
Lab 5

Part 1: Manual mutation testing

Selected values:

Input
Values

Actual
output

i % 3 != 0 &&

i % 5 != 0

i % 3 == 0 ||

i % 5 == 0

i % 3 != 0

i * 3 == 0

i - 5 == 0

2 2 Fizz!Buzz! 2 Fizz 2 2

15 Fizz!Buzz! Fizz Fizz!Buzz! Fizz!Buzz! Fizz!Buzz! Fizz!Buzz!

25 Buzz Buzz Fizz!Buzz! Fizz Buzz 25

27 Fizz Fizz Fizz!Buzz! 27 27 Fizz

28 28 Fizz!Buzz! 28 Fizz 28 28

What is the practical use case of introducing mutants? Say that the

five pairs of input and output printed to the terminal was our tests?

Mutants use to test the quality of test cases that already written and if there

is anything missing in tests then mutation is the way to find it out. Yes the

above changes in the code like change && with || is mutation testing.

Why would we in an industrial context want to automate the process

of introducing mutants?

Because it’s very hard to test all mutations manually or by random guessing. Also some deeper

parts remains untested with this. So automation testing change values accordingly with every

expected pair and validate current tests and generate new.

Part 2: Automation mutation testing

Below images showing the code coverage and mutant score generated by the test

suit.

Code coverage

Mutation Score

What do the results of running dextool tell us about test quality?
Relate the findings from doing this experiment to the first lab. Would

we make similar observations for tests for highly coupled code as in

the Colony example?

Results showing us about mutation score, which files got mutate values and
how much it changes. If we change or mutate it and test get pass that means

mutant is alive and if it get fails its called mutant killed. If alive mutants are

high that means it is not a good quality tests.

We can test colony example with this method of mutation and observe the

behavior same like the above example. But high coupling can cause a problem
in mutation because modules are too much depending on each other’s.

Part 3: Extend the test suit

After generating above new test cases mutation score increased.

File-> src/util.h

Old score-> 263

New score-> 283

Part 4: Equivalent mutants

Find at least one equivalent mutant in the fizz_buzz example. You

might have already found one!

i % 3 and i %-3 are generating same results and are equivalent mutants.

If we consider mutation score when doing automated mutation

testing. Why is the existence of equivalent mutants a practical

problem?

It generate same results and when we generate equivalent mutant is test
nothing expect doing an extra test.

