Newer
Older

Mikael Henriksson
committed
from typing import Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union
import matplotlib.pyplot as plt
import networkx as nx
from matplotlib.axes import Axes
from matplotlib.markers import MarkerStyle
from b_asic._preferences import LATENCY_COLOR
# Default latency coloring RGB tuple
_LATENCY_COLOR = tuple(c / 255 for c in LATENCY_COLOR)

Mikael Henriksson
committed
#
# Human-intuitive sorting:
# https://stackoverflow.com/questions/2669059/how-to-sort-alpha-numeric-set-in-python
#
# Typing '_T' to help Pyright propagate type-information
#
_T = TypeVar('_T')

Mikael Henriksson
committed
def _sorted_nicely(to_be_sorted: Iterable[_T]) -> List[_T]:
"""Sort the given iterable in the way that humans expect."""
convert = lambda text: int(text) if text.isdigit() else text
alphanum_key = lambda key: [
convert(c) for c in re.split('([0-9]+)', str(key))
]
return sorted(to_be_sorted, key=alphanum_key)
def draw_exclusion_graph_coloring(
exclusion_graph: nx.Graph,
color_dict: Dict[Process, int],
ax: Optional[Axes] = None,
color_list: Optional[
Union[List[str], List[Tuple[float, float, float]]]
] = None,
):
"""
Use matplotlib.pyplot and networkx to draw a colored exclusion graph from the memory assignment
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
.. code-block:: python
_, ax = plt.subplots(1, 1)
collection = ProcessCollection(...)
exclusion_graph = collection.create_exclusion_graph_from_overlap()
color_dict = nx.greedy_color(exclusion_graph)
draw_exclusion_graph_coloring(exclusion_graph, color_dict, ax=ax[0])
plt.show()
Parameters
----------
exclusion_graph : nx.Graph
A nx.Graph exclusion graph object that is to be drawn.
color_dict : dictionary
A color dictionary where keys are Process objects and where values are integers representing colors. These
dictionaries are automatically generated by :func:`networkx.algorithms.coloring.greedy_color`.
ax : :class:`matplotlib.axes.Axes`, optional
A Matplotlib Axes object to draw the exclusion graph
color_list : Optional[Union[List[str], List[Tuple[float,float,float]]]]
"""
COLOR_LIST = [
'#aa0000',
'#00aa00',
'#0000ff',
'#ff00aa',
'#ffaa00',
'#00ffaa',
'#aaff00',
'#aa00ff',
'#00aaff',
'#ff0000',
'#00ff00',
'#0000aa',
'#aaaa00',
'#aa00aa',
'#00aaaa',
]
if color_list is None:
node_color_dict = {k: COLOR_LIST[v] for k, v in color_dict.items()}
else:
node_color_dict = {k: color_list[v] for k, v in color_dict.items()}
node_color_list = [node_color_dict[node] for node in exclusion_graph]
nx.draw_networkx(
exclusion_graph,
node_color=node_color_list,
ax=ax,
pos=nx.spring_layout(exclusion_graph, seed=1),
)
class ProcessCollection:
"""
Collection of one or more processes
Parameters
----------
collection : set of :class:`~b_asic.process.Process` objects
The Process objects forming this ProcessCollection.

Mikael Henriksson
committed
schedule_time : int
Length of the time-axis in the generated graph.
cyclic : bool, default: False
If the processes operates cyclically, i.e., if time 0 == time *schedule_time*.
def __init__(
self,
collection: Set[Process],
schedule_time: int,
cyclic: bool = False,
):
self._collection = collection
self._schedule_time = schedule_time
self._cyclic = cyclic
def add_process(self, process: Process):
"""
Add a new process to this process collection.
Parameters
----------
process : Process
The process object to be added to the collection
"""
self._collection.add(process)
def draw_lifetime_chart(
self,
ax: Optional[Axes] = None,
show_name: bool = True,
bar_color: Union[str, Tuple[float, ...]] = _LATENCY_COLOR,
marker_color: Union[str, Tuple[float, ...]] = "black",
marker_read: str = "X",
marker_write: str = "o",
show_markers: bool = True,
):
"""
Use matplotlib.pyplot to generate a process variable lifetime chart from this process collection.
Parameters
----------
ax : :class:`matplotlib.axes.Axes`, optional
Matplotlib Axes object to draw this lifetime chart onto. If not provided (i.e., set to None),
this method will return a new axes object on return.
show_name : bool, default: True
Show name of all processes in the lifetime chart.
bar_color : color, optional
Bar color in lifetime chart.
marker_color : color, default 'black'
Color for read and write marker.
marker_write : str, default 'x'
Marker at write time in the lifetime chart.
marker_read : str, default 'o'
Marker at read time in the lifetime chart.
show_markers : bool, default True
Show markers at read and write times.
Returns
-------
ax: Associated Matplotlib Axes (or array of Axes) object
"""
if ax is None:
_, _ax = plt.subplots()
else:
_ax = ax

Mikael Henriksson
committed
# Lifetime chart left and right padding
process.execution_time for process in self._collection
if max_execution_time > self._schedule_time:
# Schedule time needs to be greater than or equal to the maximum process lifetime
f'Error: Schedule time: {self._schedule_time} < Max execution'
f' time: {max_execution_time}'

Mikael Henriksson
committed
# Generate the life-time chart
for i, process in enumerate(_sorted_nicely(self._collection)):
bar_start = process.start_time % self._schedule_time
bar_end = self._schedule_time if bar_end == 0 else bar_end
if show_markers:
_ax.scatter(
x=bar_start,
y=i + 1,
marker=marker_write,
color=marker_color,
zorder=10,
)
_ax.scatter(
x=bar_end,
y=i + 1,
marker=marker_read,
color=marker_color,
zorder=10,
)
if bar_end >= bar_start:
_ax.broken_barh(
[(PAD_L + bar_start, bar_end - bar_start - PAD_L - PAD_R)],
(i + 0.55, 0.9),
color=bar_color,
_ax.broken_barh(
[
(
PAD_L + bar_start,
self._schedule_time - bar_start - PAD_L,
)
],
(i + 0.55, 0.9),
color=bar_color,
)
_ax.broken_barh(
[(0, bar_end - PAD_R)], (i + 0.55, 0.9), color=bar_color
)
if show_name:
_ax.annotate(
str(process),
(bar_start + PAD_L + 0.025, i + 1.00),
va="center",
)
_ax.grid(True)
_ax.xaxis.set_major_locator(MaxNLocator(integer=True))
_ax.yaxis.set_major_locator(MaxNLocator(integer=True))
_ax.set_xlim(0, self._schedule_time)
_ax.set_ylim(0.25, len(self._collection) + 0.75)
return _ax
def create_exclusion_graph_from_overlap(
self, add_name: bool = True
) -> nx.Graph:
"""
Generate exclusion graph based on processes overlapping in time
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
Parameters
----------
add_name : bool, default: True
Add name of all processes as a node attribute in the exclusion graph.
Returns
-------
An nx.Graph exclusion graph where nodes are processes and arcs
between two processes indicated overlap in time
"""
exclusion_graph = nx.Graph()
exclusion_graph.add_nodes_from(self._collection)
for process1 in self._collection:
for process2 in self._collection:
if process1 == process2:
continue
else:
t1 = set(
range(
process1.start_time,
process1.start_time + process1.execution_time,
)
)
t2 = set(
range(
process2.start_time,
process2.start_time + process2.execution_time,
)
)
if t1.intersection(t2):
exclusion_graph.add_edge(process1, process2)
return exclusion_graph
def split(
self,
heuristic: str = "graph_color",
read_ports: Optional[int] = None,
write_ports: Optional[int] = None,
total_ports: Optional[int] = None,
) -> Set["ProcessCollection"]:
"""
Split this process storage based on some heuristic.
Parameters
----------
heuristic : str, default: "graph_color"
The heuristic used when splitting this ProcessCollection.
Valid options are:
* "graph_color"
* "..."
read_ports : int, optional
The number of read ports used when splitting process collection based on memory variable access.
The number of write ports used when splitting process collection based on memory variable access.
The total number of ports used when splitting process collection based on memory variable access.
A set of new ProcessCollection objects with the process splitting.
"""
if total_ports is None:
if read_ports is None or write_ports is None:
raise ValueError("inteligent quote")
else:
total_ports = read_ports + write_ports
else:
read_ports = total_ports if read_ports is None else read_ports
write_ports = total_ports if write_ports is None else write_ports
if heuristic == "graph_color":
return self._split_graph_color(
read_ports, write_ports, total_ports
)
else:
raise ValueError("Invalid heuristic provided")
def _split_graph_color(
self, read_ports: int, write_ports: int, total_ports: int
) -> Set["ProcessCollection"]:
"""
Parameters
----------
read_ports : int, optional
The number of read ports used when splitting process collection based on memory variable access.
The number of write ports used when splitting process collection based on memory variable access.
The total number of ports used when splitting process collection based on memory variable access.
"""
if read_ports != 1 or write_ports != 1:
raise ValueError(
"Splitting with read and write ports not equal to one with the"
" graph coloring heuristic does not make sense."
)
if total_ports not in (1, 2):
raise ValueError(
"Total ports should be either 1 (non-concurrent reads/writes)"
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
" or 2 (concurrent read/writes) for graph coloring heuristic."
)
# Create new exclusion graph. Nodes are Processes
exclusion_graph = nx.Graph()
exclusion_graph.add_nodes_from(self._collection)
# Add exclusions (arcs) between processes in the exclusion graph
for node1 in exclusion_graph:
for node2 in exclusion_graph:
if node1 == node2:
continue
else:
node1_stop_time = node1.start_time + node1.execution_time
node2_stop_time = node2.start_time + node2.execution_time
if total_ports == 1:
# Single-port assignment
if node1.start_time == node2.start_time:
exclusion_graph.add_edge(node1, node2)
elif node1_stop_time == node2_stop_time:
exclusion_graph.add_edge(node1, node2)
elif node1.start_time == node2_stop_time:
exclusion_graph.add_edge(node1, node2)
elif node1_stop_time == node2.start_time:
exclusion_graph.add_edge(node1, node2)
else:
# Dual-port assignment
if node1.start_time == node2.start_time:
exclusion_graph.add_edge(node1, node2)
elif node1_stop_time == node2_stop_time:
exclusion_graph.add_edge(node1, node2)
# Perform assignment
coloring = nx.coloring.greedy_color(exclusion_graph)
draw_exclusion_graph_coloring(exclusion_graph, coloring)
# process_collection_list = [ProcessCollection()]*(max(coloring.values()) + 1)
process_collection_set_list = [
set() for _ in range(max(coloring.values()) + 1)
process_collection_set_list[color].add(process)
ProcessCollection(
process_collection_set, self._schedule_time, self._cyclic
)
for process_collection_set in process_collection_set_list