
Battery Modelling
TSFS19 Battery Systems - Lectures 3 and 4 
Mattias Krysander



Battery Modelling — Equivalent Circuit Models
• Equivalent circuit model (ECM) 

describing the relationship between the 
voltage of the battery  and current  
(  during charging) 

• The model consists of 3 parts: 
• The charge capacity  of the cell.  
• Open circuit voltage as a function of  

SOC,  
• Battery impedance describing the  

polarization losses. 
• The parts can be modeled separately 

using different measurements.
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Battery Modelling Lectures — Content 
• Show typical experiments used for parameterization. 
• Identify battery capacity from measurements. 
• Identify the open circuit voltage as a function of SOC from measurement data. 
• Convert a time-continuous model into a time-discrete model 
• Identify battery impedance from  

• a current step using voltage response characteristics. 
• dynamic operation using linear regression and non-linear minimization methods. 

• Assumptions:  
• Impedance is constant, i.e., does not significantly depend on SOC.  
• The OCV is only dependent on SOC.  
• Temperature is fixed to 25 C, so temperature dependence need not be considered. 

• This and the next lecture prepare for the first computer lab where an ECM will be developed from measurement data.
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Capacity and Open Circuit Voltage
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Open Circuit Voltage
• Requirements for identifying OCV: 
• Measurements from the entire 

SOC range, from fully charged to 
discharged battery. 

• If the battery has rested ( ) 
long enough,  and   

 which can be 
measured. 

• To save time in measuring the OCV 
curve, it is usually sufficient to use 
a small current.

i = 0
vc = 0

voc(SOC) = v
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Capacity Estimation
• Definitions: 
• The capacity is the amount of charge going from 0% SOC 

to 100% SOC. 
•      0% SOC: OCV = V     (the minimum allowed terminal 

voltage) 
• 100% SOC: OCV = V    (the maximum allowed terminal 

voltage) 

• To get to 100%/0% SOC CCCV charge/discharge needs to 
be performed. 

• A low current can be used to get close to 100%/0% SOC, 
the smaller the better.
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Cycling Test/Capacity Estimation
• Low current, here 3 A (C/50) 
• Cycling 

• Discharge from maximum to 
minimum allowable voltage: 4.15 V-
>3.1V 

• Charging: 3.1V->4.15V 
• The (discharge) capacity can be calculated: 

•   

•  Ah

Q = − ∫
empty

full
idt = − IΔt =

= 3.003 ⋅ 52 = 156.2
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It looks like an OCV curve but plotted against 
time, not the battery's state of charge



Numerical Integration: The trapezoidal rule

• Compute 

 
• Numerical approximation:

∫
π

0
sin(x) dx =

= [−cos(x)]π
0 = 1 − (−1) = 2
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x = [0:pi/8:pi]; 
y = sin(x); 
Area = trapz(x,y);



Voltage as a function of DoD
• Illustration of voltage calculation as a function of DoD.   
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Relationship between SOC and DOD
SOC is defined, as you may recall, by 

 

This can be expressed with the battery's total capacity  and  as 

z =
remaining charge

total capacity
Qtot DoD

z =
Qtot − DoD

Qtot
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Open Circuit Voltage (OCV)
For constant current  and  during 
discharge and charge, the following applies: 

 

If  then OCV can be approximated by  

Idis < 0 Ichg > 0

vdis(z) = voc(z) + Idis(Ri(z) + R(z))
vchg(z) = voc(z) + Ichg(Ri(z) + R(z))

Idis = − Ichg

voc(z) ≈
vchg(z) + vdis(z)

2
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OCV-function for High SOC-values

•  cannot be used for high 
SOCs, see figure.  

• Assume the resistance is not changing much for high SOCs:   
  

• From 

                        

 

we get               

• Compute  for a high SOC when both voltages exist. 
• Estimate OCV as  

• Check also that 

voc(SOC) ≈
vchg(SOC) + vdis(SOC)

2

R̃ = Ri(SOC) + R(SOC)

vdis(SOC) = voc(SOC) + IdisR̃

vchg(SOC) = voc(SOC) + IchgR̃

R̃ =
vchg(SOC) − vdis(SOC)

Ichg − Idis
R̃

voc(SOC) = vdis(SOC) − IdisR̃
voc(100) = vcut-off
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vchg(SOC)

vdis(SOC)

 not existingvchg(SOC)



OCV-function Implementation
• In Matlab the OCV-function can be implemented as interpolation in a table as 

• Given a SOC-value z the OCV voltage ocv is computed as  

• Given a open circuit voltage v the SOC-value soc is computed as 
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% SOC = [0:0.01:1]; example SOC grid  
% OCV(i) is the open circuit voltage at SOC(i)
OCVf = @(z) interp1(SOC,OCV,z)
SOCf = @(v) interp1(OCV,SOC,v)

ocv = OCVf(z)

soc = SOCf(v)



Impedance Modeling
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Impedance Estimation
• The impedance in this model depends on the 

parameters , , and .  
• The parameters can depend on SOC and 

temperature.  
• Next, a method for estimating parameters for a given 

SOC and temperature is described. 
• Identify the impedance using data where SOC does 

not change significantly.  
• The current must vary to estimate the capacitance . 
• Here, a step in current is chosen, but sinusoidal 

waves at different frequencies or white noise with a 
broad frequency content are also commonly used.

Ri R C

C
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Fundamental Idea for Parameter Identification
1. Set up the battery model so that 

the voltage  can be estimated 
from the current 

 
2. Calculate the parameters so that 

the model's estimated voltage  
matches (as closely as possible) the 
measured voltage  

  

v(t)

̂v(t) = h(i(t) |SOC, R, Ri, C)

̂v

v
min
R,Ri,C

∥v − ̂v∥
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RMSE - Root mean square error is one good option



Differential Equations in State-Space Form
Differential equations in the state-space form in continuous-time are written as   

 

Where  
•  is the state vector (the variables that are differentiated) 
•  the input vector 
•  the output vector 
•  and  are known often non-linear functions.   
If the input signal  for  and the initial state  is given the output  for  can be computed. 
We want to write the battery model in state-space form with  as input and  as output.

dx
dt

= f (x(t), u(t))

y(t) = g(x(t), u(t))

x(t)
u(t)
y(t)
f g

u(t) t ≥ 0 x(0) y(t) t ≥ 0
i(t) v(t)
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State equation

Measurement equation



Derivation of State-Space Form
Circuit laws give: 
KVL:         (1)    (measurement equation) 

Capacitance:                  (2)    (state equation for )       

KVL:               (3)    (used for elimination of   in (2)) 

SOC:                                       (4)    (Can be rewritten as state eq for ) 

State-space form:                            (5) 

                                         (6)   

                (7)  

v(t) = voc(z) + Ri i(t) + vc(t)

ic(t) = C
dvc

dt
(t) vc

vc = R(i − ic) = Ri − Ric ic

z =
1
Q ∫ idt z

dvc

dt
= −

vc

RC
+

i
C

dz
dt

=
1
Q

i

v(t) = vc + voc(z) + Ri i
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Model Parameters from Current Step Response



Problem Statement
Given the state-space form  

                                  (5)

                          (7)   
an input  and an initial value of the state  
the output  can be computed. 
Assume a current step: 

  

and initial condition  V, i.e.,   
    för   

dvc

dt
(t) = −

vc(t)
RC

+
i(t)
C

v(t) = vc(t) + voc(t) + Ri i(t)
i(t) vc(0)

v(t)

i(t) = {0 t < 0
I t ≥ 0

vc(0) = 0
v(t) = vc(t) + voc + Ri i(t) = voc t < 0
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Analytical Solution of Differential Equations 
An inhomogeneous first-order differential equation is  and the solution is 

 where  and  are determined using initial conditions and . 

                          (8) 

The homogeneous solution is  and the particular solution is . 

     = >            

The constant  is calculated from the initial condition  which gives 

  <=>   <=>  
This gives the solution 
                                                               (9)    
and if it is substituted into (7), it yields 

                       (10) 

  as  =>  decreases due to discharge. Assume a linear decrease 

and compensate for this.

·y + ay = f (t)
y = yh + yp yh = ke−ax yp f (t)

dvc

dt
(t) +

vc(t)
RC

=
I
C

vc,h(t) = ke− t
RC vc,p(t) = IR

vc(t) = vc,h(t) + vc,p(t) vc(t) = ke− t
RC + IR

k vc(0) = 0
vc(0) = ke− 0

RC + i(0)R 0 = k ⋅ 1 + IR k = − IR

vc(t) = IR(1 − e− t
RC )

v(t) = {voc + RI(1 − e− t
RC ) + RiI t ≥ 0

voc t < 0

v(t) = voc + RI + RiI

constant

t → ∞ voc
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Computation of Model Parameters
:  

:       

 

:   då  

        

:  The time constant  for the system is the point in time  when 
of the total change of the step response is reached. This 

gives:   

  <=> 

voc v(0−) = voc = 21.75 V

Ri v(0) = voc + IRi = 21.11 V

Ri =
v(t) − voc

I
=

21.11 − 21.75
−149

= 4.3 mΩ

R v(t) = voc + I(Ri + R(1 − e− t
RC )) → voc + I(Ri + R) t → ∞

R =
v(t) − voc

I
− Ri =

20.857 − 21.75
−149

− 4.3 ⋅ 10−3 = 1.7 mΩ

C τ t = τ
1 − e−1 = 63 %

τ
RC

= 1 C =
τ
R

=
30
1.7
 kF = 17.6 kF
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voc

IR

RC

63%

IRi

 for v(t) = voc + I(Ri + R(1 − e− t
RC )) t ≥ 0



Simulation of a time-discretized model
Assume that all signals are sampled at  and denote them  .  

,                                (Forward Euler 

method) 
                            

Time-discrete model 

 

y(t), y(t + Δt), y(t + 2Δt), … yk, yk+1, …

dvc

dt
(t) = −

vc(t)
RC

+
i(t)
C

dvc

dt
(t) ≈

vc(t + Δt) − vc(t)
Δt

=
vc,k+1 − vc,k

Δt

v(t) = vc(t) + voc + Ri i(t)

vc,k+1 = vc,k(1 −
Δt
RC

) +
Δt
C

ik

vk = vc,k + voc,k + Ri ik
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n = numel(i);   % Input i = [i_1, ..., i_n]’
vc = zeros(n,1);% Initial condition vc(1) = 0
v  = zeros(n,1); 
for k = 1:n-1
    v(k) =  vc(k) + voc(k) + Ri*i(k);
    vc(k+1) = vc(k)*(1-dt/(R*C)) + dt/C*i(k);
end
v(n) =  vc(n) + voc(n) + Ri*i(n);



How good was the model?

24

The step response with compensation of voc
The step response without compensation of  but where 
an estimated OCV curve is used to calculate  

voc
voc(DOD)

charge
discharge
mean (OCV)



Model Parameters from Dynamic Operation



Linear Regression for Dynamic Operation 
• Consider the data to the left. 
• Estimation over a range of different SOC-

levels. 
• Same problem formulation: 

• Given:  

• Find:  

• Methods  
• Linear regression  
• Non-linear minimization methods.

̂v(t) = h(i(t) |SOC, R, Ri, C)
min
R,Ri,C

∥v − ̂v(R, Ri, C)∥

26

Input:

Output/target:



Linear Regression



Linear Regression 
• Model equation  where 

• : vector of observed outputs 
• : matrix of observed inputs 
• : parameter vector to be identified  
• : error/noise 

• Objective: 

•  

• Closed-form solution 

•                 ( In Matlab: Theta = X\Y;) 
• Model prediction:  

•

Y = Xθ + ε
Y ∈ ℝn×1

X ∈ ℝn×p

θ ∈ ℝp×1

ε ∈ ℝn×1

̂θ = min
θ

Y − Xθ
2

̂θ = (X⊤X)−1 X⊤Y

̂Y = X ̂θ

28

Some Properties	
Cons:	
• Limited to/assume linear models	
Pros:	
• Unique solution (if X har full column rank)	
• Fast to compute	
• Good baseline model



Remove Trend Caused by Changing SOC
• The OCV-function is not linear, but since it 

has been identified the impedance can be 
computed using linear regression. 

• Alt 1: Use estimated OCV-function and 
Coulomb-counting 

• Alt 2: Use a general detrend-function. 
• The remaining part is a linear system.

29

n = numel(i); % Insignal v = [v_1, ..., v_n]’
z = SOCf(v(1)); % Initial SOC given by voltage 
for k = 1:n-1

z(k+1) = z(k) + dt * i(k)/Q;
end
v_tilde = v - OCVf(z);



Parameter Estimation using Linear Regression 
•  where 

 , , and  

In Matlab solved by: 
Parameters obtained by solving the non-linear equation system: 

, , and  

Y = Xθ

Y =

ṽ2 − ṽ1

Δt
⋮

ṽn − ṽn−1

Δt

X =

i2 − i1
Δt . −ṽ1 i1
⋮ ⋮ ⋮

in − in−1

Δt −ṽn−1 in−1

θ =

Ri
1

RC
Ri

RC + 1
C

Ri = θ1 C =
1

θ3 − θ1θ2
R =

θ3

θ2
− θ1
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Theta = X\Y;



Simulation of Fitted Model
• An example code for simulating the fitted 

model. 

31

n = numel(i);   % Insignal i = [i_1, ..., i_n]’
vc = zeros(n,1);% Initial condition vc(1) = 0
z = SOCf(v(1)); % Initial SOC given by voltage 
v  = zeros(n,1); 
for k = 1:n-1

v(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
z(k+1) = z(k) + dt * i(k)/Q;

    vc(k+1) = vc(k)*(1-dt/(R*C)) + dt/C*i(k);
end
v(n) =  vc(n) + OCVf(z(n)) + Ri*i(n);



Non-linear Minimization Methods



Fminunc, x = fminunc(f,x0). (Unconstrained solver)
Objective: Find the local minimum of a function  with a start in  
• The default solver is the BFGS quasi-Newton method.  
Update Rule:  

• :  Approximation of Hessian matrix.  

• : Gradient of the function. 

• : Step size (determined by line search) 
Summary Workflow 
• Compute search direction from gradient and Hessian approximation  

• Stepsize  optimization 

• Step update  

• Hessian approximation update 

f (x) x0

xk+1 = xk + αkpk = xk − αkH−1
k ∇f (xk)

Hk

∇f (xk)
αk

Hkpk = − ∇f (xk)
αk

xk+1 = xk + αkpk

Hk+1
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Battery Parameter Estimation by Function Minimisation
• : A scalar measure of 

model fit. 
• Rot Mean Square 

Estimate (RMSE)   
• : A vector of the parameters 

to be estimated. 
• Example of simulation with 

different parameter values.

f(x)

x

34

Time [min]

Vo
lta

ge
 [V

]

RMSE 60 mV
RMSE 86 mV
RMSE 24 mV
measurement



Define Optimization Function 35

% Simulate model
n = numel(i);   
vc = zeros(n,1);% Initial condition vc(1) = 0
z = SOCf(v(1)); % Initial SOC 
vhat  = zeros(n,1); 
for k = 1:n-1

vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
z(k+1) = z(k) + dt(k) * i(k)/Q;
vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);

end
vhat(n) =  vc(n) + OCVf(z(n)) + Ri*i(n);

function [r,vhat] = ECM1RC(x,data,OCVf)
% Init
v = data.v;
i = data.i;
dt = diff(data.t);
% Set parameters
Ri = x(1);
C  = x(2);
R  = x(3);

% Evaluate mean square error
r = mean((v-vhat).^2); 

% Define a function with only
% parameter values x as input
fun = @(x) ECM1RC(x,data,OCVf);

% Find minimizing values
[x,r] = fminunc(fun,x0)

EC
M
1R

C.
m



Setting up the Minimization Problem
• Selection of training data

36

Fit on training data with deep discharge

Deep discharge (difficult)Non-deep discharge

High SOC and OCV-function 	
dependence near fully discharged



Extending The Parameter Set
With non-linear techniques, it is 
easy to include, e.g.,  
• the initial SOC as an additional 

parameter to optimize. 
• the capacity Q  
However, introducing more 
parameters makes the 
minimization problem more 
complex with possible local 
minima resulting in wrong 
solutions.
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% Set parameters
Ri = x(1);
C  = x(2);
R  = x(3);
z  = SOCf(v(1)); % Initial SOC 

% Simulate model
n = numel(i);   
vc = zeros(n,1);% Initial condition vc(1) = 0
vhat  = zeros(n,1); 
for k = 1:n-1

z(k+1) = z(k) + dt(k) * i(k)/Q;
    vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
    vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);
end
vhat(n) =  vc(n) + OCVf(z(n)) + Ri*i(n);

% Set parameters
Ri = x(1);
C  = x(2);
R  = x(3);
z  = x(4); % Initial SOC 

% Simulate model
n = numel(i);   
vc = zeros(n,1);% Initial condition vc(1) = 0
vhat  = zeros(n,1); 
for k = 1:n-1

z(k+1) = z(k) + dt(k) * i(k)/Q;
    vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
    vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);
end
vhat(n) =  vc(n) + OCVf(z(n)) + Ri*i(n);

% Set parameters
Ri = x(1);
C  = x(2);
R  = x(3);
z  = x(4); % Initial SOC 
Q  = x(5);

% Simulate model
n = numel(i);   
vc = zeros(n,1);% Initial condition vc(1) = 0
vhat  = zeros(n,1); 
for k = 1:n-1

z(k+1) = z(k) + dt(k) * i(k)/Q;
    vhat(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
    vc(k+1) = vc(k)*(1-dt(k)/(R*C)) + dt(k)/C*i(k);
end
vhat(n) =  vc(n) + OCVf(z(n)) + Ri*i(n);



Why is Initial Guess  Important?x0

• These methods are local, not global — so 
they only "see" the landscape near  

• A poor initial guess can cause the 
optimizer to converge to a bad local 
minimum, or even fail to converge. 

• A good  (i.e., one near the true 
minimum) can drastically reduce the 
number of iterations and function 
evaluations.

x0

x0

38

[x,r] = fminunc(fun,x0)



Normalization
• The parameters are of different orders of magnitude, e.g., ,  kF. 
• Normalization is to rescale the parameters to the same size. 
• Normalized parameters are easier to optimize with possible improvements in both the speed of 

convergency and accuracy. 
• Implementation: 

• Original problem:  

• Assume  is a good guess for  (elementwise product), then   

• Solve the normalized problem:   

• Recover the original parameters  
• Normalization is similar to feature scaling in machine learning.

R ≈ 10 mΩ C ≈ 1

x* = arg min
x

f(x)

x0 x* = z ∘ x0 zi ≈ 1
z* = arg min

z
f(z ∘ x0)

x* = z* ∘ x0

39



Lab 1 - Equivalent Circuit Modeling



Lab information
• Register lab groups at Lisam before Thursday at 16:00. 
• Nominal time: 2 + 2 h scheduled sessions 
• Lab 1 and 2 will be in Python 
• Scheduled in normal classrooms, work on your laptop 
• Material for lab 1: 

• Python_installation.md is a quick guide to get started 
• Instructions with questions to answer  
• Code skeleton where the tasks are solved by completing the code  
• Datasets including slow charge cycles and dynamic tests

41

https://signup.app.cloud.it.liu.se/Courses/TSFS19_2025VT_59/admin/activities/15156?occasionId=125025


Learning Outcomes 
• Compute battery capacity from measurements. 
• Compute open circuit voltage as a function of SOC from measurement data. 
• Convert a time-continuous model into a time-discrete model 
• Compute battery impedance from  

• A current step using voltage response characteristics. 
• Dynamic operation using  

• linear regression 
• nonlinear minimization techniques  

• Describe experiments for parameter identification of the different parts of the ECM.

42



www.liu.se

TSFS19 Battery Systems - Lectures 3 and 4 
Mattias Krysander


