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Where we are 
• Previous lectures: 

• ECM  
• Identify battery capacity from 

measurements. 
• Identify the open circuit voltage as a 

function of SOC from measurement data. 
• Identify impedance parameters from 

dynamic operation. 
• Today’s lecture:  

• Utilize ECMs for state-of-charge estimation. 
(Lab 2)
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SOC-Estimation



SOC-Estimation
• An estimate of all battery-pack cells’ SOC is an important input to balancing, 

energy, and power calculations. 
• While we might be interested in estimating the entire battery-model state, we first 

focus on estimating state-of-charge only. 
• We’ll see some simple methods that lack robustness. 
• Then, we examine methods that estimate the entire battery-model state, 

enabling some more advanced applications. 
• The model estimated in the previous lecture with on RC-link will be used. 

• The OCV-curve and the parameters are identified on other data than used for 
SOC estimation. 
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Benefits of Accurate SOC Estimates
• Life: Prevents overcharging or over-discharging, protecting battery cells from 

damage and extending their lifespan. 
• Performance: Enables full utilization of battery capacity, reducing the need 

for overly conservative usage. 
• Density: Allows smaller, lighter battery packs by using the battery efficiently 

within design limits. 
• Economy: Reduces costs through smaller systems and fewer warranty claims 

due to increased reliability.
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Recall Definition of State-of-Charge 
• State of charge (SOC): 

  

• Percentage of charge in the battery/cell 
• 100% full 
• 0% empty 

SOC =
available charge

total charge capacity
⋅ 100 %
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Some Approaches to Estimate State of Charge



Approximation of the True SOC
• Assumption: Actual SOC is 100% at the end 

of a CCCV (Constant Current Constant 
Voltage) charging cycle. 

• Total Capacity (Q): Identified from full 
charge/discharge cycle data. 

• "True" SOC Computation: 
• Method: Coulomb counting. 
• Equation:  

                       

where  is the time just after  CCCV ends, 
and   is the current. 

• This approximation of SOC is only valid for 
short-time series.

z(t) = 1 +
1
Q ∫

t

t0

i(t)dτ

t0
i(τ)
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Test Data for SOC-estimation

Test Data for SOC-estimation
x (t, z) = (t0,1)

CCCV



SOC Estimation via Voltage-Based Method
• Measure cell terminal voltage under 

load  
• Assume   
• Use the OCV-function  

                                             
to infer the SOC:                                          
                  

• Misses effects of resistive losses, 
diffusion voltages 

• Wide flat areas of OCV-curve decrease 
the accuracy of the estimate

v(t)
v(t) ≈ voc

voc = OCV(z)

̂z = OCV−1(voc) ≈ OCV−1(v)
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v(t) ≈ voc

̂z



Poor, Voltage-based Method for SOC Estimation

• Voltage-based SOC estimate works 
for the no-current case with a 
relaxed battery. 

• RMSE SOC:  9.18 %
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SOC Estimation based on Thevenin Equivalent Circuit

• Assume the model  where  is 
total cell resistance.  

• SOC-estimation based on Thevenin equivalent model: 
 

• Thevenin equivalent circuit model works for 
constant currents. 

• RMSE SOC:  3.30 % 

v(t) = voc(t) + i(t)R R

z(t) = OCV−1(v(t) − i(t)R0

= ̂vocv

)
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Voltage based SOC estimate

Voltage based SOC
True SOC

Voltage based SOC estimate

Voltage based SOC
True SOC



Poor, Current-based Method to Estimate SOC
• Coulomb counting keeps track of the charge in and out of the 

cell  

 

• A time-discretized form 

 

• Okay for short periods of operation when initial conditions are 
known or can frequently be “reset”. 

• Subject to drift due to current sensor’s fluctuations, current-
sensor bias, incorrect capacity estimate, and other losses 

• Uncertainty/error bounds grow over time, increasing without 
bound until the estimate is “reset”. 

• RMSE SOC:   1.19 %    3.30 %    2.60 %

z(t) = z(0) −
1
Q ∫

t

0
i(t)dt

zk+1 = zk −
Δtk
Q

ik
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Coulomb Counting SOC Estimate

Correct Q and I
10 % current bias
10 % capacity error
True SOC

Filter-based approaches to combine the voltage and current-based information! 



Model-based State-Estimation
Extended Kalman Filter



Using Extended Kalman Filter (EKF) for SOC Estimation
• The EKF is an advanced technique used to estimate the State of Charge (SOC) of 

batteries, especially under dynamic conditions. 
• It combines the information of current and voltage measurements to estimate 

the SOC. 
• The EKF is a probabilistic framework for estimating the SOC of batteries, 

allowing for control of the trade-off between voltage and current 
measurements by assigning uncertainties. 

• Batteries exhibit nonlinear characteristics, especially in the OCV-function. 
• EKF is an extension of the Kalman Filter, designed to handle nonlinear systems.
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Some Probability Theory 
• : A random variable  is normal 

distribution with mean  and variance . 
• Expected value:  
•    

• : A random vector .  
• Expectance value:   
• Correlation matrix  

• Covariance matrix 

X ∼ N(μ, σ2) X
μ σ2

E(X) = μ
Var(X) = E[(X − μ)2] = σ2

X ∼ N(x̄, ΣX̃) X
E(X) = x̄
ΣX = E(XXT)
ΣX̃ = E((X − x̄)(X − x̄)T)
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Probability distribution N(  = 2, 2 = 22)

• Covariance vs variance: 

 

where  is the correlation coefficient 
measuring the linear dependence between  
and . 

ΣX̃ = [
σ2

X1
ρ12σX1

σX2

ρ12σX1
σX2

σ2
X2

]
ρ12

X1
X2 |ρ12 | ≤ 1

Correlation. 	
Uncorrelated if 0

Variance



Some Probability Theory 
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• Covariance vs variance: 

 

where  is the correlation coefficient 
measuring the linear dependence between  
and . 

ΣX̃ = [
σ2

X1
ρ12σX1

σX2

ρ12σX1
σX2

σ2
X2

]
ρ12

X1
X2 |ρ12 | ≤ 1

Correlation. 	
Uncorrelated if 0

Variance

• : A random variable  is normal 
distribution with mean  and variance . 

• Expected value:  
•    

• : A random vector .  
• Expectance value:   
• Correlation matrix  

• Covariance matrix 

X ∼ N(μ, σ2) X
μ σ2

E(X) = μ
Var(X) = E[(X − μ)2] = σ2

X ∼ N(x̄, ΣX̃) X
E(X) = x̄
ΣX = E(XXT)
ΣX̃ = E((X − x̄)(X − x̄)T)

X = (X1
X2)

2D Gaussian Contours
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Kalman Filter



Key Concepts of the Kalman Filter
• The Kalman filter is designed to estimate the state of a system, which could 

include variables like SOC in the battery case. 
• The system is typically described by a state vector  that evolves.xk
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System Model
The Kalman filter assumes the system follows a linear dynamic model, described by two main equations.  
The input  has been omitted for simplicity, but it is straightforward to include. 
State Equation 

 
• : State transition matrix (describes how the system evolves). 
• Control matrix (describes the effect of control input  
• : White process noise with 0 mean  and covariance matrix  (uncertainty in the model). 
Measurement Equation 

 
• : Measurement matrix (relates the state to the observed measurement). 

• : White measurement noise with 0 mean  and covariance matrix  (uncertainty in the measurements). 

uk

xk+1 = Fkxk + Gkwk

Fk

wk E(wk) = 0 E(wkwT
k ) = Qk

yk = Hkxk + vk

Hk

vk E(vk) = 0 E(vkvT
k ) = Rk
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Kalman Filter 
The goal is given  
• an initial state  with covariance matrix 

 describing the uncertainty of the 
initial state,  

• inputs , and outputs   
to estimate the state  of the system as accurately as possible, i.e,  

• the most likely state estimate    
• with the smallest possible covariance matrix 

 describing the uncertainty of the 
state estimate.

x0
P0 = E[(x0 − ̂x0)(x0 − ̂x0)T]

u1, …, uk y1, …, yk

xk

̂xk = E(xk)

Pk = E[(xk − ̂xk)(xk − ̂xk)T]
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Battery context

Given an initial SOC

Current och voltage 
measurements

Optimal SOC 
estimate with a 
description of the 
uncertainty.

+



Kalman Filter Procedure
The filter is often written as: 
1. Initialize the filter with apriori information 

  where  

2. Measurement update; take a new 
measurement  and 

 

3. Time update; proceed to next time-step 
 

Iterate from step 2.

̂x0|−1 = x0, P0|−1 = P0

yt

( ̂xt|t−1, Pt|t−1) → ( ̂xt|t, Pt|t)

( ̂xt|t, Pt|t) → ( ̂xt+1|t, Pt+1|t)
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Kalman Filter, the equations
• If you look up the equations, they might look like 
• Measurement update 

 

• Time update: 

 

• The measurement equation is non-linear in the 
battery case and a non-linear extension is needed.

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)−1

̂xk|k = ̂xk|k−1 + Kk(yk − Hk ̂xk|k−1)
Pk|k = Pk|k−1 − KkHkPk|k−1

̂xk+1|k = Fk ̂xk|k + Bkuk

Pk+1|k = FkPk|kFT
k + GkQkGT

k
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Correct predicted state using measurement

Determine the Kalman gain (determines how 
much to trust the prediction vs. the measurement)

xk+1 = Fkxk + Bkuk + Gkwk Ewk = 0, Qk

yk = Hkxk + vk Evk = 0, Rk

System model

Adjust the uncertainty based on how much 
the measurement corrects the prediction

Predict the next state based on the current 
state and system model.

Predict the next covariance (uncertainty) 
based on the model and process noise.



Extended Kalman Filter (EKF)
Non-linear extension to KF needed for the battery model



Extended Kalman Filter (EKF)
• Extended Kalman Filter is a method where the same methodology is used for non-linear 

systems.  

  

Difficulty: 
• Expected value and variance in linear transformations are easy to express explicitly.  
• This is not true for nonlinear transforms. 
 Idea: 
• Compute the Kalman gain and covariance matrices by linearizing around the current state . 
• The problem is that we do not know , instead, we linearize around our best guess .

xk+1 = f(xk, uk, wk) Ewk = 0, Qk

yk = h(xk, uk) + vk Evk = 0, Rk

xk

xk ̂xk
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xk+1 = Fkxk + Bkuk + Gkwk Ewk = 0, Qk

yk = Hkxk + vk Evk = 0, Rk

Linear system model



Extended Kalman Filter
Measurement Update 

 

̂xk|k = ̂xk|k−1 + Kk(yk − h( ̂xk|k−1, uk))

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)−1

Pk|k = Pk|k−1 − KkHkPk|k−1

Hk =
∂
∂x

h(x, u) |x= ̂xk|k,u=uk

Time Update 

 
̂xk+1|k = f( ̂xk|k, uk,0)

Pk+1|k = FkPk|kFT
k + GkQkGT

k

Fk =
∂
∂x

f(x, u, w) |x= ̂xk|k,u=uk,w=0

Gk = =
∂

∂w
f(x, u, w) |x= ̂xk|k,u=uk,w=0

xk+1 = f (xk, uk, wk) Ewk = 0, Qk

yk = h(xk, uk) + vk Evk = 0, Rk

Non-linear system model

To apply the filter we need to define , , , h, , ,  , , and .f ∂f
∂x

∂f
∂w

∂h
∂x

̂x0|−1 P0|−1 Qk Rk



EKF-based SOC-Estimation



Preparing to Implement EKF on ESC model
State equations 
• State of charge 

 

• Capacitor voltage 

 

Measurement equation 

zk+1 = zk +
Δtk
Q

ik + w1,k

vc,k+1 = (1 −
Δtk

R1C1
)vc,k +

Δtk
C1

ik + w2,k

vk = OCV(zk) + vc,k + R0ik
=h(xk,uk)

+ ek
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Variables 

,   ,  ,   

Covariances and initial guess  

,     ,      ,            

State equation 

 

,      

Measurement equation 

                      

xk = [ zk
vc,k] uk = [ ik

Δtk] yk = vk wk = [w1,k
w2,k]

Σwk
= Q = [

σ2
z 0

0 σ2
vc

] Σek
= R = σ2

v x0 = [ z0
vc,0] P0 = Σx0

=
σ2

z0
0

0 σ2
vc,0

[ zk+1
vc,k+1]
=xk+1

= f (xk, uk, wk) =
zk +

Δtk
Q ik + w1,k

(1 −
Δtk

R1C1
)vc,k +

Δtk
C1

ik + w2,k

Fk =
∂f
∂xk

=

∂zk+1
∂zk

∂zk+1
∂vc,k

∂vc,k+1
∂zk

∂vc,k+1
∂vc,k

= [
1 0

0 1 −
Δtk

R1C1
] Gk =

∂f
∂wk

=

∂zk+1
∂w1,k

∂zk+1
∂w1,k

∂vc,k+1
∂w2,k

∂vc,k+1
∂w2,k

= [1 0
0 1]

h(xk, uk) = OCV(zk) + vc,k + R0ik Hk =
∂h
∂xk

= [ ∂h
∂zk

∂h
∂vc,k ] = [ dOCV

dzk
(zk) 1]



Estimating the OCV-Function Derivative

• Low derivative corresponds to little 
information in voltage 
measurement. 

• The accuracy of the SOC estimate 
based on voltage is best at low and 
high SOCs.
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SOC = [0:0.01:1];                      % Select a SOC-grid
dOCVdSOC = gradient(OCVf(SOC), SOC);   % Numerical derivative 
dOCVdz = @(z) interp1(SOC,dOCVdSOC,z); % Interpolate  



EKF Results
• Variance of voltage measurement  and process noise  

• Initial condition , ,  

R = (0.6)2 V2 Q = 1 A2

z0|−1 = SOC(v0) vc,0|−1 = Ri0 P0|−1 = [0.052 0
0 R2]
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EKF based SOC estimate

EKF based SOC
True SOC

EKF based SOC estimate

EKF based SOC estimate error
3  error bounds

RMSE SOC: 0.90 % Best today!



EKF based SOC estimate

EKF based SOC
True SOC

Tuning EKF Filter
Initial condition  

• Initial SOC could be estimated based on terminal voltage:  

• Capacitance voltage is less critical and can be approximated as             

The standard deviations  (~ uncertainties) could be seen as tuning 
variables: 

Model uncertainty: ,  Measurement uncertainty:      

Initial condition uncertainty:    

• The initial guess should be of a reasonable order of magnitude. For example, 
if the initial SOC uncertainty is approximately , then  is a 
good starting point.  

• Q/R Ratio Importance: Balances trust between model predictions (Q) and 
measurements (R); higher Q/R favors measurements, lower Q/R favors 
model—crucial for filter stability and performance.

x0 = [ z0
vc,0]

z0 = SOC(v0)
vc,0 = 0

σx

Q = [
σ2

z 0

0 σ2
vc

] R = σ2
v

P0 =
σ2

z0
0

0 σ2
vc,0

±0.05 σz0
= 0.05
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The blue interval shows 3 -confidence bands.	
With a gaussian assumption  with 99.7%

σz
z ∈ [ ̂z ± 3σz]



SOC Estimate and Error with Uncertainty Estimates
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EKF based SOC estimate

EKF based SOC estimate error
3  error bounds

EKF based SOC estimate

EKF based SOC
True SOC

 has a minimum at 30 % SOC, which gives high SOC uncertainty at that point.
dOCV

dz



Tuning Examples
• What happens if the initial SOC is 50% off? 
• SOC estimate is good after 3 hours.  
• The uncertainty bounds are too narrow at the 

start! 
• Fix by increasing initial SOC uncertainty 

to about 0.5  

• SOC estimate good from start! 
• Fix by trusting the measurement more, 

i.e., increasing Q/R by a factor of 10. 
• SOC estimate is good after 30 min 
• the confidence band is initially too 

narrow, and relying more on voltage-
based SOC estimates will degrade the 
SOC performance at lower SOCs. 

σz0
=
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EKF based SOC estimate

EKF based SOC
True SOC

EKF based SOC estimate

EKF based SOC
True SOC

EKF based SOC estimate

EKF based SOC
True SOC

EKF based SOC estimate

EKF based SOC
True SOC



Learning Outcomes - SOC-estimation 
By the end of this lecture, you should be able to: 
• Implement SOC estimation using: 

• Coulomb counting 
• Voltage-based approaches 

• Terminal voltage methods 
• The Tino method 

• EKF-based methods with: 
• Thevenin equivalent model 
• R-RC model 

• Understand the pros and cons of different SOC estimation methods, including EKF-based approaches. 
• Understand how different uncertainty parameters ( , , initial ) affect SOC estimation performance, and apply this 

knowledge to effectively tune the Extended Kalman Filter (EKF). 
• Understand how the derivative of the OCV function impacts SOC estimation uncertainty.

Q R P0
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