
Battery Modelling
TSFS19 Battery Systems - Lectures 3 and 4
Mattias Krysander

Battery Modelling — Equivalent Circuit Models
• Equivalent circuit model (ECM)

describing the relationship between the
voltage of the battery and current
(during charging)

• The model consists of 3 parts:
• The charge capacity of the cell.
• Open circuit voltage as a function of

SOC,
• Battery impedance describing the

polarization losses.
• The parts can be modeled separately

using different measurements.

v i
i > 0

Q

voc(SOC)

2

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

Battery Modelling Lectures — Content
• Show typical experiments used for parameterization.
• Identify battery capacity from measurements.
• Identify the open circuit voltage as a function of SOC from measurement data.
• Convert a time-continuous model into a time-discrete model
• Identify battery impedance from

• a current step using voltage response characteristics.
• dynamic operation using linear regression and non-linear minimization methods.

• Assumptions:
• Impedance is constant, i.e., does not significantly depend on SOC.
• The OCV is only dependent on SOC.
• Temperature is fixed to 25 C, so temperature dependence need not be considered.

• This and the next lecture prepare for the first computer lab where an ECM will be developed from measurement data.

∘

3

Capacity and Open Circuit Voltage

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

Open Circuit Voltage
• Requirements for identifying OCV:
• Measurements from the entire

SOC range, from fully charged to
discharged battery.

• If the battery has rested ()
long enough, and

 which can be
measured.

• To save time in measuring the OCV
curve, it is usually sufficient to use
a small current.

i = 0
vc = 0

voc(SOC) = v

5

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

Capacity Estimation
• Definitions:
• The capacity is the amount of charge going from 0% SOC

to 100% SOC.
• 0% SOC: OCV = V (the minimum allowed terminal

voltage)
• 100% SOC: OCV = V (the maximum allowed terminal

voltage)

• To get to 100%/0% SOC CCCV charge/discharge needs to
be performed.

• A low current can be used to get close to 100%/0% SOC,
the smaller the better.

min

max

6

Time [min]

SO
C

 [%
]

Vo
lta

ge
 [V

]

1C Constant Current Charging

SOC
Voltage
Cut-off voltage

SOC is not 100 % after CC-charging

Cycling Test/Capacity Estimation
• Low current, here 3 A (C/50)
• Cycling

• Discharge from maximum to
minimum allowable voltage: 4.15 V-
>3.1V

• Charging: 3.1V->4.15V
• The (discharge) capacity can be calculated:

•

• Ah

Q = − ∫
empty

full
idt = − IΔt =

= 3.003 ⋅ 52 = 156.2

7

It looks like an OCV curve but plotted against
time, not the battery's state of charge

Numerical Integration: The trapezoidal rule

• Compute

• Numerical approximation:

∫
π

0
sin(x) dx =

= [−cos(x)]π
0 = 1 − (−1) = 2

8

x = [0:pi/8:pi];
y = sin(x);
Area = trapz(x,y);

Voltage as a function of DoD
• Illustration of voltage calculation as a function of DoD.

9

charge
discharge

60 Ah

cumtrapz

Relationship between SOC and DOD
SOC is defined, as you may recall, by

This can be expressed with the battery's total capacity and as

z =
remaining charge

total capacity
Qtot DoD

z =
Qtot − DoD

Qtot

10

Open Circuit Voltage (OCV)
For constant current and during
discharge and charge, the following applies:

If then OCV can be approximated by

Idis < 0 Ichg > 0

vdis(z) = voc(z) + Idis(Ri(z) + R(z))
vchg(z) = voc(z) + Ichg(Ri(z) + R(z))

Idis = − Ichg

voc(z) ≈
vchg(z) + vdis(z)

2

11

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

charge
discharge

OCV-function for High SOC-values

• cannot be used for high
SOCs, see figure.

• Assume the resistance is not changing much for high SOCs:

• From

we get

• Compute for a high SOC when both voltages exist.
• Estimate OCV as

• Check also that

voc(SOC) ≈
vchg(SOC) + vdis(SOC)

2

R̃ = Ri(SOC) + R(SOC)

vdis(SOC) = voc(SOC) + IdisR̃

vchg(SOC) = voc(SOC) + IchgR̃

R̃ =
vchg(SOC) − vdis(SOC)

Ichg − Idis
R̃

voc(SOC) = vdis(SOC) − IdisR̃
voc(100) = vcut-off

12

vchg(SOC)

vdis(SOC)

 not existingvchg(SOC)

OCV-function Implementation
• In Matlab the OCV-function can be implemented as interpolation in a table as

• Given a SOC-value z the OCV voltage ocv is computed as

• Given a open circuit voltage v the SOC-value soc is computed as

13

% SOC = [0:0.01:1]; example SOC grid
% OCV(i) is the open circuit voltage at SOC(i)
OCVf = @(z) interp1(SOC,OCV,z)
SOCf = @(v) interp1(OCV,SOC,v)

ocv = OCVf(z)

soc = SOCf(v)

Impedance Modeling

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

Impedance Estimation
• The impedance in this model depends on the

parameters , , and .
• The parameters can depend on SOC and

temperature.
• Next, a method for estimating parameters for a given

SOC and temperature is described.
• Identify the impedance using data where SOC does

not change significantly.
• The current must vary to estimate the capacitance .
• Here, a step in current is chosen, but sinusoidal

waves at different frequencies or white noise with a
broad frequency content are also commonly used.

Ri R C

C

15

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

Fundamental Idea for Parameter Identification
1. Set up the battery model so that

the voltage can be estimated
from the current

2. Calculate the parameters so that

the model's estimated voltage
matches (as closely as possible) the
measured voltage

v(t)

̂v(t) = h(i(t) |SOC, R, Ri, C)

̂v

v
min
R,Ri,C

∥v − ̂v∥

16

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i
ic

RMSE - Root mean square error is one good option

Differential Equations in State-Space Form
Differential equations in the state-space form in continuous-time are written as

Where
• is the state vector (the variables that are differentiated)
• the input vector
• the output vector
• and are known often non-linear functions.
If the input signal for and the initial state is given the output for can be computed.
We want to write the battery model in state-space form with as input and as output.

dx
dt

= f (x(t), u(t))

y(t) = g(x(t), u(t))

x(t)
u(t)
y(t)
f g

u(t) t ≥ 0 x(0) y(t) t ≥ 0
i(t) v(t)

17

State equation

Measurement equation

Derivation of State-Space Form
Circuit laws give:
KVL: (1) (measurement equation)

Capacitance: (2) (state equation for)

KVL: (3) (used for elimination of in (2))

SOC: (4) (Can be rewritten as state eq for)

State-space form: (5)

 (6)

 (7)

v(t) = voc(z) + Ri i(t) + vc(t)

ic(t) = C
dvc

dt
(t) vc

vc = R(i − ic) = Ri − Ric ic

z =
1
Q ∫ idt z

dvc

dt
= −

vc

RC
+

i
C

dz
dt

=
1
Q

i

v(t) = vc + voc(z) + Ri i

18

v

R

Ri

voc(SOC)
+

+

-

C

+- vc

i − ic

ic

i

States: 	
Input: 	
Output: 	
Constants: 	
Function:

z, vc
i

v
Ri, R, C, Q

voc(z)

Model Parameters from Current Step Response

Problem Statement
Given the state-space form

 (5)

 (7)
an input and an initial value of the state
the output can be computed.
Assume a current step:

and initial condition V, i.e.,
 för

dvc

dt
(t) = −

vc(t)
RC

+
i(t)
C

v(t) = vc(t) + voc(t) + Ri i(t)
i(t) vc(0)

v(t)

i(t) = {0 t < 0
I t ≥ 0

vc(0) = 0
v(t) = vc(t) + voc + Ri i(t) = voc t < 0

20

Analytical Solution of Differential Equations
An inhomogeneous first-order differential equation is and the solution is

 where and are determined using initial conditions and .

 (8)

The homogeneous solution is and the particular solution is .

 = >

The constant is calculated from the initial condition which gives

 <=> <=>
This gives the solution
 (9)
and if it is substituted into (7), it yields

 (10)

 as => decreases due to discharge. Assume a linear decrease

and compensate for this.

·y + ay = f (t)
y = yh + yp yh = ke−ax yp f (t)

dvc

dt
(t) +

vc(t)
RC

=
I
C

vc,h(t) = ke− t
RC vc,p(t) = IR

vc(t) = vc,h(t) + vc,p(t) vc(t) = ke− t
RC + IR

k vc(0) = 0
vc(0) = ke− 0

RC + i(0)R 0 = k ⋅ 1 + IR k = − IR

vc(t) = IR(1 − e− t
RC)

v(t) = {voc + RI(1 − e− t
RC) + RiI t ≥ 0

voc t < 0

v(t) = voc + RI + RiI

constant

t → ∞ voc

21

Computation of Model Parameters
:

:

: då

: The time constant for the system is the point in time when
of the total change of the step response is reached. This

gives:

 <=>

voc v(0−) = voc = 21.75 V

Ri v(0) = voc + IRi = 21.11 V

Ri =
v(t) − voc

I
=

21.11 − 21.75
−149

= 4.3 mΩ

R v(t) = voc + I(Ri + R(1 − e− t
RC)) → voc + I(Ri + R) t → ∞

R =
v(t) − voc

I
− Ri =

20.857 − 21.75
−149

− 4.3 ⋅ 10−3 = 1.7 mΩ

C τ t = τ
1 − e−1 = 63 %

τ
RC

= 1 C =
τ
R

=
30
1.7
 kF = 17.6 kF

22

voc

IR

RC

63%

IRi

 for v(t) = voc + I(Ri + R(1 − e− t
RC)) t ≥ 0

Simulation of a time-discretized model
Assume that all signals are sampled at and denote them .

, (Forward Euler

method)

Time-discrete model

y(t), y(t + Δt), y(t + 2Δt), … yk, yk+1, …

dvc

dt
(t) = −

vc(t)
RC

+
i(t)
C

dvc

dt
(t) ≈

vc(t + Δt) − vc(t)
Δt

=
vc,k+1 − vc,k

Δt

v(t) = vc(t) + voc + Ri i(t)

vc,k+1 = vc,k(1 −
Δt
RC

) +
Δt
C

ik

vk = vc,k + voc,k + Ri ik

23

n = numel(i); % Input i = [i_1, ..., i_n]’
vc = zeros(n,1);% Initial condition vc(1) = 0
v = zeros(n,1);
for k = 1:n-1
 v(k) = vc(k) + voc(k) + Ri*i(k);
 vc(k+1) = vc(k)*(1-dt/(R*C)) + dt/C*i(k);
end
v(n) = vc(n) + voc(n) + Ri*i(n);

How good was the model?

24

The step response with compensation of voc
The step response without compensation of but where
an estimated OCV curve is used to calculate

voc
voc(DOD)

charge
discharge
mean (OCV)

Model Parameters from Dynamic Operation

Linear Regression for Dynamic Operation
• Consider the data to the left.
• Estimation over a range of different SOC-

levels.
• Same problem formulation:

• Given:

• Find:

• Methods
• Linear regression
• Non-linear minimization methods.

̂v(t) = h(i(t) |SOC, R, Ri, C)
min
R,Ri,C

∥v − ̂v(R, Ri, C)∥

26

Input:

Output/target:

Linear Regression

Linear Regression
• Model equation where

• : vector of observed outputs
• : matrix of observed inputs
• : parameter vector to be identified
• : error/noise

• Objective:

•

• Closed-form solution

• (In Matlab: Theta = X\Y;)
• Model prediction:

•

Y = Xθ + ε
Y ∈ ℝn×1

X ∈ ℝn×p

θ ∈ ℝp×1

ε ∈ ℝn×1

̂θ = min
θ

Y − Xθ
2

̂θ = (X⊤X)−1 X⊤Y

̂Y = X ̂θ

28

Some Properties	
Cons:	
• Limited to/assume linear models	
Pros:	
• Unique solution (if X har full column rank)	
• Fast to compute	
• Good baseline model

Remove Trend Caused by Changing SOC
• The OCV-function is not linear, but since it

has been identified the impedance can be
computed using linear regression.

• Alt 1: Use estimated OCV-function and
Coulomb-counting

• Alt 2: Use a general detrend-function.
• The remaining part is a linear system.

29

n = numel(i); % Insignal v = [v_1, ..., v_n]’
z = SOCf(v(1)); % Initial SOC given by voltage
for k = 1:n-1

z(k+1) = z(k) + dt * i(k)/Q;
end
v_tilde = v - OCVf(z);

Parameter Estimation using Linear Regression
• where

 , , and

In Matlab solved by:
Parameters obtained by solving the non-linear equation system:

, , and

Y = Xθ

Y =

ṽ2 − ṽ1

Δt
⋮

ṽn − ṽn−1

Δt

X =

i2 − i1
Δt . −ṽ1 i1
⋮ ⋮ ⋮

in − in−1

Δt −ṽn−1 in−1

θ =

Ri
1

RC
Ri

RC + 1
C

Ri = θ1 C =
1

θ3 − θ1θ2
R =

θ3

θ2
− θ1

30

Theta = X\Y;

Simulation of Fitted Model
• An example code for simulating the fitted

model.

31

n = numel(i); % Insignal i = [i_1, ..., i_n]’
vc = zeros(n,1);% Initial condition vc(1) = 0
z = SOCf(v(1)); % Initial SOC given by voltage
v = zeros(n,1);
for k = 1:n-1

v(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
z(k+1) = z(k) + dt * i(k)/Q;

 vc(k+1) = vc(k)*(1-dt/(R*C)) + dt/C*i(k);
end
v(n) = vc(n) + OCVf(z(n)) + Ri*i(n);

Non-linear Minimization Methods

Fminunc, x = fminunc(f,x0). (Unconstrained solver)
Objective: Find the local minimum of a function with a start in
• The default solver is the BFGS quasi-Newton method.
Update Rule:

• : Approximation of Hessian matrix.

• : Gradient of the function.

• : Step size (determined by line search)
Summary Workflow
• Compute search direction from gradient and Hessian approximation

• Stepsize optimization

• Step update

• Hessian approximation update

f (x) x0

xk+1 = xk + αkpk = xk − αkH−1
k ∇f (xk)

Hk

∇f (xk)
αk

Hkpk = − ∇f (xk)
αk

xk+1 = xk + αkpk

Hk+1

33

Battery Parameter Estimation by Function Minimisation
• : A scalar measure of

model fit.
• Rot Mean Square

Estimate (RMSE)
• : A vector of the parameters

to be estimated.
• Example of simulation with

different parameter values.

f(x)

x

34

Time [min]

Vo
lta

ge
 [V

]

RMSE 60 mV
RMSE 86 mV
RMSE 24 mV
measurement

Define Optimization Function 35

% Simulate model
n = numel(i);
vc = zeros(n,1);% Initial condition vc(1) = 0
z = SOCf(v(1)); % Initial SOC
vhat = zeros(n,1);
for k = 1:n-1

vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
z(k+1) = z(k) + dt(k) * i(k)/Q;
vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);

end
vhat(n) = vc(n) + OCVf(z(n)) + Ri*i(n);

function [r,vhat] = ECM1RC(x,data,OCVf)
% Init
v = data.v;
i = data.i;
dt = diff(data.t);
% Set parameters
Ri = x(1);
C = x(2);
R = x(3);

% Evaluate mean square error
r = mean((v-vhat).^2);

% Define a function with only
% parameter values x as input
fun = @(x) ECM1RC(x,data,OCVf);

% Find minimizing values
[x,r] = fminunc(fun,x0)

EC
M
1R

C.
m

Setting up the Minimization Problem
• Selection of training data

36

Fit on training data with deep discharge

Deep discharge (difficult)Non-deep discharge

High SOC and OCV-function 	
dependence near fully discharged

Extending The Parameter Set
With non-linear techniques, it is
easy to include, e.g.,
• the initial SOC as an additional

parameter to optimize.
• the capacity Q
However, introducing more
parameters makes the
minimization problem more
complex with possible local
minima resulting in wrong
solutions.

37

% Set parameters
Ri = x(1);
C = x(2);
R = x(3);
z = SOCf(v(1)); % Initial SOC

% Simulate model
n = numel(i);
vc = zeros(n,1);% Initial condition vc(1) = 0
vhat = zeros(n,1);
for k = 1:n-1

z(k+1) = z(k) + dt(k) * i(k)/Q;
 vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
 vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);
end
vhat(n) = vc(n) + OCVf(z(n)) + Ri*i(n);

% Set parameters
Ri = x(1);
C = x(2);
R = x(3);
z = x(4); % Initial SOC

% Simulate model
n = numel(i);
vc = zeros(n,1);% Initial condition vc(1) = 0
vhat = zeros(n,1);
for k = 1:n-1

z(k+1) = z(k) + dt(k) * i(k)/Q;
 vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
 vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);
end
vhat(n) = vc(n) + OCVf(z(n)) + Ri*i(n);

% Set parameters
Ri = x(1);
C = x(2);
R = x(3);
z = x(4); % Initial SOC
Q = x(5);

% Simulate model
n = numel(i);
vc = zeros(n,1);% Initial condition vc(1) = 0
vhat = zeros(n,1);
for k = 1:n-1

z(k+1) = z(k) + dt(k) * i(k)/Q;
 vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
 vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);
end
vhat(n) = vc(n) + OCVf(z(n)) + Ri*i(n);

Why is Initial Guess Important?x0

• These methods are local, not global — so
they only "see" the landscape near

• A poor initial guess can cause the
optimizer to converge to a bad local
minimum, or even fail to converge.

• A good (i.e., one near the true
minimum) can drastically reduce the
number of iterations and function
evaluations.

x0

x0

38

[x,r] = fminunc(fun,x0)

Normalization
• The parameters are of different orders of magnitude, e.g., , kF.
• Normalization is to rescale the parameters to the same size.
• Normalized parameters are easier to optimize with possible improvements in both the speed of

convergency and accuracy.
• Implementation:

• Original problem:

• Assume is a good guess for (elementwise product), then

• Solve the normalized problem:

• Recover the original parameters
• Normalization is similar to feature scaling in machine learning.

R ≈ 10 mΩ C ≈ 1

x* = arg min
x

f(x)

x0 x* = z ∘ x0 zi ≈ 1
z* = arg min

z
f(z ∘ x0)

x* = z* ∘ x0

39

Lab 1 - Equivalent Circuit Modeling

Lab information
• Register lab groups at Lisam before Thursday at 16:00.
• Nominal time: 2 + 2 h scheduled sessions
• Lab 1 and 2 will be in Python
• Scheduled in normal classrooms, work on your laptop
• Material for lab 1:

• Python_installation.md is a quick guide to get started
• Instructions with questions to answer
• Code skeleton where the tasks are solved by completing the code
• Datasets including slow charge cycles and dynamic tests

41

https://signup.app.cloud.it.liu.se/Courses/TSFS19_2025VT_59/admin/activities/15156?occasionId=125025

Learning Outcomes
• Compute battery capacity from measurements.
• Compute open circuit voltage as a function of SOC from measurement data.
• Convert a time-continuous model into a time-discrete model
• Compute battery impedance from

• A current step using voltage response characteristics.
• Dynamic operation using

• linear regression
• nonlinear minimization techniques

• Describe experiments for parameter identification of the different parts of the ECM.

42

www.liu.se

TSFS19 Battery Systems - Lectures 3 and 4
Mattias Krysander

