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List of Symbols
a Specific interfacial area (m−1)
ai Activity of species i (unitless)
R Universal gas constant (8.3144621 J mol−1 K−1)
NA Avogadro’s number (6.022141 × 1023 mol−1)
k Boltzmann’s constant (1.380649 × 10−23 J K−1)
q Fundamental unit of charge (1.602177 × 10−19 C)
F Faraday’s constant (96,485.34 C/equiv. or 26.801 Ah/mol)
ϵ0 Permittivity of vacuum (8.854188 × 10−12 F m−1)
c Speed of light (2.99792 × 108 m s−1)
h Planck’s constant (6.626070 × 10−34 J s)
T Temperature (K) (0◦C = 273.15 K)
P Pressure (Pa)
g Acceleration due to gravity (9.82 m s−2)



Formulas

This chapter contains formulas that are used in the exercises.

Anode reaction:
bB − ne− ⇌ dD (1)

Cathode reaction:
aA + ne− ⇌ cC (2)

Cell reaction:
aA + bB ⇌ cC + dD (3)

Equation for Mass:
m = M · n

• m is the mass (in grams),

• M is the molar mass (in grams per mole),

• n is the number of moles.

Faraday Law of Electrolysis:
mi = MiQ

nF
(4)

• mi is the mass of species i [g]

• Mi is the molar mass of species i [g/mol]

• Q the passed amount of charge [C]

• n the number of electrons per species i

• F the Faraday constant [C/mol]
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Gibbs free energy:
∆G = −nFU (5)

• ∆G Gibbs energy per mol [J/mol].

• n the number of electrons per species i

• F the Faraday constant [C/mol]

• U the full cell potential [V = J/C]

Electrical work:

We ≤ −∆G (6)
We = nFU (7)

• Theoretical charge density (specific charge) for a cell:∣∣∣∣Ah
g

∣∣∣∣
cell

=
(∣∣∣ g

Ah

∣∣∣
katod

+
∣∣∣ g
Ah

∣∣∣
anod

)−1

• Theoretical energy density:

Wh
g = U0 Ah

g

Open circuit voltage:
V = U0 − IRi (8)

Simplified activity correction:

U = U0 − RT

nF
ln
(∏

ions

(
ci

c0
i

)si ∏
gas

(
pi

p0
i

)si
)

(9)

• U0 standard potential of cell [V]

• R universal gas constant 8.314 [J/(mol K)]

• T teperature [K]

• F the Faraday constant [C/mol]

• n the number of electrons per species i

• ci is the activation of ionic species i (concentration given in molar mass
M [g/mol])

• c0
i is the standard activation of ionic species i (1)

• pi is the activation of gaseous species i

• p0
i is the standard activation of gaseous species i (1)

• si is the stoichiometric coefficient of species i (positive for products and
negative for reactants)
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Shepherd equation:

Vcell = U − IRint − K

(
Q

Q − It

)
I + A · exp{BQ−1It} (10)

• U represent the open circuit voltage of a battery at full capacity [V]

• I is the current [A]

• Rint is the internal resistance of the battery [Ω]

• K is the polarization resistance coefficient [Ω]

• Q is the battery capacity [Ah]

• A is an emperical constant [V]

• B is an emperical constant [1/Ah]

Capacity consumed:

Q =
∫ tco

0
i(t)dt (11)

where i is the current dependent of time and tco is the time when the voltage
reaches the cutt of voltage.

Depth of Discharge:
DOD = 1 − SOC, (12)

where SOC is the State of Charge given in percentage %. Can also calculate
the DOD based on the capacity consumed:

DOD = Itdisc

Qtot
, (13)

where I is the current, tdisc is the discharge time, and Qtot is the total capacity
of the cell.

State of Charge:
It is defined as SOC = remaining charge

total capacity , and can be expressed as

SOC = Qtot − DOD
Qtot

, (14)

using the depth of discharge (DOD) and total capacity Qtot, given in [Ah].

SOC based on Coulomb counting:

z(t) = z(0) +
∫ t

0

η

Qtot
i(τ)dτ (15)

or in discrete time:
z[k] = z[k − 1] + η

Cn
i[k]∆t (16)

where Qtot is the is total cell capacity, or known as nominal capacity, η is the
Coulombic efficiency, i is the current, and ∆t is the time step.
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Resistance of a battery:

Rbatt = V batt
co

V batt
nom − V batt

co

Pmax
= m2

s · V cell
co

V cell
nom − V cell

co

Pmax
(17)

where V batt
co is the cut-off voltage of the battery, V batt

nom is the nominal voltage of
the battery, Pmax is the maximum power of the battery, ms is the number of
cells in series.

Coulombic efficiency:

ηcoul = Number of coulombs on discharge
Number of coulombs on charge · 100% (18)

Voltage efficiency:

ηV = Average discharge voltage
Average charge voltage · 100% (19)

Energy efficiency:

ηenergy = ηcoul · ηV = Energy out
Energy in · 100% (20)

Battery efficiency:
ηbatt = Pout

Pout + Ploss
(21)

Cell efficiency:
ηcell = Vout

Vin
(22)

Battery packs formulas:
Consider a pack/module/battery of m cells in series and n cells in parallel
(mS − nP ).

• Number of cells: Nc = mn

• Voltage: Vbatt = mVcell

• Current: Ibatt = nIcell

• Capacity: Qbatt = nQcell

• Energy: Ebatt = NcEcell = NcQcellVcell

The resistance for the whole battery is calculated by

Rtot = mRi + (m + 1)Rw

n︸ ︷︷ ︸
string resistance

= m

n
Ri︸ ︷︷ ︸

Rint

+ m + 1
n

Rw︸ ︷︷ ︸
Rext

(23)

where Rw is the connection resistance.

Proportional properties of the battery:

• Q ∼ m

• m ∼ V
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• V ∼ δAs

• As ∼ 1
Ri

Where As is the electrode/separator area, δ is the sheet thickness, V = Asδ is
the volume and m = ρV is the mass.

Cell balancing:
Qbatt = (1 − (zmax − zmin)) Qcell (24)

Ebatt ≈ (1 − ∆z)Enom
batt (25)

The temperature in a cynlindrical cell depending on the radius can be described
as:

T (r) = T0 + q̇gen

2k

(
r2

i ln r

r0
+ 1

2
(
r2

0 − r2)) (26)

where k is the thermal conductivity (W/(m · K)), q is the heat flux vector
(W/m2), and q̇gen (W/m3) is the homogenous heat generation given by

q̇gen = RiI
2

V
= Ri

V · Q2 (C-rate)2. (27)

Mechanical formulas:
Kenetic energy:

Ek = 1
2mv2 (28)

Aidrag force:
Fd = 1

2ρv2CdA (29)

where ρ is the air density, v is the velocity, Cd is the drag coefficient, and A is
the cross-sectional area.
Rolling resistance:

Fr = frmg (30)

where fr is the rolling resistance coefficient, m is the mass of the vehicle, and g
is the acceleration due to gravity.
And P = Fv.

pq-formula:

0 = x2 + px + q (31)

x = −p

2 ±
√(p

2

)2
− q (32)
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Exercises
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Chapter 1
Introduction to Battery Systems

Exercise 1.1.
An electrochemical cell converts chemical energy into electrical energy through
a reduction-oxidation reaction and consists of several main parts. Describe the
parts listed below.

a) Cathode

b) Anode

c) Electrolyte

d) Separator

e) External circuit

11
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Exercise 1.2.
The half cell reactions for a primary zinc-copper cell are given as:

Anode:
Zn → Zn2+ + 2e−

Cathode:
Cu2+ + 2e− → Cu

a) Write full cell reaction.

b) What is n for the full cell reaction? Here, n represents the number of
moles of electrons transferred in the full cell reaction.

The anode is kept but the cathode is changed to an oxygen reaction:

Cathode:
O2 + 4H+ + 4e− → 2H2O

c) What is the full reaction with the new cathode?

d) What is n now?

Exercise 1.3.
A common lithium-ion cell is the so-called Lithium Cobalt Oxide (LCO) cell,
which, as the name suggests, uses lithium cobalt oxide (LiCoO2) as the cathode
material and graphite (LiC6) as the anode material.

Anode:
LiC6 → Li+ + e− + C6

Cathode:
CoO2 + e− + Li+ → LiCoO2

a) Write the full cell equation.

b) The reactions are written for when the cell is discharging. What is the
full cell reaction during charging?

Exercise 1.4.
The lithium-air (Li-air) cell has gained attention for its potential to offer much
higher energy densities than conventional lithium-ion batteries. One proposed
cathode reaction is the formation of lithium peroxide (Li2O2)

Anode:
Li → Li+ + e−

Cathode:
2Li+ + O2 + 2e− → Li2O2

Write the full cell reaction.
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Exercise 1.5.
The full cell reaction

Ni + 2Fe3+ → Ni2+ + 2Fe2+

has the following half cell reaction of the cathode

Fe3+ + e− → Fe2+

What is the anode half cell reaction if n = 2 for the full cell reaction?

Exercise 1.6.
The silver-zinc battery is known for high energy density and has a history
of being used in space applications. Given ambient standard states and the
half-reactions:

Anode:
Zn → Zn2+ + 2e−

Cathode:
Ag+ + e− → Ag

What is the standard cell potential?

(Use the table in Appendix A: Standard Electrode Potentials)

Exercise 1.7.
We would like to charge a lithium-ion battery using a current of 5 A for 3 hours.

a) How many moles of lithium-ions are deposited on the anode?

b) How much lithium (in grams) is deposited on the anode?

The half-reaction for lithium deposition is:

Li+(aq) + e− → Li(s) (1.1)

Exercise 1.8.
A current of 15 A passes through an aqueous NaCl (table salt) solution for 20
minutes. The electrode reaction for chlorine gas production is:

2Cl− → Cl2(g) + 2e−

a) How many grams of chlorine gas are produced?

b) What volume of chlorine gas does this represent at 100 kPa and 25◦C?
(You can use the ideal gas law here.)
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Exercise 1.9.
Consider the half-cell and full-cell reactions for lithium and lithium cobalt oxide
(LiCoO2) in a lithium-ion battery:

Half-Cell Reactions:

• Anode (Li): Li → Li+ + e−

• Cathode (LiCoO2): LiCoO2 + Li+ + e− → Li2CoO2

Full-Cell Reaction:
Li + LiCoO2 → Li2CoO2

Given data:

• Faraday’s constant (F ): 96485 C/mol

• Molar mass of lithium (Li): 6.94 g/mol

• Molar mass of lithium cobalt oxide (LiCoO2): 97.87 g/mol

Questions:

a) Using the formula for charge density

Q

mA
= F · n

MA

calculate the theoretical charge density (in Ah/g) for the anode reaction
involving lithium.

b) Using the same formula, calculate the theoretical charge density (in Ah/g)
for the cathode reaction involving lithium cobalt oxide.

c) Compute the total charge density (in Ah/g) for the full cell using both
electrodes with the following equation:

Ah
g cell

=
( g

Ah anode
+ g

Ah cathode

)−1

d) Compute the energy density (in Wh/kg) for the full cell. Assume the
voltage of the full cell reaction to be V = 3.85 V.

Exercise 1.10.
The overall cell reaction for discharge of a lead-acid battery is

Pb + PbO2 + 2H2SO4 → 2PbSO4 + 2H2O

What is the theoretical energy density if we have two moles of electrons and
the average open circuit-voltage is 2 V?
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Exercise 1.11.
Given the table of Standard Electrode Potentials in Appendix A: Standard
Electrode Potentials. It is possible to see that the electrochemical reaction
Cu2+ + 2e− → Cu gives a standard potential U0 = 0.337 [V]. A similar reaction
Cu+ + e− → Cu gives a standard potential U0 = 0.5219 [V].

a) What is the Gibbs free energy for ∆G0
Cu2+/Cu?

b) Compute the standard potential U0
Cu2+/Cu+ of Cu2+ + e− → Cu+.

Exercise 1.12.
Compare the open circuit voltage (thermodynamic potential) for a lead-acid
battery with sulfuric acid and a lithium-air battery with both with a concentra-
tion of 5 M at +25 and -25 ◦C.
Note: Full cell potential for Li-air is 2.96 V

a) What battery is least sensitive to temperature?

b) What happens if the concentration is changed to 1 M?

c) Discuss findings in b)
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Chapter 2
Battery Properties

Exercise 2.1.

a) Sketch a container design of a battery cell and point out the following
parts:

• Cathode

• Anode

• Electrolyte

• Seperator

• Conductor

• Negative terminal

• Positive terminal

b) Name a characteristic property for the different battery designs listed
below:

• Container

• Cylindrical cell

• Prismatic cell

17
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Exercise 2.2.
Draw plots to fill the empty figures in Figure 2.1. The information for each cell
or state is presented above the columns. The plots in the first column should
represent a nominal cell at full capacity. The second column should represent
the same cell from the first column but in a degraded state. The third column
should show a nominal cell with the same chemistry and half the capacity as
the cell in the first column.

1 2
-50

-25

0

25

50

1 2
3.5

4

4.5

1 2
0

100

1 2
0

100

1 2
0

25

50

1 2
-50

-25

0

25

50

1 2
3.5

4

4.5

1 2
0

100

1 2
0

100

1 2
0

25

50

1 2
-50

-25

0

25

50

1 2
3.5

4

4.5

1 2
0

100

1 2
0

100

1 2
0

25

50

Nominal cell capacity: 50 Ah
C-rate: 1C

Degraded cell capacity: 25 Ah
C-rate: 1C

Nominal cell capacity: 25 Ah
C-rate: 1C

Figure 2.1: Fill in for Exercise 2.2
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Figure 2.2: OCV for a lithium-ion cell.

Exercise 2.3.
Figure 2.2 shows how the OCV depends on the SOC for a lithium-ion cell with
marked cut-off voltages. The cell has a capacity of 40 Ah, an internal resistance
of 7.5 mΩ, and is charged and discharged using a 1C constant current (CC)
rate.

a) Approximately how much will the cell potential deviate from the OCV?

b) Draw the general appearance of the cell potential if it is charged or
discharged between 0% and 100% SOC. Consider charging and discharging
as two different events, i.e., they are independent of each other.

c) Draw the general appearance of the cell potential if the marked cut-off
voltages are respected for charge and discharge. Consider charging and
discharging as two different events, i.e., they are independent of each
other.

d) Comment on the difference between the two cases of charging and dis-
charging.
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Exercise 2.4.
Lets consider a NMC based Lithium-ion cell. The potential of the positive
electrode is given by

U+(x) = −0.8090x + 4.4875 − 0.0428
− 0.0428 tanh(18.5138(x − 0.5542))
− 17.7326 tanh(15.7890(x − 0.3117))
+ 17.5842 tanh(15.9308(x − 0.3120)),

(2.1)

and the potential of the negative electrode is given by

U−(x) = 1.9793e(−39.3631x) + 0.2482
− 0.0909 tanh(29.8538(x − 0.1234))
− 0.04478 tanh(14.9159(x − 0.2769))
− 0.0205 tanh(30.4444(x − 0.6103)),

(2.2)

as a function of the stoichiometry x using parametrization1. The functions can
be loaded from Exercise_2_4.mat. The stoichiometry is defined as

x = cs

cmax
s

(2.3)

where cs is the concentration of lithium and cmax
s is the maximum concentration

of lithium in the electrode. Assume the lithium stoichiometry ranges are [0.9084,
0.2661] for the positive electrode and [0.0279, 0.9014] for the negative electrode,
respectively. Plotting the function against their stoichiometry range gives the
Figure in 2.3 and 2.4.

a) When the positive electrode is fully lithiated with a stoichiometry of
0.9084, what is the corresponding lithium stoichiometry of the negative
electrode?

b) How is state of charge (SOC) related to stoichiometry?

c) Set up a function that provides the corresponding stoichiometry for a
given SOC. SOC varies between 0% (fully lithiated positive electrode) and
100% (fully delithiated positive electrode). Optionally, plot the function.

d) Calculate the full cell potential at 50% SOC.

e) Briefly explain why imbalance occurs and its consequences.

f) Consider an imbalance scenario where the upper limit of the stoichiometry
range for the positive electrode is reduced by 20%, while the negative
electrode remains unchanged. Calculate the full cell potential at 50%
SOC in this case.

1Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dham-
mika Widanage, and Emma Kendrick. “Development of Experimental Techniques for Pa-
rameterization of Multi-scale Lithium-ion Battery Models.” Journal of the Electrochemical
Society 167 (2020): 080534.
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Figure 2.3: Potential of negative electrode

Figure 2.4: Potential of positive electrode
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Exercise 2.5.
A 3 Ah lithium-ion battery is charged at 25 ◦C using the CCCV (Constant
Current, Constant Voltage) method. The internal resistance of the battery is
Ri = 0.05 Ω, and the open circuit voltage (OCV) depends on the state of charge
(SOC). During charging:

• In the constant current (CC) phase, the terminal voltage Vt is given by:

Vt = OCV(SOC) + I · Ri,

where I = 1C = 3 A.

• The constant voltage (CV) phase starts at SOC = 95%, where Vt =
Vmax = 4.2 V. During the CV phase, the current I is given by:

I = Vmax − OCV(SOC)
Ri

.

Answer the following questions:

a) During the CC phase, calculate the terminal voltage Vt at SOC = 50%,
given that OCV(SOC = 50%) = 3.6 V.

b) During the CV phase, calculate the charging current I at SOC = 97%,
given that OCV(SOC = 97%) = 4.15 V.

c) Explain how the CCCV charging method ensures safe and efficient battery
charging, referring to both the CC and CV phases.

Exercise 2.6.
Cold Cranking Amps (CCA) measure a battery’s ability to start an engine in
cold climates. CCA tells you how many amps a 12-volt battery may support
for 30 seconds at -17.8 degrees Celsius before the voltage drops to at least 7.2
volts per cell.

Use the following battery data for an internal combustion engine lead-acid
starter battery given in Table 2.1.

Table 2.1: Battery data for a starter battery to a SAAB 9-5 BioPower.
Unit Value
Voltage [V DC] 12
Capacity [Ah] 74
Cold cranking amps (-18◦C) [A] 660
Charge voltage [V DC] (max) 16
Charge current [A] (max) 18

Use this data to calculate

a) the C-rate at the rated cold cranking amps

b) the crank power

Note: Cold-cranking amps (CCA) is a rating of how much current can be pulled from the
battery in cold conditions. The rating is done at -18◦C.
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Exercise 2.7.
The rate capability of a lithium-ion cell is described by the modified Shepherd

equation. Calculate the theoretical energy (U · Q) and compare it with the
energy available at discharge rates of

a) 0.2C

b) 1.5C

c) 4C

d) Compare the energy delivered at the different rates.

Assume the battery has a capacity of 5 Ah and is discharged to a cutoff potential
of 2.5 V. The cell voltage (Vcell) is modeled as follows:

Vcell = 4.2 − 0.004I − 0.013
(

Q

Q − It

)
I − 0.0015 · exp

(
0.09
Q

· It

)
Where:

• I is the current in amperes.

• Q is the battery capacity (5 Ah).

• t is the discharge time in hours.

• The cutoff potential is 2.5 V.

Exercise 2.8.
The rate capability of a lithium-ion cell is described using the Shepherd equation.
Calculate the theoretical energy U · Q and compare it with the energy available
at discharge rates of 0.1C, 1.0C, and 3C.

Assume that the battery has a capacity of 6 Ah and is discharged to a cutoff
potential of 2 V. The Shepherd equation for the voltage of the cell is given as:

Vcell = 4.131 − 0.00388I − 0.0151138
(

Q

Q − It

)
I − 0.02 exp

(
0.1
Q

It

)
Where:

• Vcell is the voltage of the cell,

• I is the discharge current (A),

• t is the time,

• Q = 6 Ah is the battery capacity,

• The cutoff voltage is Vcutoff = 2 V.
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Exercise 2.9.
The following efficiencies are defined for a complete charge-discharge cycle:

• ηcoulomb = Qdischarge
Qcharge

Qdischarge : Number of coulombs on discharge

Qcharge : Number of coulombs on charge

• ηvoltage = Vdischarge_avg
Vcharge_avg

Vdischarge_avg : Average discharge voltage

Vcharge_avg : Average charge voltage

• ηenergy = Edischarge
Echarge

Edischarge : Energy discharge

Echarge : Energy charge

Given constant current I for both charging and discharging. Show that:
ηenergy = ηcoulomb · ηvoltage

Exercise 2.10.
Use your computer to solve this question. Given the parameters in illustration
7.3 in the course book Electrochemical Engineering found in Table 2.2. Assume
constant discharge currents I and use the Shepherds equation for the cell voltage
V(t). Assume Vco = 2 [V].

a) Compute the specific energy as a function of power in a Rangone plot.

b) Plot the average discharge efficiency of the battery as function of the
discharge current and estimat the efficiency for 0.5C, 1C, 2C and 3C.

c) Plot the momentary efficiency of a battery discharged at 1C as a function
of DoD.

What is the highest efficiency and for what DoD is that obtained.

Table 2.2: Shepherd model parameters
U Rint K A B
[V] [Ω] [Ω] [V] [Ah]

4.131 0.003881 0.015138 –0.02 0.1



Chapter 3
Equivalent Circuit Models

Exercise 3.1.
The data from the A123 cell can be found in the file named A123_low_current_data.mat
use this to:

(a) Estimate the battery capacity, Q. Use equation (11) in Formulas.

(b) Estimate the OCV curve for the cell and create an OCV function.

Exercise 3.2.
Write down an equivalent circuit model (ECM) in time-continuous state-space
form for the 2-RC circuit model shown in Figure 3.1.

Ri

R1 R2

C2C1

−vc1+ −vc2+

+

−

voc
+

v

i1 i2

i

Figure 3.1: Circuit model for Exercise 3.2

Exercise 3.3.
Write Exercise 3.2 in discrete form.

Hint: Use the forward Euler method to discretize the equations.

dvc

dt
(t) ≈ vc(t + ∆t) − vc(t)

∆t
= vc,k+1 − vc,k

∆t
(3.1)

25
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Exercise 3.4.
Using Figure 3.2, identify:

(a) Internal resistance Ri.

(b) Resistance R.

(c) Capacitance C.

using the step responses in voltage. The cell is discharged with −1 A and the
current is turned off at 100 s.

v
discharge

v
relax

v
oc

Figure 3.2: Step in current with voltage response over time.
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Exercise 3.5.
In the previous exercises the model parameters are only estimated at a specific
SOC, the one where the step is taken. Another way to estimate the parameters
in the ECM is to use linear regression. By doing this, the parameters are
estimated for a wider range of SOC. To use linear regression the dependent
variable Y and the so called regressor X need to have a linear relationship. The
regressor coefficient, Θ, describe how much the Y is expected to change as X
increases, and it’s Θ we want to find.

a) Use the ECM in time discrete form from Exercise 3.3 to set up the system
as

Y = XΘ

Which means that for each step k, row k is expressed as

yk = xk1θ1 + xk2θ2 + xk3θ3

b) Find the values of Ri, R, C using linear regression.

Hint: Θ can be computed in Matlab using Θ = X\Y

c) Using the values estimated in b), simulate the ECM for the same time
intervall. Compare the results with the measurements.

d) Use Y and XΘ, plot them in the same figure and compare the results.

Note that since the open circuit voltage is non-linear, since it changes with
SOC, it needs to be removed to be able to use the linear regression. Do this by
for example introducing a new variable Ṽk = Vk − VOC,k.

Exercise 3.6.
Please examine the optimization codes provided in Exercise_3_6.m, which

uses fminunc to identifying impedance parameters (Ri, C, R) from the dynamic
operation of a lithium-ion battery. The tasks will be to evaluate different ways
to initialize the optimization:

(a) Start the optimization with Ri, R, C from the linear regression in Exer-
cise 3.5 and optimize these parameters.

(b) Start the optimization with Ri, R, C from the linear regression in Exer-
cise 3.5, optimize these parameters and normilize the parameter values.

(c) Start the optimization with Ri, R, C from the linear regression in Exer-
cise 3.5, initialize the SOC with v1 and optimize these parameters.

(d) Start the optimization with Ri, R, C from the linear regression in Ex-
ercise 3.5, initialize the SOC with v1 and normilize and optimixe the
parameter values.

(e) Start the optimization with Ri, R, C from the linear regression in Exer-
cise 3.5, initialize the SOC with v1 and initialize the capasity, Q. Then
normilize and optimixe the parameter values.
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Given the result achieved in the subtasks, discuss whether the normalization is
necessary or not.

Exercise 3.7.
In the lecture, we saw how to convert the potential of a parallel circuit, vc, into
a time-discrete form using the Euler forward method. We will now apply the
same approach to the State of Charge (SOC) using Coulomb counting, denoted
as z(t).
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Chapter 1
Introduction to Battery Systems

Exercise 1.1.

a) Cathode: (positive electrode). Electrons are absorbed from the external
circuit when the electrode is reduced.

b) Anode: (negative electrode). Electrons are emitted to the external circuit
when the electrode is oxidized.

c) Electrolyte: (ion conductor). Medium for transport of charged ions
between anode and cathode.

d) Separator: physically separates the anode and cathode, preventing them
from directly contacting each other, which would cause a short circuit. It
allows ions to pass through but blocks the direct flow of electrons.

e) External circuit: provides the route for electron flow, allowing the battery
to deliver electrical energy to a device.

31
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Exercise 1.2.

a) To obtain the full cell reaction with electrons included, we combine the
anode and cathode reactions:

Zn + Cu2+ + 2e− → Zn2+ + Cu + 2e−

Removing the electrons gives the simplified full cell reaction:

Zn + Cu2+ → Zn2+ + Cu

b) Here, n represents the number of moles of electrons transferred in the
full cell reaction. Since 2 moles of electrons are transferred from zinc to
copper, we have:

n = 2

c) To obtain the full reaction, we need to balance the electron transfer. The
anode transfers 2 electrons, and the new cathode requires 4 electrons.
Thus, we multiply the anode reaction by 2:

2Zn + 4e− → 2Zn2+

The balanced full cell reaction, including electrons, is:

2Zn + O2 + 4H+ + 4e− → 2Zn2+ + 2H2O + 4e−

Removing the electrons gives the simplified full cell reaction:

2Zn + O2 + 4H+ → 2Zn2+ + 2H2O

d) Number of electrons involved in the full cell reaction: n = 4

Exercise 1.3.

a) Combining the anode and cathode reactions, we write the full cell reaction
including electrons:

LiC6 + CoO2 + e− + Li+ → Li+ + C6 + LiCoO2 + e−

Removing the electrons gives us the simplified full cell reaction:

LiC6 + CoO2 → LiCoO2 + C6

b) During charging, the reactions are reversed. The full cell reaction for
charing will be as for discharging but with the arrow in the other direction:

LiCoO2 + C6 → LiC6 + CoO2
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Exercise 1.4. To balance the electrons, we notice that the anode produces 1
electron while the cathode consumes 2 electrons. Therefore, we multiply the
anode reaction by 2:

2Li → 2Li+ + 2e−

Now, combining these reactions gives us the full cell reaction including electrons:

2Li + O2 + 2e− → 2Li+ + Li2O2 + 2e−

Removing the electrons yields the simplified full cell reaction:

2Li + O2 → Li2O2
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Exercise 1.5. Since n=2 it means that 2 moles of electrons are involved in
the reaction. We can write the full cell reaction with the electrons included:

Ni + 2Fe3+ + 2e− → Ni2+ + 2Fe2+ + 2e−

To subtract the cathode half cell reaction we need to balance it first:

2Fe3+ + 2e− → 2Fe2+

Now subtracting it from the full cell reaction, we get the anode half cell reaction:

Ni + 2Fe3+ + 2e− − (2Fe3+ + 2e−) → Ni2+ + 2Fe2+ + 2e− − (2Fe2+)

This simplifies to:
Ni → Ni2+ + 2e−

Exercise 1.6. 1.56 V

Exercise 1.7.

a) The number of moles of lithium deposited on the anode is 0.5597 moles.

b) The mass of lithium deposited on the anode is 3.8849 g.

Exercise 1.8.

a) The mass of chlorine gas produced is 6.616 g.

b) The volume of chlorine gas produced is 0.2313 m3 = 231.6 liters.

Exercise 1.9.

a) Anode charge density: 3.86 Ah
g

b) Cathode charge density: 0.273 Ah
g

c) Full-cell charge density: 0.254 Ah
g

d) Energy density: 0.977 Wh
g

Exercise 1.10. Using the molar mass Pb(207 g/mol), PbO2(239 g/mol), and
2H2SO4(196 g/mol), the charge density is

Q

mA
= F · n

MA
= 96485 · 2

207 + 239 + 2 · 196 = 83.5 Ah/kg

Multiplying this with the average voltage of 2 V gives the theoretical energy
density:

V · Q

mA
= 2 · 83.5 = 167 Wh/kg
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Exercise 1.11.

a) Use ∆G0
Cu2+/Cu = −2FU0

Cu2+/Cu = −65.03 [kJ/mol]

b) Use ∆G0
Cu2+/Cu = −2FU0

Cu2+/Cu, ∆G0
Cu+/Cu = −FU0

Cu+/Cu

and ∆G0
Cu2+/Cu+ = −FU0

Cu2+/Cu+ .

This gives: ∆G0
Cu2+/Cu+ = ∆G0

Cu2+/Cu − ∆G0
Cu+/Cu

⇔ −FU0
Cu2+/Cu+ = −2FU0

Cu2+/Cu −
(

−FU0
Cu+/Cu

)
⇔ U0

Cu2+/Cu+ = 2U0
Cu2+/Cu − U0

Cu+/Cu = 0.1521 [V]

Exercise 1.12.

a) From Lecture 1 and Excercise 1.4

U = U0 − RT

nF
ln
(∏

ions

(
ci

c0
i

)si ∏
gas

(
pi

p0
i

)si
)

For lead-acid @ 25C: 2.041 − 8.314·(273.15+25)
2·96485 ln

(
5
1

−2 · 2·5
1

−4
)

= 2.20 V

For lead-acid @ -25C: 2.041 − 8.314·(273.15−25)
2·96485 ln

(
5
1

−2 · 2·5
1

−4
)

= 2.17 V

For Li-air @ 25C: 2.96 − 8.314·(273.15+25)
2·96485 ln

(
5
1

−1 · 5
1

−1
)

= 3.00 V

For Li-air @ -25C: 2.96 − 8.314·(273.15−25)
2·96485 ln

(
5
1

−1 · 5
1

−1
)

= 2.99 V
This shows Li-air is least sensitive to temperature changes

b) For lead-acid @ 25C: 2.041 − 8.314·(273.15+25)
2·96485 ln

(
1
1

−2 · 2·1
1

−4
)

= 2.08 V

For lead-acid @ -25C: 2.041 − 8.314·(273.15−25)
2·96485 ln

(
1
1

−2 · 2·1
1

−4
)

= 2.07 V

For Li-air @ 25C: 2.96 − 8.314·(273.15+25)
2·96485 ln

(
1
1

−1 · 1
1

−1
)

= 2.96 V

For Li-air @ -25C: 2.96 − 8.314·(273.15−25)
2·96485 ln

(
1
1

−1 · 1
1

−1
)

= 2.96 V
In this case, Li-air has no dependence on temperature.

c) If M=1, the natural logarithm sums to 1 and ln(1) is 0. No matter the
temperature range, there will be no change in the potential for the lithium
battery. This further proves that the model is simplified.
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Chapter 2
Battery Properties

Exercise 2.1. See lecture slides
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Exercise 2.2. See Figure 2.1.
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Figure 2.1: Answer to Exercise 2.2
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Figure 2.2: Cell potential for charge and discharge.

Exercise 2.3.

a) Depending on if the cell is charging or discharging, the cell potential for
this simplified case, will deviate ±IR = 0.3 V. During charge:

Vcharge = OCV (SOC) + IR

and during discharge:

Vdischarge = OCV (SOC) − IR

b) See Figure 2.2

c) See Figure 2.3

d) In the first case, when only considering the SOC, the cell potential goes
beyond the cut-off voltages, and the cell can become overcharged or over-
discharged. In the second case, the cell potential stays within the voltage
limits, but the full SOC range is not utilized since we are charging and
discharging at 1C. The terminal voltage will be reached quicker. Therefore,
it is beneficial to start with constant voltage (CV) charging when reaching
the cut-off voltage to safely reach the desired SOC range.
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Figure 2.3: Cell potential for charge and discharge with cut-off voltages re-
spected.
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Figure 2.4: Potentials against SOC

Exercise 2.4.

a) When the positive electrode is fully lithiated (stoichiometry = 0.9084),
the corresponding stoichiometry for the negative electrode is 0.0279.

b) SOC is linearly related to the stoichiometry because since it is proportional
to the lithium content (stoichiometry) in the electrode material.

c) Starting with positive electrode, when the electrode is fully lithiated (SOC
= 0%), we get point (0, 0.9084). At 100% SOC, we get point (1, 0.2661).
Therefore, the linear function relating SOC and stoichiometry is

x+ = 0.2661 − 0.9084
1 SOC + 0.9084. (2.1)

Similarly, for the negative electrode, the linear relationship is

x− = 0.9014 − 0.0279
1 SOC + 0.0279. (2.2)

This gives the plot in Figure 2.4, where total cell voltage is the difference
between the half-cell potentials.

d) Using the linear relations from part c), we calculate x+ and x− at 50% SOC.
The full cell potential is determined by subtracting the half-cell potential
of the anode from the cathode, yielding U+(x+) − U−(x−) = 3.708 V.

e) Imbalance occurs due to cell aging and degradation, which can cause the
capacity of one electrode to degrade faster than the other. This results in
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a misalignment of the SOC between the electrodes, leading to a distorted
open-circuit voltage (OCV) curve. In such cases, the model becomes
inaccurate even before current is applied, as the electrodes reach their
stoichiometric limits at different SOC levels.

f) In the case of an imbalance where the upper stoichiometry limit of the
positive electrode is reduced by 20%, the new upper limit becomes 0.7267.
Calculating the full cell potential at 50% SOC in this scenario gives
3.843 V.

Exercise 2.5.

a) The terminal voltage at SOC = 50% is 3.75 V.

b) The charging current at SOC = 97% is 1.0 A.

c) The CCCV algorithm combines fast charging in the CC phase with safe,
gradual charging in the CV phase to protect the battery and extend its
lifespan.
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Exercise 2.6.

a) The C-rate is calculated using the capacity of the battery and the CCA.

C = CCA

Capacity
= 660

74 = 8.92.

During the 30 seconds at -18◦C, the C-rate is 8.92.

b) The crank power is calculated using the nominal power and the rated
CCA

P = U · I = 12 · 660 = 7920 W = 7.92 kW

The maximum crank power is 7.92 kW.

Exercise 2.7. The Matlab code to this exercise is attached in the Solution_2_7.m.

The theoretical energy of the battery can be calculated by assuming it discharges
at a constant nominal voltage. The energy is the product of capacity and nominal
voltage:

Energy (U · Q) = Vnominal · Q

The nominal voltage is given as 4.2 V and the capacity is 5 Ah. Therefore:

Energytheoretical = 4.2 · 5 = 21 Wh

a) The discharge current for 0.2C is:

I = 0.2 · 5 = 1 A

We can now use the Shepherd equation to estimate the energy delivered
at this rate. The voltage equation for 0.2C is:

Vcell(0.2C) = 4.2−0.004(1)−0.013
(

5
5 − 1 · t

)
1−0.0015·exp

(
0.09

5 · 1 · t

)

The energy delivered can be calculated by integrating the product of
voltage and current over the discharge time until the voltage drops to the
cutoff voltage of 2.5 V with tcut-off = 4.96.

The energy delivered is calculated by integrating the power over the
discharge time:

E =
∫ tcut-off

0
IVcell(t) dt = I ·

∫ tcut-off

0
Vcell(t) dt (2.3)

then for 0.2C:
E = I ·

∫ 4.96

0
Vcell(t) dt = 20.4905

b) The discharge current for 1.5C is:

I = 1.5 · 5 = 7.5 A
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Using the Shepherd equation for 1.5C:

Vcell(1.5C) = 4.2−0.004(7.5)−0.013
(

5
5 − 7.5t

)
7.5−0.0015·exp

(
0.09

5 · 7.5 · t

)
The energy delivered can be calculated by integrating the product of
voltage and current over the discharge time until the voltage drops to the
cutoff voltage of 2.5 V with tcut-off = 0.6256.

By using Equation (2.3) in 1.5C:

E = I ·
∫ 0.6256

0
Vcell(t) dt = 18.1996

c) The discharge current for 4C is:

I = 4 · 5 = 20 A

Similarly, we calculate the voltage at each time step using the Shepherd
equation for 4C:

Vcell(4C) = 4.2−0.004(20)−0.013
(

5
5 − 20t

)
20−0.0015·exp

(
0.09

5 · 20 · t

)
The energy delivered can be calculated by integrating the product of
voltage and current over the discharge time until the voltage drops to the
cutoff voltage of 2.5 V with tcut-off = 0.209.

By using Equation (2.3) in 4C:

E = I ×
∫ 0.6256

0
Vcell(t) dt = 14.8648

d) After performing these calculations, we compare the energy delivered at
different C-rates (0.2C, 1.5C, and 4C) with the theoretical energy. The
available energy at each discharge rate can be seen in Table 2.1. The cell
voltage as a function of discharged energy is shown in Figure 2.5.

Table 2.1: Available Energy at Different Discharge Rates
Discharge Rate Available Energy (Wh)

0.2C (1 A) 20.4905
1.5C (7.5 A) 18.1996
4C (20 A) 14.8648

Exercise 2.8.

The Matlab code to this exercise is attached in the Solution_2_8.m.

The theoretical energy of the battery is calculated as:

Etheoretical = VOC · Q

where:
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Figure 2.5: Cell voltage as function of discharged energy.

• VOC = 4.131 V is the open circuit voltage,

• Q = 6 Ah is the battery capacity.

Thus:

Etheoretical = 4.131 V · 6 Ah = 24.786 Wh

The available energy is calculated by integrating the power over the discharge
time. Power is the product of current and voltage, and the energy is:

E = I ·
∫ tcut-off

0
Vcell(t) dt

For each discharge rate, we will first calculate the discharge current:

• At 0.1C: I = 0.1 · Q = 0.1 · 6 = 0.6 A

• At 1.0C: I = 1.0 · Q = 1.0 · 6 = 6 A

• At 3C: I = 3 · Q = 3 · 6 = 18 A

To find the energy available for each C-rate, use

E =
∫ tcut-off

0
IVcell(t) dt = I ·

∫ tcut-off

0
Vcell(t) dt (2.4)
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The cut-off time for each case:

tcut-off 0.1C = 9.956

tcut-off 1.0C = 0.9568

tcut-off 3C = 0.289

Then the Energy calculated by Equation (2.4) is

E0.1C = 24.2422 Wh

E1.0C = 21.7516 Wh

E3C = 17.7245 Wh

The theoretical energy of the battery is:

Etheoretical = 24.786 Wh

The energy available at different discharge rates is:

Table 2.2: Available Energy at Different Discharge Rates
Discharge Rate Available Energy (Wh)

0.1C (0.6 A) 24.2422
1.0C (6 A) 21.7516
3C (18 A) 17.7245
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Exercise 2.9.
Discharge:

Qdischarge = I · tdischarge

Edischarge = I·
∫ tdischarge

0
Vdischarge(t), dt = I·Vdischarge_avg·tdischarge = Vdischarge_avg·Qdischarge

Charge:
Qcharge = I · tcharge

Echarge = I·
∫ tcharge

0
Vcharge(t) dt = I·Vcharge_avg·tcharge = Vcharge_avg·Qcharge

Energy efficiency:

ηenergy = Edischarge

Echarge
= Vdischarge_avg · Qdischarge

Vcharge_avg · Qcharge
= ηvoltage · ηcoulomb

Exercise 2.10. The code for the tasks can be found in Solution_2_10.m

a) Start by calculating the current based on the battery capasity Q and the
C-value. Then implement the Shepherd equation (Equation (10)) with
the parameters found in Table 2.2. Estimate the cell potential for each
timestamp and plot the results for a few values of C. Read out the charge
discharged, the intersection between the curve and the cut off voltage,
can be read out on the x-axis. Calculate the energy by

Energy =
∫ tco

0
IV (t)dt = I

∫ tco

0
V (t)dt. (2.5)

% a) For Battery energy , Power and Efficiency

% Set the parameter values

% Calculate the current based on C and Q value

% Shepherds equation
V_cell = @(t) U - I.* R_int - ...;

% Create a time vector that is long enough [s]
t_vec = ...;

% Calculate the cell potential for each time step

% Pick the first element smaller then V_co.
CoV_ind = find( cell_potential <CoV ,1,'first ');

charge = ...;
energy = ...;
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b) The efficiency of the different levels of discharge currents are:

η0.5C = 0.9536

η1C = 0.9215

η2C = 0.8705

η3C = 0.8285

A plot of the voltage drop over time depending on the discharge current
can be seen in Figure 2.6
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Figure 2.6: Voltage drop as function of the discharge current.

A plot of the efficiency as function of the discharge current can be seen in
Figure 2.7.

%% b)
% The efficiency is estimated usin eta(DoD) = V(t)

/OCV(t).
% OCV comes from V_cell = U + A when I = 0.
% The code for this task can be optimized

clc
clear all
close all

U = 4.131;
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Figure 2.7: Voltage drop as function of the discharge current.

R_int = 0.003881;
K = 0.015138;
A = -0.02;
B = 0.1;
Q = 6; % Ah
CoV = 2; % [V] Cut off voltage

V_oc = U + A;
t_vec = 1:(2*3600) ; % [s]

c_vec = [0.5 ,1 ,2 ,3]; % Vector including all the
discharge currents

% Shepherds equation
V_cell_b2 = @(t,amp) U - amp .* R_int - K*(Q/(Q-amp

.*t)).* amp + A.* exp(B./Q.* amp .*t);

% Create a vector with the cut off voltage and the
open circuit voltage

V_co_vec = ones (1, length (t_vec))*CoV;
V_oc_vec = ones (1, length (t_vec))*V_oc;

for c_ind = 1:4
C = c_vec(c_ind);
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I = C*Q;
for i_1 = t_vec

ii_1 = i_1 /3600; % Convert to hours
cell_potential_vec (c_ind ,i_1) = V_cell_b2 (

ii_1 ,I);
end

% Find the index of the element smaller than
cut off voltage and 0

CoV_ind_vec (c_ind) = find( cell_potential_vec (
c_ind ,:) <CoV ,1,'first ');

zero_V_ind_vec (c_ind) = find(
cell_potential_vec (c_ind ,:) <0,1,'first ');

% Plot the result
figure (10)
plot( t_vec (1: zero_V_ind_vec (c_ind)),

cell_potential_vec (c_ind ,1: zero_V_ind_vec (
c_ind)))

hold on

% Estimate the efficiency of the energy
discharged from the battery

spec_energy_vec (c_ind) = sum(
cell_potential_vec (c_ind ,1: CoV_ind_vec (
c_ind)));

oc_energy_vec (c_ind) = sum( V_oc_vec (1:
CoV_ind_vec (c_ind)));

eta_vec (c_ind) = spec_energy_vec (c_ind)/
oc_energy_vec (c_ind);

end
figure (10)
plot(t_vec (1: zero_V_ind_vec (1)),V_co_vec (1:

zero_V_ind_vec (1)))
plot(t_vec (1: zero_V_ind_vec (1)),V_oc_vec (1:

zero_V_ind_vec (1)))
xlabel ('Discharge current [C]')
ylabel ('Cell potential [V]')
legend ('0.5C','1C','2C','3C','0C','V_{co}')

figure (20)
plot(c_vec , eta_vec )
xlabel ('Discharge current [C]')
ylabel ('\eta ')

c) The highest efficiency is found when the battery still has SoC 100% and
is η = 0.9722. This can be seen in Figure 2.8. The result is achived by
making small changes to the code in task a).
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Figure 2.8: The momentary efficiency for a discharge current of 1C.



Chapter 3
Equivalent Circuit Models

Exercise 3.1.

(a) The capacity is Q ≈ ±1.0865 [Ah]. The capasity is calculated by the
integral of the current vs time area.

Qcharge =
∫ full

empty
i(t)dt

Qdischarge =
∫ empty

full
i(t)dt

In Matlab the charge capacity can be calculated by

Q_charge = trapz(Time,Current). The file data should be devided into
two different sets, one for charging and one for discharging. The capasity
is the integral of the current vs time area. The code can be found in
Solution_3_1.m.

(b) The OCV curve can be seen in Figure 3.1 and the OCV function can be
found in the code.

Exercise 3.2. Start with the KVL of the circuit:

v = voc + Rii + vc1 + vc2 (3.1)

The capacitance of the circuit:

ic1 = C1 · dvc1

dt
(3.2)

ic2 = C2 · dvc2

dt
(3.3)

53
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Figure 3.1: The OCV curve for the A123 cell.

Again the KVL for the individual RC-circuits gives:

vc1 = R1 (i − ic1) (3.4)

vc2 = R2 (i − ic2) (3.5)

which, inserted to Equation (3.2) gives

dvc

dt
= ic

C
= 1

C

(
i − vc

R

)
(3.6)

Combining the equations above gives the answer to the question
dvc1

dt = i
C1

− vc1
R1C1

dvc2
dt = i

C2
− vc2

R2C2

v = vc1 − vc2 + voc + Rii

(3.7)

Exercise 3.3. The expresion for the time continuous state-space form from
Exercise 3.2 is: 

dvc1
dt = i

C1
− vc1

R1C1
dvc2

dt = i
C2

− vc2
R2C2

v = vc1 − vc2 + voc + Rii

(3.8)

Using equation (3.1) together with equation (3.8) gives the discrete form of the
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ECM:
vc1,k+1−vc1,k

∆t = ik

C1
− vc1,k

R1C1
vc2,k+1−vc,k

∆t = ik

C2
− vc2,k

R2C2

vk = vc1,k − vc2,k + voc,k + Riik

⇔


vc1,k+1 = vc1,k

(
1 − ∆t

R1C1

)
+ ik

C1
∆t

vc2,k+1 = vc2,k

(
1 − ∆t

R2C2

)
+ ik

C2
∆t

vk = vc1,k − vc2,k + voc,k + Riik

Exercise 3.4.

1. Ri = 20 mΩ.

2. R = 30 mΩ.

3. C ≈ 1.3 kF.
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Exercise 3.5.

a) The time discrete form of the ECM:

vc,k+1 − vc,k

∆t
= −vc,k

RC
+ ik

C
(3.9)

vk = vc,k + vOC,k + Riik (3.10)

And we want to write it in the form:

Y = XΘ

First we remove the non-linearity by introducing a new variable

Ṽk = Vk − VOC,k

equation (3.10) becomes:

Ṽk = vc,k + Riik

from which we want to extract vc,k (since its unknown) and substitute it
into equation (3.9):

(ṽk+1 − Riik+1) − (ṽk − Riik)
∆t

= − 1
RC

(ṽk − Riik) + ik

C
(3.11)

b) The parameters that we want to estimate are Ri, R, C and we can identify
them as a product or sum of each other in equation (3.11). By rearranging
the equation we get:

ṽk+1 − ṽk

∆t
= Ri

(
ik+1 − ik

∆t

)
+ 1

RC
(−ṽk) +

(
Ri

RC
+ 1

C

)
ik

Now, row k in the Y vector can be identified as yk = ṽk+1−ṽk

∆t . Row k in
the Θ vector can be identified: θ1 = Ri, θ2 = 1

RC , θ3 = Ri

RC + 1
C and in

the X matrix as xk1 = ik+1−ik

∆t , xk2 = −ṽk, xk3 = ik so that each row k
is:

yk = xk1θ1 + xk2θ2 + xk3θ3

Now we have everything to construct the whole Y and X vector just by
completing all the rows, and then determine the Θ vector as

Θ = X−1Y

(in Matlab: Θ = X\Y ).

Once Θ = [θ1, θ2, θ3]T is obtained, the parameters can be calculated as
the following:
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Ri = θ1 (3.12)

C = 1
θ3 − θ1θ2

(3.13)

R = θ3

θ2
− θ1 (3.14)

The paramters obtianed using the code in Solution_3_5.m are:

Ri = 0.2 Ω
R = 0.08 Ω
C = 10.2 kF

Now that the parameters are estimated they can be used in the ECM to
simulate a cell during operation.

c) To simulate the cell during operation, use the estimated parameters and
simulate a 1-RC model. The model can be simualted by
n = numel(i);
vc = zeros(n ,1);
z = SOCf(v(1));
vhat = zeros(n ,1);
for k = 1:n-1

z(k+1) = z(k) + i(k)*dt/Q;
v(k) = vc(k) + OCVf(z(k)) + Ri*i(k);
vc(k+1) = vc(k)*(1 - dt/(R*C)) + i(k)*dt/C;

end
v(n) = vc(n) + OCVf(z(n)) + Ri*i(n);

The result of the simulated model compared to the measured data is
shown in Figure 3.2.

d) The code to plot the results can be seen in Exercise_3_5.m. As seen in
Figure 3.3.

Exercise 3.6. The result from each of the subtasks can be seen in Table 3.1.

Table 3.1: Estimated impedance parameters using different initialization meth-
ods.

Task Ri [Ω] C [F] R [Ω] SOC [%] Q [Ah] ∆V [mV]
a) 0.1996 1016.9 0.0577 99.64 1.0865 0.0853
b) 0.2020 1710.2 0.0580 99.64 1.0865 0.0626
c) 0.1994 1016.9 0.0572 99.50 1.0865 0.0797
d) 0.2019 1763.5 0.0576 99.48 1.0865 0.0555
e) 0.2012 1656.0 0.0477 99.53 0.9603 0.0340

As seen in Table 3.1 the tasks with bold text is the ones normalized in the
optimazation. These are also the tasks where C and Ri clearly decreases and
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Figure 3.2: THe model compared to the measured data.
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Figure 3.3: Y and XΘ plotted against each other.
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increases. Implying that normalizing the parameters makes them find another
minimum compared to the once without normalization. There might be multiple
local minimum. The tasks with bold text also have a lower error in the voltage
prediction, which is a good sign. This means that the optimization is more
sensitive to the parameters when they are normalized.

Exercise 3.7. The State of Charge is given by z(t) = z(0) +
∫ t

0
η

Qtot
i(τ)dτ

using Coulomb counting. Differentiating with respect to time, we get

ż(t) = η

Qtot
i(t). (3.15)

Applying the Euler forward method, we approximate

dz

dt
≈ z(t + ∆t) − z(t)

∆t
= zk+1 − zk

∆t
. (3.16)

This yields the SOC in discrete form as

z[k] = z[k − 1] + η

Qtot
i[k]∆t. (3.17)
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Appendix A: Standard Electrode Potentials

Electrochemical Reaction Standard Potential, Uθ (V)
1. F2 + 2e− → 2F− 2.87
2. PbO2 + SO2−

4 + 4H+ + 2e− → PbSO4 + 2H2O 1.685
3. Cl2 + 2e− → 2Cl− 1.3595
4. O2 + 4H+ + 4e− → 2H2O 1.229
5. Br2(aq) + 2e− → 2Br− 1.078
6. Ag+ + e− → Ag 0.7991
7. Hg2+

2 + 2e− → 2Hg 0.7898
8. Cu+ + e− → Cu 0.5219
9. O2 + 2H2O + 4e− → 4OH− 0.401
10. Cu2+ + 2e− → Cu 0.337
11. Hg2Cl2 + 2e− → 2Hg + 2Cl− 0.2676
12. AgCl + e− → Ag + Cl− 0.222
13. Cu2+ + e− → Cu+ 0.153
14. HgO + H2O + 2e− → Hg + 2OH− 0.098
15. 2H+ + 2e− → H2 0
16. Pb2+ + 2e− → Pb -0.126
17. PbSO4 + 2e− → Pb + SO2−

4 -0.356
18. Fe2+ + 2e− → Fe -0.44
19. Cr3+ + 3e− → Cr -0.74
20. Zn2+ + 2e− → Zn -0.763
21. 2H2O + 2e− → H2 + 2OH− -0.828
22. Cr2+ + 2e− → Cr -0.912
23. Mn2+ + 2e− → Mn -1.18
24. Al3+ + 3e− → Al -1.66
25. Mg2+ + 2e− → Mg -2.357
26. Na+ + e− → Na -2.714
27. K+ + e− → K -2.936
28. Li+ + e− → Li -3.045

Standard states:
(a) Gases: pure ideal gas at 25◦C, 100 kPa
(b) Liquids and solids: pure substances
(c) Aqueous solutions: hypothetical 1 molal solution.
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