inputs_dict[remaining_inports + 1].remove(neighbor_op)
                                else:
                                    seen.add(neighbor_op)
                                    seen_but_not_visited_count += 1
    
                                seen_with_inputs_dict[remaining_inports].append(neighbor_op)
    
                # Check if have to fetch Operations from somewhere else since p_queue is empty
                if operations_left > 0:
                    # First check if can fetch from Operations with no input ports
                    if no_inputs_queue:
                        new_op = no_inputs_queue.popleft()
                        p_queue.put((new_op.output_count, new_op))
    
                    # Else fetch operation with lowest input count that is not zero
                    elif seen_but_not_visited_count > 0:
                        for i in itertools.count(start=1):
                            seen_inputs_queue = seen_with_inputs_dict[i]
                            if seen_inputs_queue:
                                new_op = seen_inputs_queue.popleft()
                                p_queue.put((-new_op.output_count, new_op))
                                seen_but_not_visited_count -= 1
                                break
                    else:
                        raise RuntimeError("Unallowed structure in SFG detected")
    
            self._operations_topological_order = top_order
    
            return self._operations_topological_order