State-of-Charge Estimation

TSFS19 Battery Systems - Lecture 5
Mattias Krysander
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Where we are

* Previous lectures:
 ECM

* Identify battery capacity from
measurements.

 Identify the open circuit voltage as a
function of SOC from measurement data.

* Identify impedance parameters fromg(SOC)
dynamic operation.

« Today’s lecture:

« Utilize ECMs for state-of-charge estimation.
(Lab 2)
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SOC-Estimation
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SOC-Estimation

« An estimate of all battery-pack cells’ SOC is an important input to balancing,
energy, and power calculations.

« While we might be interested in estimating the entire battery-model state, we first
focus on estimating state-of-charge only.

« We'll see some simple methods that lack robustness.

« Then, we examine methods that estimate the entire battery-model state,
enabling some more advanced applications.

« The model estimated in the previous lecture with on RC-link will be used.

« The OCV-curve and the parameters are identified on other data than used for
SOC estimation.
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Benefits of Accurate SOC Estimates

« Life: Prevents overcharging or over-discharging, protecting battery cells from
damage and extending their lifespan.

« Performance: Enables full utilization of battery capacity, reducing the need
for overly conservative usage.

« Density: Allows smaller, lighter battery packs by using the battery efficiently
within design limits.

« Economy: Reduces costs through smaller systems and fewer warranty claims
due to increased reliability.
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Recall Definition of State-of-Charge

« State of charge (SOC):
available charge

SOC = — - 100 %
total charge capacity

« Percentage of charge in the battery/cell
* 100% full

* 0% empty
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Some Approaches to Estimate State of Charge

LINKOPINGS
II." UNIVERSITET



Approximation of the True SOC

« Assumption: Actual SOC is 100% at the end
of a CCCV (Constant Current Constant
Voltage) charging cycle.

« Total Capacity (Q): Identified from full
charge/discharge cycle data.

 "True" SOC Computation:
« Method: Coulomb counting.

» Equation: t

zH =1+ é L) i(t)dr

where {, is the time just after CCCV ends,
and i(7) is the current.

« This approximation of SOC is only valid for
short-time series.
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SOC Estimation via Voltage-Based Method

Measure cell terminal voltage under
load v(7)

Assume v(f) & v,

Use the OCV-function
v,. = OCV(z)
to infer the SOC:
2=0CvV iy )~ oCcvi(y)
Misses effects of resistive losses,
diffusion voltages

Wide flat areas of OCV-curve decrease
the accuracy of the estimate

Open Circuit Voltage [V]
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Poor, Voltage-based Method for SOC Estimation

100 Voltage based SOC estimate

« Voltage-based SOC estimate works / \ Vollage based SOC
for the no-current case with a 0
relaxed battery. = ol
 RMSE SOC: 9.18 % 2
R
R, i
C i X 10
l I3
N || <— + » 2
Voc(SOC) - Ivl + 1% £ _2
24 |
- 10
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SOC Estimation based on Thevenin Equivalent Circuit

100 - Voltage based SOC estimate

Voltage based SOC
True SOC

« Assume the model v(¢) = v_.(¢) + i(f)R where R is 0
total cell resistance. < ol
« SOC-estimation based on Thevenin equivalent model: ¢ |
_ -1 :
z(t) = OCV™ ' (v(1) — i(HRy) ol
‘ =‘,>0cv 4 0 ' ' ' ' '
0 2 4 6 8 10
« Thevenin equivalent circuit model works for 60 Voltage based SOC estimate
constant currents. % Tne 800
« RMSE SOC: 3.30 % w0
X
=l N
S ‘ AR I
20 |
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Poor, Current-based Method to Estimate SOC

* Coulomb counting keeps track of the charge in and out of the

cell : :
1 (! 190 - Coulomb Counting SOC Estimate
1) =z(0)—— i(t)dt
2(1) = z(0) 0] JO (1) 100 Correct Q and |
i 10 % current bias
« A time-discretized form / \ 10 % capacity error
At, 80 ¢ True SOC
< =3 — —1 —
k1 = Lk 0 k = 6ol

» Okay for short periods of operation when initial conditions are 8 w0l

known or can frequently be “reset”. !
 Subject to drift due to current sensor’s fluctuations, current- 20 -

sensor bias, incorrect capacity estimate, and other losses
» Uncertainty/error bounds grow over time, increasing without 07

bound until the estimate is “reset”. 920 . . . . |
« RMSESOC: 1.19% 3.30% 2.60% 0 2 4 6 8 10
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Model-based State-Estimation

Extended Kalman Filter
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Using Extended Kalman Filter (EKF) for SOC Estimation

The EKF is an advanced technique used to estimate the State of Charge (SOC) of
batteries, especially under dynamic conditions.

It combines the information of current and voltage measurements to estimate
the SOC.

The EKF is a probabilistic framework for estimating the SOC of batteries,
allowing for control of the trade-off between voltage and current
measurements by assigning uncertainties.

Batteries exhibit nonlinear characteristics, especially in the OCV-function.
EKF is an extension of the Kalman Filter, designed to handle nonlinear systems.
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Probability distribution N(u = 2, 0? = 2?)

Some Probability Theory
« X ~ N(u, 6%): A random variable X is normal -

distribution with mean y and variance ¢°. S
« Expected value: E(X) = u v
+ Var(X) = E[(X — p)*] = 6* T T E—

- « Covariance vs variance: Correlation.
« X ~ N(x,X5): Arandom vector X. 2 ' Uncorrelated if O
Ox, P120x,0x,
« Expectance value: E(X) = x Ly = N Variance
. . - P120%,0x, Ox, ¥

» Correlation matrix 2y = E(XX") where p,, is the correlation coefficient

+ Covariance matrix 3 = E((X — X)(X — )?)T ) measuring the linear dependence between X;
and X,. |ppp| <1
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2D Gaussian Contours

Some Probability Theory

=
[

« X ~ N(u, 6%): A random variable X is normal

distribution with mean i and variance o°.

Probability Density
(=]

g
2

o

« Expected value: E(X) = u
+ Var(X) = E[(X - p)’] = 0°

 Covariance vs variance: f Correlation.
« X ~ N(x,X5): Arandom vector X. 2 ' Uncorrelated if O
B _ Ox, P120x,0x,
« Expectance value: E(X) = x Ly = ) Variance
. . - P120x,0x, Ox,
» Correlation matrix 2y = E(XX") where p,, is the correlation coefficient

+ Covariance matrix 3 = E((X — X)(X — )—C)T ) measuring the linear dependence between X;
and X,. |ppp| <1
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Kalman Filter
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Key Concepts of the Kalman Filter

« The Kalman filter is designed to estimate the state of a system, which could
include variables like SOC in the battery case.

« The system is typically described by a state vector x, that evolves.
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System Model

The Kalman filter assumes the system follows a linear dynamic model, described by two main equations.

The input i, has been omitted for simplicity, but it is straightforward to include.
State Equation

Xey1 = Fi x5 + Gewy
o F: State transition matrix (describes how the system evolves).
« Control matrix (describes the effect of control input

« w;: White process noise with 0 mean E£(w,) = 0 and covariance matrix E(wkwkT ) = O, (uncertainty in the model).

Measurement Equation
Ve = Hix + v
« H,: Measurement matrix (relates the state to the observed measurement).

- v;: White measurement noise with 0 mean E(v;) = 0 and covariance matrix E(v,v) = R, (uncertainty in the measurements).
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Kalman Filter

The goal is given Battery context

« an initial state x;, with covariance matrix

A A NT . i Given an initial SOC
Py = E[(xg — Xp)(xy — Xy)" ] describing the uncertainty of the

initial state, .
* inputs uy, ..., U, and outputs y;, ..., v, fnu;arigreonc‘z r\]/tzltage

to estimate the state x; of the system as accurately as possible, i.e,

« the most likely state estimate X, = E(x;)

Optimal SOC
 with the smallest possible covariance matrix estimate with a
P.=L [(.xk — £)(x, — £,)7] describing the uncertainty of the description of the
state estimate. uncertainty.
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Kalman Filter Procedure

The filter is often written as:
1. Initialize the filter with apriori informatio

;%O|—?1 — ]%” ‘f1)r_1 ==.f1)‘Ndleﬂﬂ3
>
2. Measurement update; take a new 2
measurement y, and 2
A A g )r‘/i\\\
(xtlt—l’ Ptlt—l) — (xtlt’ Pt|t) F: n
o . g J/I | i‘\
3. Time update; proceed to next time-step / i \ i
A A /"/ l \ l oe
(xtlt’ P tlt) — (xt+1|t’ P t+1|t) X XXy

Vehicle Position, x
Iterate from step 2.
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System model

Kalman Filter, the equations X1 = Fyx + By + G, Ew, =0, O

)@::: ]ka%'+'¥% lft%,==(), I?k
 If you look up the equations, they might look like

« Measurement update
P Determine the Kalman gain (determines how

K, = Pk|k_1HkT(HkPk|k_1HkT + Rk)_l much to trust the prediction vs. the measurement)
s p _ 2 Correct predicted state using measurement
Xk = Xije—1 T Kk — HiXgjp—1) P &

Pk|k — Pklk—l _ KkaPk|k—1 Adjust the uncertainty based on hO\{V rpuch
the measurement corrects the prediction
« Time update:
~ _ ~ Predict the next state based on the current
Xir11k = FiXpgr + Biy

state and system model.

Pk+1|k = FkPk|kaT + GkaGkT Predict the next covariance (uncertainty)

 The measurement equation is non-linear in the based on the model and process noise.

battery case and a non-linear extension is needed.
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Extended Kalman Filter (EKF)

Non-linear extension to KF needed for the battery model
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Extended Kalman Filter (EKF)

« Extended Kalman Filter is a method where the same methodology is used for non-linear

systems. :
y Linear system model

Xy = J X Uy, W) Ew, =0, O
= h(x,,u,) + v Ev,=0, R Yerr = B+ B + G Ew =00,
- Vi = o Ug k k— Y5 k v = Hox, + v, Ev,=0, R,
Difficulty:

« Expected value and variance in linear transformations are easy to express explicitly.
 This is not true for nonlinear transforms.
Idea:

« Compute the Kalman gain and covariance matrices by linearizing around the current state x;.

 The problem is that we do not know x,, instead, we linearize around our best guess X;.
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Non-linear system model
Extended Kalman Filter G

Measurement Update Time Update
Xkl =+ KO = hXp—1: ) X = F Qe 1:0)

K; =kT(HkPk|k—1HkT +R)™ P = FkPklkaT + G, O,G/

0
a @: gf(x, U, W) |x:j5k|k,u:uk,w:0
@= —h(x,u)| . J
a X=Xl U=Uy, —
X @: — _f(x9 u, W) |x=)’€k|k,u=uk,w=0

To apply the filter we need to define f af af , h, ah, Xo-1> Poj-1> Op and Ry.
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EKF-based SOC-Estimation
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Preparing to Implement EKF on ESC model

State equations

» State of charge

Atk .
Gl = G+ _Q U+ Wi

 Capacitor voltage

At At |
R.C, Wey + Elk + Wy
Measurement equation

Vek+1 — (1 -

=h(xk,l/lk)

Variables

2 I Wik
X = u, = =V, W, =
C5 ea” T | Ag ] T e TR g

Covariances and initial guess

612 0 2 <0 GZO 0
Ewszz 0 e Zeszzgv’ .X(): Vco’ P():ZXOz 0 5

GVc

State equation

U .
Zkr1 Gt g T Wik
Vek+1 = G 1o W) = Ik
(U= 2o Wer + ¢ i + War
=Xk+1
0Zk+1 9Zk+1 1 0 0%+1 0Zk+1
of 0z Ve k of oWk 0wk 10
Fk = — = = Aty Gk = — = =
0x;, Vel Ve k+l 0 1- 2 C owy Ove k1l OVek+l 01
0z Ve k a owyk  Owok
Measurement equation
oh oh  Oh docv
= i == —_—= - = 1
h(x ) = OCV(zp) + Ve i + Roiy By =~ . [dzk dVC,k] [ a )
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Estimating the OCV-Function Derivative

SOC = [0:0.01:17;
dOCvVdSOC = gradient (OCVf(SOC), SOC);

dOCvdz = @(z) interpl(SOC,dOCVdSOC,z);

o°

Select a SOC-grid
Numerical derivative
Interpolate

o°

o°

20

15 +

Open Circuit Voltage [V]

0 20 40 60 80 100
5L SOC [%]

0 20 40 60 80 100
SOC [%]

Low derivative corresponds to little
information in voltage
measurement.

The accuracy of the SOC estimate

based on voltage is best at low and
high SOCs.
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EKF Results

. Variance of voltage measurement R = (0.6)” V* and process noise Q = 1 A?

2
Initial condition zy_; = SOC(vy), v, o_; = Rig, Pyi_; = 0.05° O

) 0 R?
190 EKF based SOC estimate 5 EKF based SOC estimate
EKF based SOC EKF based SOC estimate error
100 True SOC 10 F 3o error bounds
80 g 5t
o 60 5 0
< @)
p)
40 Sg 5L
20 | -10 F
O 1 1 1 1 | _15 1 1 1 1 |
0 2 4 6 8 10 0 2 4 6 8 10
Time [h] RMSE SOC: 0.90 % Best today! Time [h]
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Tuning EKF Filter

o - <0
Initial condition x, = [v o]
c,

« Initial SOC could be estimated based on terminal voltage: z, = SOC(v)
- Capacitance voltage is less critical and can be approximated as v, = 0

The standard deviations o, (~ uncertainties) could be seen as tuning
variables:

2
o 0
Model uncertainty: Q = : 2] , Measurement uncertainty: R = 6v2

GV.

612 0

oy oy . 0
Initial condition uncertainty: P, = 0 o2
O-VCO

« The initial guess should be of a reasonable order of magnitude. For example,
if the initial SOC uncertainty is approximately £0.05, then o, = 0.05isa

good starting point.

« Q/R Ratio Importance: Balances trust between model predictions (Q) and

measurements (R); higher Q/R favors measurements, lower Q/R favors
model—crucial for filter stability and performance.

30

The blue interval shows 30Z-confidence bands.
With a gaussian assumption z € [Z £ 36,] with 99.7%

190 EKF based SOC estimate

\ EKF based SOC
100 /7 True SOC

80

60

40

SOC [%]

20

_20 ] ] ] ] |
0 2 4 6 8 10
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SOC Estimate and Error with Uncertainty Estimates

EKF based SOC estimate

EKF based SOC estimate

120 30 -
100~ \ EKF based SOC EKF based SOC estimate error
True SOC 20 | | — — 3¢ error bounds
80 l
ﬁ 10 \
S = F
QO 0F
O 40 '
N -
20 10 )
|
0L -20 +
-20 L L ! ! | -30 L 1
0 2 4 6 8 10 2 4 6 8 10
Time [h] Time [h]
dOocVv

II “ LINKOPINGS
o UNIVERSITET dZ

has a minimum at 30 % SOC, which gives high SOC uncertainty at that point.
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Tuning Examples

« What happens if the initial SOC is 50% off? 120

» SOC estimate is good after 3 hours. P N\
100

EKF based SOC estimate

EKF based SOC
True SOC

* The uncertainty bounds are too narrow at the

start!

 Fix by increasing initial SOC uncertainty 80

to about o, = 0.5
60

* SOC estimate good from start!

SOC [%)

 Fix by trusting the measurement more,

i.e., increasing Q/R by a factor of 10. 40

» SOC estimate is good after 30 min 50

 the confidence band is initially too
narrow, and relying more on voltage-
based SOC estimates will degrade the 0
SOC performance at lower SOCs.
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Learning Outcomes - SOC-estimation

By the end of this lecture, you should be able to:
* Implement SOC estimation using:
* Coulomb counting
 Voltage-based approaches
« Terminal voltage methods
* The Tino method
« EKF-based methods with:
» Thevenin equivalent model
« R-RC model
» Understand the pros and cons of different SOC estimation methods, including EKF-based approaches.

« Understand how different uncertainty parameters (Q, R, initial P,) affect SOC estimation performance, and apply this
knowledge to effectively tune the Extended Kalman Filter (EKF).

» Understand how the derivative of the OCV function impacts SOC estimation uncertainty.

33
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