
Lab 2, TDDD04, muhis511

Concurrency Testing 1: Deadlock detection

How would you have found the error in the program if you had not used JPF?

If I don’t use JPF so it could be very difficult to find the errors. Because code seems

working fine, and this error was happening on some specific path or conditions. I can try

to run it on different conditions to find it. That take a lot of time to find.

How does JPF find the deadlock? Use information from the trace printouts from

the program as well as the description of how JPF works to justify your answer.

JPF run the code again and again with different paths, and checking the code. By this it

automatically detect the error that cause the deadlock. In trace printouts, it print the

output again and again for each success path. And when error occur id generate
Deadlock occurred exception and display the line of code that causing the error or

problem.

Concurrency Testing 1: Race condition detection

How would you have found the error in the program if you had not used JPF?

If I don’t use JPF then I have to give multiple inputs to the program and observe the

output. Like it is the output that I am expecting or not. If not that means some resources

trying to overwrite it or changing it. Like in given code two threads trying to write output

in file that creating problem in the output.

What happens if you make the Updater.run or Pair.update methods synchronized?

Why?

If we change it to synchronized methods then it limit the thread access and only one

thread can access the resources. And the conflict that was creating error is resolved.

Symbolic Execution 1: Test case generation with Exception

What happens if you change the Triangle.getType method to not throw exceptions on
invalid parameters but return TriangleType.NaT instead?

If we remove the exception for invalid parameters and use Nat in return then the output

that generated will be result in NAT message that indicate triangle is not valid. And give

result in no error generated. It also generate tests for triangle. To check it valid or not.

What test cases are generated if you replace the exception?

Not a triangle test cases are generated.

What happens if you change getType(sym#sym#sym) to getType(con#con#sym)?

If we replace it then generated test cases in previous question will change only #sym

parameter and other two parameters are concrete so they will be constant. And triangle

will be tested deeply (maximum coverage) with only one parameter variation.

What does the notation getType(con#con#sym) mean and what is the effect on the
generated test cases? How do you think it could be used when probing the program for
execution paths?

#con is use to mention concreter value and value will not be change for this
parameter.#sym is use to indicate symbolic and its value change until it reach to the

coverage of all code. Generated test cases will change only #sym value. Other value will

remains constant.

If we change parameters to #sym and #con then it will be easy to test more code

coverage for single path. Because it narrow down the path and mutation of singe value

will result in less generated test case with more coverage for that specific path.

Symbolic Execution 2: Test case generation with coverage analysis

How does the SymbolicSequenceListener seem to select test case input values?

symbolicSequenceListener try to test all the code coverage. So it select values that

generate max coverage.

Do you get 100% statement coverage from the test cases? If not, why do you think
that is so? Hint: consider the configuration parameters to the jpf.symbc package on
how to select symbolic values for different datatypes.

Not 100% it showing 80% coverage because I think the one (if) condition is not using

symbolic parameter (usage) that’s why it’s not covering the full code coverage. That (if)

condition might be not reaching the test coverage due to above reason.

Does the coverage indication provided by the CoverageAnalyzer seem correct to you?
Justify your answer.

It seems not fully correct because if we try to test code with dry run, it showing full

coverage but analyser is not reaching to that condition. Reason could be the value of

integer. It ignoring the integer max value that causing to not reach last (if) condition.

Last Exercise: Experimentation

Alarmclock:

In alaram clock file MyLinkList.java have this error. (PreciseRaceDetection)

log4j2:

Errors:

When I run NumberCruncherServer I got unsatisfied link error. Also found a

PreciseRaceDetection error.

Differences in code:

I run files with diff command and it give some structure differences in comments, code

format etc.

Like /* */ replaced with /* *** */. And code like public void change into two lines.

UnitTestAppender.java have an additional print in testappend function.

