Line data Source code
1 : // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 :
3 : // Copyright (C) 2010-2017 Free Software Foundation, Inc.
4 : //
5 : // This file is part of the GNU ISO C++ Library. This library is free
6 : // software; you can redistribute it and/or modify it under the
7 : // terms of the GNU General Public License as published by the
8 : // Free Software Foundation; either version 3, or (at your option)
9 : // any later version.
10 :
11 : // This library is distributed in the hope that it will be useful,
12 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : // GNU General Public License for more details.
15 :
16 : // Under Section 7 of GPL version 3, you are granted additional
17 : // permissions described in the GCC Runtime Library Exception, version
18 : // 3.1, as published by the Free Software Foundation.
19 :
20 : // You should have received a copy of the GNU General Public License and
21 : // a copy of the GCC Runtime Library Exception along with this program;
22 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 : // <http://www.gnu.org/licenses/>.
24 :
25 : /** @file bits/hashtable_policy.h
26 : * This is an internal header file, included by other library headers.
27 : * Do not attempt to use it directly.
28 : * @headername{unordered_map,unordered_set}
29 : */
30 :
31 : #ifndef _HASHTABLE_POLICY_H
32 : #define _HASHTABLE_POLICY_H 1
33 :
34 : #include <bits/stl_algobase.h> // for std::min.
35 :
36 : namespace std _GLIBCXX_VISIBILITY(default)
37 : {
38 : _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 :
40 : template<typename _Key, typename _Value, typename _Alloc,
41 : typename _ExtractKey, typename _Equal,
42 : typename _H1, typename _H2, typename _Hash,
43 : typename _RehashPolicy, typename _Traits>
44 : class _Hashtable;
45 :
46 : _GLIBCXX_END_NAMESPACE_VERSION
47 :
48 : namespace __detail
49 : {
50 : _GLIBCXX_BEGIN_NAMESPACE_VERSION
51 :
52 : /**
53 : * @defgroup hashtable-detail Base and Implementation Classes
54 : * @ingroup unordered_associative_containers
55 : * @{
56 : */
57 : template<typename _Key, typename _Value,
58 : typename _ExtractKey, typename _Equal,
59 : typename _H1, typename _H2, typename _Hash, typename _Traits>
60 : struct _Hashtable_base;
61 :
62 : // Helper function: return distance(first, last) for forward
63 : // iterators, or 0 for input iterators.
64 : template<class _Iterator>
65 : inline typename std::iterator_traits<_Iterator>::difference_type
66 : __distance_fw(_Iterator __first, _Iterator __last,
67 : std::input_iterator_tag)
68 : { return 0; }
69 :
70 : template<class _Iterator>
71 : inline typename std::iterator_traits<_Iterator>::difference_type
72 1 : __distance_fw(_Iterator __first, _Iterator __last,
73 : std::forward_iterator_tag)
74 1 : { return std::distance(__first, __last); }
75 :
76 : template<class _Iterator>
77 : inline typename std::iterator_traits<_Iterator>::difference_type
78 1 : __distance_fw(_Iterator __first, _Iterator __last)
79 : {
80 : typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
81 1 : return __distance_fw(__first, __last, _Tag());
82 : }
83 :
84 : // Helper type used to detect whether the hash functor is noexcept.
85 : template <typename _Key, typename _Hash>
86 : struct __is_noexcept_hash : std::__bool_constant<
87 : noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
88 : { };
89 :
90 : struct _Identity
91 : {
92 : template<typename _Tp>
93 : _Tp&&
94 : operator()(_Tp&& __x) const
95 : { return std::forward<_Tp>(__x); }
96 : };
97 :
98 : struct _Select1st
99 : {
100 : template<typename _Tp>
101 : auto
102 3353 : operator()(_Tp&& __x) const
103 : -> decltype(std::get<0>(std::forward<_Tp>(__x)))
104 3353 : { return std::get<0>(std::forward<_Tp>(__x)); }
105 : };
106 :
107 : template<typename _NodeAlloc>
108 : struct _Hashtable_alloc;
109 :
110 : // Functor recycling a pool of nodes and using allocation once the pool is
111 : // empty.
112 : template<typename _NodeAlloc>
113 : struct _ReuseOrAllocNode
114 : {
115 : private:
116 : using __node_alloc_type = _NodeAlloc;
117 : using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
118 : using __value_alloc_type = typename __hashtable_alloc::__value_alloc_type;
119 : using __value_alloc_traits =
120 : typename __hashtable_alloc::__value_alloc_traits;
121 : using __node_alloc_traits =
122 : typename __hashtable_alloc::__node_alloc_traits;
123 : using __node_type = typename __hashtable_alloc::__node_type;
124 :
125 : public:
126 : _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
127 : : _M_nodes(__nodes), _M_h(__h) { }
128 : _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
129 :
130 : ~_ReuseOrAllocNode()
131 : { _M_h._M_deallocate_nodes(_M_nodes); }
132 :
133 : template<typename _Arg>
134 : __node_type*
135 : operator()(_Arg&& __arg) const
136 : {
137 : if (_M_nodes)
138 : {
139 : __node_type* __node = _M_nodes;
140 : _M_nodes = _M_nodes->_M_next();
141 : __node->_M_nxt = nullptr;
142 : __value_alloc_type __a(_M_h._M_node_allocator());
143 : __value_alloc_traits::destroy(__a, __node->_M_valptr());
144 : __try
145 : {
146 : __value_alloc_traits::construct(__a, __node->_M_valptr(),
147 : std::forward<_Arg>(__arg));
148 : }
149 : __catch(...)
150 : {
151 : __node->~__node_type();
152 : __node_alloc_traits::deallocate(_M_h._M_node_allocator(),
153 : __node, 1);
154 : __throw_exception_again;
155 : }
156 : return __node;
157 : }
158 : return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
159 : }
160 :
161 : private:
162 : mutable __node_type* _M_nodes;
163 : __hashtable_alloc& _M_h;
164 : };
165 :
166 : // Functor similar to the previous one but without any pool of nodes to
167 : // recycle.
168 : template<typename _NodeAlloc>
169 : struct _AllocNode
170 : {
171 : private:
172 : using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
173 : using __node_type = typename __hashtable_alloc::__node_type;
174 :
175 : public:
176 7 : _AllocNode(__hashtable_alloc& __h)
177 7 : : _M_h(__h) { }
178 :
179 : template<typename _Arg>
180 : __node_type*
181 7 : operator()(_Arg&& __arg) const
182 7 : { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
183 :
184 : private:
185 : __hashtable_alloc& _M_h;
186 : };
187 :
188 : // Auxiliary types used for all instantiations of _Hashtable nodes
189 : // and iterators.
190 :
191 : /**
192 : * struct _Hashtable_traits
193 : *
194 : * Important traits for hash tables.
195 : *
196 : * @tparam _Cache_hash_code Boolean value. True if the value of
197 : * the hash function is stored along with the value. This is a
198 : * time-space tradeoff. Storing it may improve lookup speed by
199 : * reducing the number of times we need to call the _Equal
200 : * function.
201 : *
202 : * @tparam _Constant_iterators Boolean value. True if iterator and
203 : * const_iterator are both constant iterator types. This is true
204 : * for unordered_set and unordered_multiset, false for
205 : * unordered_map and unordered_multimap.
206 : *
207 : * @tparam _Unique_keys Boolean value. True if the return value
208 : * of _Hashtable::count(k) is always at most one, false if it may
209 : * be an arbitrary number. This is true for unordered_set and
210 : * unordered_map, false for unordered_multiset and
211 : * unordered_multimap.
212 : */
213 : template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
214 : struct _Hashtable_traits
215 : {
216 : using __hash_cached = __bool_constant<_Cache_hash_code>;
217 : using __constant_iterators = __bool_constant<_Constant_iterators>;
218 : using __unique_keys = __bool_constant<_Unique_keys>;
219 : };
220 :
221 : /**
222 : * struct _Hash_node_base
223 : *
224 : * Nodes, used to wrap elements stored in the hash table. A policy
225 : * template parameter of class template _Hashtable controls whether
226 : * nodes also store a hash code. In some cases (e.g. strings) this
227 : * may be a performance win.
228 : */
229 : struct _Hash_node_base
230 : {
231 : _Hash_node_base* _M_nxt;
232 :
233 1222 : _Hash_node_base() noexcept : _M_nxt() { }
234 :
235 : _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
236 : };
237 :
238 : /**
239 : * struct _Hash_node_value_base
240 : *
241 : * Node type with the value to store.
242 : */
243 : template<typename _Value>
244 1201 : struct _Hash_node_value_base : _Hash_node_base
245 : {
246 : typedef _Value value_type;
247 :
248 : __gnu_cxx::__aligned_buffer<_Value> _M_storage;
249 :
250 : _Value*
251 4217 : _M_valptr() noexcept
252 4217 : { return _M_storage._M_ptr(); }
253 :
254 : const _Value*
255 2935 : _M_valptr() const noexcept
256 2935 : { return _M_storage._M_ptr(); }
257 :
258 : _Value&
259 611 : _M_v() noexcept
260 611 : { return *_M_valptr(); }
261 :
262 : const _Value&
263 2935 : _M_v() const noexcept
264 2935 : { return *_M_valptr(); }
265 : };
266 :
267 : /**
268 : * Primary template struct _Hash_node.
269 : */
270 : template<typename _Value, bool _Cache_hash_code>
271 : struct _Hash_node;
272 :
273 : /**
274 : * Specialization for nodes with caches, struct _Hash_node.
275 : *
276 : * Base class is __detail::_Hash_node_value_base.
277 : */
278 : template<typename _Value>
279 : struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
280 : {
281 : std::size_t _M_hash_code;
282 :
283 : _Hash_node*
284 : _M_next() const noexcept
285 : { return static_cast<_Hash_node*>(this->_M_nxt); }
286 : };
287 :
288 : /**
289 : * Specialization for nodes without caches, struct _Hash_node.
290 : *
291 : * Base class is __detail::_Hash_node_value_base.
292 : */
293 : template<typename _Value>
294 1201 : struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
295 : {
296 : _Hash_node*
297 4136 : _M_next() const noexcept
298 4136 : { return static_cast<_Hash_node*>(this->_M_nxt); }
299 : };
300 :
301 : /// Base class for node iterators.
302 : template<typename _Value, bool _Cache_hash_code>
303 : struct _Node_iterator_base
304 : {
305 : using __node_type = _Hash_node<_Value, _Cache_hash_code>;
306 :
307 : __node_type* _M_cur;
308 :
309 1221 : _Node_iterator_base(__node_type* __p) noexcept
310 1221 : : _M_cur(__p) { }
311 :
312 : void
313 : _M_incr() noexcept
314 : { _M_cur = _M_cur->_M_next(); }
315 : };
316 :
317 : template<typename _Value, bool _Cache_hash_code>
318 : inline bool
319 10 : operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
320 : const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
321 : noexcept
322 10 : { return __x._M_cur == __y._M_cur; }
323 :
324 : template<typename _Value, bool _Cache_hash_code>
325 : inline bool
326 0 : operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
327 : const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
328 : noexcept
329 0 : { return __x._M_cur != __y._M_cur; }
330 :
331 : /// Node iterators, used to iterate through all the hashtable.
332 : template<typename _Value, bool __constant_iterators, bool __cache>
333 : struct _Node_iterator
334 : : public _Node_iterator_base<_Value, __cache>
335 : {
336 : private:
337 : using __base_type = _Node_iterator_base<_Value, __cache>;
338 : using __node_type = typename __base_type::__node_type;
339 :
340 : public:
341 : typedef _Value value_type;
342 : typedef std::ptrdiff_t difference_type;
343 : typedef std::forward_iterator_tag iterator_category;
344 :
345 : using pointer = typename std::conditional<__constant_iterators,
346 : const _Value*, _Value*>::type;
347 :
348 : using reference = typename std::conditional<__constant_iterators,
349 : const _Value&, _Value&>::type;
350 :
351 : _Node_iterator() noexcept
352 : : __base_type(0) { }
353 :
354 : explicit
355 1221 : _Node_iterator(__node_type* __p) noexcept
356 1221 : : __base_type(__p) { }
357 :
358 : reference
359 : operator*() const noexcept
360 : { return this->_M_cur->_M_v(); }
361 :
362 : pointer
363 1204 : operator->() const noexcept
364 1204 : { return this->_M_cur->_M_valptr(); }
365 :
366 : _Node_iterator&
367 : operator++() noexcept
368 : {
369 : this->_M_incr();
370 : return *this;
371 : }
372 :
373 : _Node_iterator
374 : operator++(int) noexcept
375 : {
376 : _Node_iterator __tmp(*this);
377 : this->_M_incr();
378 : return __tmp;
379 : }
380 : };
381 :
382 : /// Node const_iterators, used to iterate through all the hashtable.
383 : template<typename _Value, bool __constant_iterators, bool __cache>
384 : struct _Node_const_iterator
385 : : public _Node_iterator_base<_Value, __cache>
386 : {
387 : private:
388 : using __base_type = _Node_iterator_base<_Value, __cache>;
389 : using __node_type = typename __base_type::__node_type;
390 :
391 : public:
392 : typedef _Value value_type;
393 : typedef std::ptrdiff_t difference_type;
394 : typedef std::forward_iterator_tag iterator_category;
395 :
396 : typedef const _Value* pointer;
397 : typedef const _Value& reference;
398 :
399 : _Node_const_iterator() noexcept
400 : : __base_type(0) { }
401 :
402 : explicit
403 : _Node_const_iterator(__node_type* __p) noexcept
404 : : __base_type(__p) { }
405 :
406 0 : _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
407 : __cache>& __x) noexcept
408 0 : : __base_type(__x._M_cur) { }
409 :
410 : reference
411 : operator*() const noexcept
412 : { return this->_M_cur->_M_v(); }
413 :
414 : pointer
415 : operator->() const noexcept
416 : { return this->_M_cur->_M_valptr(); }
417 :
418 : _Node_const_iterator&
419 : operator++() noexcept
420 : {
421 : this->_M_incr();
422 : return *this;
423 : }
424 :
425 : _Node_const_iterator
426 : operator++(int) noexcept
427 : {
428 : _Node_const_iterator __tmp(*this);
429 : this->_M_incr();
430 : return __tmp;
431 : }
432 : };
433 :
434 : // Many of class template _Hashtable's template parameters are policy
435 : // classes. These are defaults for the policies.
436 :
437 : /// Default range hashing function: use division to fold a large number
438 : /// into the range [0, N).
439 : struct _Mod_range_hashing
440 : {
441 : typedef std::size_t first_argument_type;
442 : typedef std::size_t second_argument_type;
443 : typedef std::size_t result_type;
444 :
445 : result_type
446 4633 : operator()(first_argument_type __num,
447 : second_argument_type __den) const noexcept
448 4633 : { return __num % __den; }
449 : };
450 :
451 : /// Default ranged hash function H. In principle it should be a
452 : /// function object composed from objects of type H1 and H2 such that
453 : /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
454 : /// h1 and h2. So instead we'll just use a tag to tell class template
455 : /// hashtable to do that composition.
456 : struct _Default_ranged_hash { };
457 :
458 : /// Default value for rehash policy. Bucket size is (usually) the
459 : /// smallest prime that keeps the load factor small enough.
460 : struct _Prime_rehash_policy
461 : {
462 : using __has_load_factor = std::true_type;
463 :
464 21 : _Prime_rehash_policy(float __z = 1.0) noexcept
465 21 : : _M_max_load_factor(__z), _M_next_resize(0) { }
466 :
467 : float
468 : max_load_factor() const noexcept
469 : { return _M_max_load_factor; }
470 :
471 : // Return a bucket size no smaller than n.
472 : std::size_t
473 : _M_next_bkt(std::size_t __n) const;
474 :
475 : // Return a bucket count appropriate for n elements
476 : std::size_t
477 1 : _M_bkt_for_elements(std::size_t __n) const
478 1 : { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
479 :
480 : // __n_bkt is current bucket count, __n_elt is current element count,
481 : // and __n_ins is number of elements to be inserted. Do we need to
482 : // increase bucket count? If so, return make_pair(true, n), where n
483 : // is the new bucket count. If not, return make_pair(false, 0).
484 : std::pair<bool, std::size_t>
485 : _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
486 : std::size_t __n_ins) const;
487 :
488 : typedef std::size_t _State;
489 :
490 : _State
491 1201 : _M_state() const
492 1201 : { return _M_next_resize; }
493 :
494 : void
495 : _M_reset() noexcept
496 : { _M_next_resize = 0; }
497 :
498 : void
499 0 : _M_reset(_State __state)
500 0 : { _M_next_resize = __state; }
501 :
502 : static const std::size_t _S_growth_factor = 2;
503 :
504 : float _M_max_load_factor;
505 : mutable std::size_t _M_next_resize;
506 : };
507 :
508 : /// Range hashing function assuming that second arg is a power of 2.
509 : struct _Mask_range_hashing
510 : {
511 : typedef std::size_t first_argument_type;
512 : typedef std::size_t second_argument_type;
513 : typedef std::size_t result_type;
514 :
515 : result_type
516 : operator()(first_argument_type __num,
517 : second_argument_type __den) const noexcept
518 : { return __num & (__den - 1); }
519 : };
520 :
521 : /// Compute closest power of 2.
522 : _GLIBCXX14_CONSTEXPR
523 : inline std::size_t
524 : __clp2(std::size_t __n) noexcept
525 : {
526 : #if __SIZEOF_SIZE_T__ >= 8
527 : std::uint_fast64_t __x = __n;
528 : #else
529 : std::uint_fast32_t __x = __n;
530 : #endif
531 : // Algorithm from Hacker's Delight, Figure 3-3.
532 : __x = __x - 1;
533 : __x = __x | (__x >> 1);
534 : __x = __x | (__x >> 2);
535 : __x = __x | (__x >> 4);
536 : __x = __x | (__x >> 8);
537 : __x = __x | (__x >>16);
538 : #if __SIZEOF_SIZE_T__ >= 8
539 : __x = __x | (__x >>32);
540 : #endif
541 : return __x + 1;
542 : }
543 :
544 : /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
545 : /// operations.
546 : struct _Power2_rehash_policy
547 : {
548 : using __has_load_factor = std::true_type;
549 :
550 : _Power2_rehash_policy(float __z = 1.0) noexcept
551 : : _M_max_load_factor(__z), _M_next_resize(0) { }
552 :
553 : float
554 : max_load_factor() const noexcept
555 : { return _M_max_load_factor; }
556 :
557 : // Return a bucket size no smaller than n (as long as n is not above the
558 : // highest power of 2).
559 : std::size_t
560 : _M_next_bkt(std::size_t __n) noexcept
561 : {
562 : const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
563 : const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
564 : std::size_t __res = __clp2(__n);
565 :
566 : if (__res == __n)
567 : __res <<= 1;
568 :
569 : if (__res == 0)
570 : __res = __max_bkt;
571 :
572 : if (__res == __max_bkt)
573 : // Set next resize to the max value so that we never try to rehash again
574 : // as we already reach the biggest possible bucket number.
575 : // Note that it might result in max_load_factor not being respected.
576 : _M_next_resize = std::size_t(-1);
577 : else
578 : _M_next_resize
579 : = __builtin_ceil(__res * (long double)_M_max_load_factor);
580 :
581 : return __res;
582 : }
583 :
584 : // Return a bucket count appropriate for n elements
585 : std::size_t
586 : _M_bkt_for_elements(std::size_t __n) const noexcept
587 : { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
588 :
589 : // __n_bkt is current bucket count, __n_elt is current element count,
590 : // and __n_ins is number of elements to be inserted. Do we need to
591 : // increase bucket count? If so, return make_pair(true, n), where n
592 : // is the new bucket count. If not, return make_pair(false, 0).
593 : std::pair<bool, std::size_t>
594 : _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
595 : std::size_t __n_ins) noexcept
596 : {
597 : if (__n_elt + __n_ins >= _M_next_resize)
598 : {
599 : long double __min_bkts = (__n_elt + __n_ins)
600 : / (long double)_M_max_load_factor;
601 : if (__min_bkts >= __n_bkt)
602 : return std::make_pair(true,
603 : _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
604 : __n_bkt * _S_growth_factor)));
605 :
606 : _M_next_resize
607 : = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
608 : return std::make_pair(false, 0);
609 : }
610 : else
611 : return std::make_pair(false, 0);
612 : }
613 :
614 : typedef std::size_t _State;
615 :
616 : _State
617 : _M_state() const noexcept
618 : { return _M_next_resize; }
619 :
620 : void
621 : _M_reset() noexcept
622 : { _M_next_resize = 0; }
623 :
624 : void
625 : _M_reset(_State __state) noexcept
626 : { _M_next_resize = __state; }
627 :
628 : static const std::size_t _S_growth_factor = 2;
629 :
630 : float _M_max_load_factor;
631 : std::size_t _M_next_resize;
632 : };
633 :
634 : // Base classes for std::_Hashtable. We define these base classes
635 : // because in some cases we want to do different things depending on
636 : // the value of a policy class. In some cases the policy class
637 : // affects which member functions and nested typedefs are defined;
638 : // we handle that by specializing base class templates. Several of
639 : // the base class templates need to access other members of class
640 : // template _Hashtable, so we use a variant of the "Curiously
641 : // Recurring Template Pattern" (CRTP) technique.
642 :
643 : /**
644 : * Primary class template _Map_base.
645 : *
646 : * If the hashtable has a value type of the form pair<T1, T2> and a
647 : * key extraction policy (_ExtractKey) that returns the first part
648 : * of the pair, the hashtable gets a mapped_type typedef. If it
649 : * satisfies those criteria and also has unique keys, then it also
650 : * gets an operator[].
651 : */
652 : template<typename _Key, typename _Value, typename _Alloc,
653 : typename _ExtractKey, typename _Equal,
654 : typename _H1, typename _H2, typename _Hash,
655 : typename _RehashPolicy, typename _Traits,
656 : bool _Unique_keys = _Traits::__unique_keys::value>
657 : struct _Map_base { };
658 :
659 : /// Partial specialization, __unique_keys set to false.
660 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
661 : typename _H1, typename _H2, typename _Hash,
662 : typename _RehashPolicy, typename _Traits>
663 : struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
664 : _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
665 : {
666 : using mapped_type = typename std::tuple_element<1, _Pair>::type;
667 : };
668 :
669 : /// Partial specialization, __unique_keys set to true.
670 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
671 : typename _H1, typename _H2, typename _Hash,
672 : typename _RehashPolicy, typename _Traits>
673 : struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
674 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
675 : {
676 : private:
677 : using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
678 : _Select1st,
679 : _Equal, _H1, _H2, _Hash,
680 : _Traits>;
681 :
682 : using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
683 : _Select1st, _Equal,
684 : _H1, _H2, _Hash, _RehashPolicy, _Traits>;
685 :
686 : using __hash_code = typename __hashtable_base::__hash_code;
687 : using __node_type = typename __hashtable_base::__node_type;
688 :
689 : public:
690 : using key_type = typename __hashtable_base::key_type;
691 : using iterator = typename __hashtable_base::iterator;
692 : using mapped_type = typename std::tuple_element<1, _Pair>::type;
693 :
694 : mapped_type&
695 : operator[](const key_type& __k);
696 :
697 : mapped_type&
698 : operator[](key_type&& __k);
699 :
700 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
701 : // DR 761. unordered_map needs an at() member function.
702 : mapped_type&
703 : at(const key_type& __k);
704 :
705 : const mapped_type&
706 : at(const key_type& __k) const;
707 : };
708 :
709 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
710 : typename _H1, typename _H2, typename _Hash,
711 : typename _RehashPolicy, typename _Traits>
712 : auto
713 1194 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
714 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
715 : operator[](const key_type& __k)
716 : -> mapped_type&
717 : {
718 1194 : __hashtable* __h = static_cast<__hashtable*>(this);
719 1194 : __hash_code __code = __h->_M_hash_code(__k);
720 1194 : std::size_t __n = __h->_M_bucket_index(__k, __code);
721 1194 : __node_type* __p = __h->_M_find_node(__n, __k, __code);
722 :
723 1194 : if (!__p)
724 : {
725 1194 : __p = __h->_M_allocate_node(std::piecewise_construct,
726 : std::tuple<const key_type&>(__k),
727 : std::tuple<>());
728 1194 : return __h->_M_insert_unique_node(__n, __code, __p)->second;
729 : }
730 :
731 0 : return __p->_M_v().second;
732 : }
733 :
734 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
735 : typename _H1, typename _H2, typename _Hash,
736 : typename _RehashPolicy, typename _Traits>
737 : auto
738 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
739 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
740 : operator[](key_type&& __k)
741 : -> mapped_type&
742 : {
743 : __hashtable* __h = static_cast<__hashtable*>(this);
744 : __hash_code __code = __h->_M_hash_code(__k);
745 : std::size_t __n = __h->_M_bucket_index(__k, __code);
746 : __node_type* __p = __h->_M_find_node(__n, __k, __code);
747 :
748 : if (!__p)
749 : {
750 : __p = __h->_M_allocate_node(std::piecewise_construct,
751 : std::forward_as_tuple(std::move(__k)),
752 : std::tuple<>());
753 : return __h->_M_insert_unique_node(__n, __code, __p)->second;
754 : }
755 :
756 : return __p->_M_v().second;
757 : }
758 :
759 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
760 : typename _H1, typename _H2, typename _Hash,
761 : typename _RehashPolicy, typename _Traits>
762 : auto
763 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
764 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
765 : at(const key_type& __k)
766 : -> mapped_type&
767 : {
768 : __hashtable* __h = static_cast<__hashtable*>(this);
769 : __hash_code __code = __h->_M_hash_code(__k);
770 : std::size_t __n = __h->_M_bucket_index(__k, __code);
771 : __node_type* __p = __h->_M_find_node(__n, __k, __code);
772 :
773 : if (!__p)
774 : __throw_out_of_range(__N("_Map_base::at"));
775 : return __p->_M_v().second;
776 : }
777 :
778 : template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
779 : typename _H1, typename _H2, typename _Hash,
780 : typename _RehashPolicy, typename _Traits>
781 : auto
782 200 : _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
783 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
784 : at(const key_type& __k) const
785 : -> const mapped_type&
786 : {
787 200 : const __hashtable* __h = static_cast<const __hashtable*>(this);
788 200 : __hash_code __code = __h->_M_hash_code(__k);
789 200 : std::size_t __n = __h->_M_bucket_index(__k, __code);
790 200 : __node_type* __p = __h->_M_find_node(__n, __k, __code);
791 :
792 200 : if (!__p)
793 0 : __throw_out_of_range(__N("_Map_base::at"));
794 200 : return __p->_M_v().second;
795 : }
796 :
797 : /**
798 : * Primary class template _Insert_base.
799 : *
800 : * Defines @c insert member functions appropriate to all _Hashtables.
801 : */
802 : template<typename _Key, typename _Value, typename _Alloc,
803 : typename _ExtractKey, typename _Equal,
804 : typename _H1, typename _H2, typename _Hash,
805 : typename _RehashPolicy, typename _Traits>
806 : struct _Insert_base
807 : {
808 : protected:
809 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
810 : _Equal, _H1, _H2, _Hash,
811 : _RehashPolicy, _Traits>;
812 :
813 : using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
814 : _Equal, _H1, _H2, _Hash,
815 : _Traits>;
816 :
817 : using value_type = typename __hashtable_base::value_type;
818 : using iterator = typename __hashtable_base::iterator;
819 : using const_iterator = typename __hashtable_base::const_iterator;
820 : using size_type = typename __hashtable_base::size_type;
821 :
822 : using __unique_keys = typename __hashtable_base::__unique_keys;
823 : using __ireturn_type = typename __hashtable_base::__ireturn_type;
824 : using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
825 : using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
826 : using __node_gen_type = _AllocNode<__node_alloc_type>;
827 :
828 : __hashtable&
829 7 : _M_conjure_hashtable()
830 7 : { return *(static_cast<__hashtable*>(this)); }
831 :
832 : template<typename _InputIterator, typename _NodeGetter>
833 : void
834 : _M_insert_range(_InputIterator __first, _InputIterator __last,
835 : const _NodeGetter&);
836 :
837 : public:
838 : __ireturn_type
839 7 : insert(const value_type& __v)
840 : {
841 7 : __hashtable& __h = _M_conjure_hashtable();
842 7 : __node_gen_type __node_gen(__h);
843 7 : return __h._M_insert(__v, __node_gen, __unique_keys());
844 : }
845 :
846 : iterator
847 : insert(const_iterator __hint, const value_type& __v)
848 : {
849 : __hashtable& __h = _M_conjure_hashtable();
850 : __node_gen_type __node_gen(__h);
851 : return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
852 : }
853 :
854 : void
855 : insert(initializer_list<value_type> __l)
856 : { this->insert(__l.begin(), __l.end()); }
857 :
858 : template<typename _InputIterator>
859 : void
860 : insert(_InputIterator __first, _InputIterator __last)
861 : {
862 : __hashtable& __h = _M_conjure_hashtable();
863 : __node_gen_type __node_gen(__h);
864 : return _M_insert_range(__first, __last, __node_gen);
865 : }
866 : };
867 :
868 : template<typename _Key, typename _Value, typename _Alloc,
869 : typename _ExtractKey, typename _Equal,
870 : typename _H1, typename _H2, typename _Hash,
871 : typename _RehashPolicy, typename _Traits>
872 : template<typename _InputIterator, typename _NodeGetter>
873 : void
874 : _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
875 : _RehashPolicy, _Traits>::
876 : _M_insert_range(_InputIterator __first, _InputIterator __last,
877 : const _NodeGetter& __node_gen)
878 : {
879 : using __rehash_type = typename __hashtable::__rehash_type;
880 : using __rehash_state = typename __hashtable::__rehash_state;
881 : using pair_type = std::pair<bool, std::size_t>;
882 :
883 : size_type __n_elt = __detail::__distance_fw(__first, __last);
884 :
885 : __hashtable& __h = _M_conjure_hashtable();
886 : __rehash_type& __rehash = __h._M_rehash_policy;
887 : const __rehash_state& __saved_state = __rehash._M_state();
888 : pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
889 : __h._M_element_count,
890 : __n_elt);
891 :
892 : if (__do_rehash.first)
893 : __h._M_rehash(__do_rehash.second, __saved_state);
894 :
895 : for (; __first != __last; ++__first)
896 : __h._M_insert(*__first, __node_gen, __unique_keys());
897 : }
898 :
899 : /**
900 : * Primary class template _Insert.
901 : *
902 : * Defines @c insert member functions that depend on _Hashtable policies,
903 : * via partial specializations.
904 : */
905 : template<typename _Key, typename _Value, typename _Alloc,
906 : typename _ExtractKey, typename _Equal,
907 : typename _H1, typename _H2, typename _Hash,
908 : typename _RehashPolicy, typename _Traits,
909 : bool _Constant_iterators = _Traits::__constant_iterators::value>
910 : struct _Insert;
911 :
912 : /// Specialization.
913 : template<typename _Key, typename _Value, typename _Alloc,
914 : typename _ExtractKey, typename _Equal,
915 : typename _H1, typename _H2, typename _Hash,
916 : typename _RehashPolicy, typename _Traits>
917 : struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
918 : _RehashPolicy, _Traits, true>
919 : : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
920 : _H1, _H2, _Hash, _RehashPolicy, _Traits>
921 : {
922 : using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
923 : _Equal, _H1, _H2, _Hash,
924 : _RehashPolicy, _Traits>;
925 :
926 : using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
927 : _Equal, _H1, _H2, _Hash,
928 : _Traits>;
929 :
930 : using value_type = typename __base_type::value_type;
931 : using iterator = typename __base_type::iterator;
932 : using const_iterator = typename __base_type::const_iterator;
933 :
934 : using __unique_keys = typename __base_type::__unique_keys;
935 : using __ireturn_type = typename __hashtable_base::__ireturn_type;
936 : using __hashtable = typename __base_type::__hashtable;
937 : using __node_gen_type = typename __base_type::__node_gen_type;
938 :
939 : using __base_type::insert;
940 :
941 : __ireturn_type
942 : insert(value_type&& __v)
943 : {
944 : __hashtable& __h = this->_M_conjure_hashtable();
945 : __node_gen_type __node_gen(__h);
946 : return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
947 : }
948 :
949 : iterator
950 : insert(const_iterator __hint, value_type&& __v)
951 : {
952 : __hashtable& __h = this->_M_conjure_hashtable();
953 : __node_gen_type __node_gen(__h);
954 : return __h._M_insert(__hint, std::move(__v), __node_gen,
955 : __unique_keys());
956 : }
957 : };
958 :
959 : /// Specialization.
960 : template<typename _Key, typename _Value, typename _Alloc,
961 : typename _ExtractKey, typename _Equal,
962 : typename _H1, typename _H2, typename _Hash,
963 : typename _RehashPolicy, typename _Traits>
964 : struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
965 : _RehashPolicy, _Traits, false>
966 : : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
967 : _H1, _H2, _Hash, _RehashPolicy, _Traits>
968 : {
969 : using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
970 : _Equal, _H1, _H2, _Hash,
971 : _RehashPolicy, _Traits>;
972 : using value_type = typename __base_type::value_type;
973 : using iterator = typename __base_type::iterator;
974 : using const_iterator = typename __base_type::const_iterator;
975 :
976 : using __unique_keys = typename __base_type::__unique_keys;
977 : using __hashtable = typename __base_type::__hashtable;
978 : using __ireturn_type = typename __base_type::__ireturn_type;
979 :
980 : using __base_type::insert;
981 :
982 : template<typename _Pair>
983 : using __is_cons = std::is_constructible<value_type, _Pair&&>;
984 :
985 : template<typename _Pair>
986 : using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
987 :
988 : template<typename _Pair>
989 : using _IFconsp = typename _IFcons<_Pair>::type;
990 :
991 : template<typename _Pair, typename = _IFconsp<_Pair>>
992 : __ireturn_type
993 : insert(_Pair&& __v)
994 : {
995 : __hashtable& __h = this->_M_conjure_hashtable();
996 : return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
997 : }
998 :
999 : template<typename _Pair, typename = _IFconsp<_Pair>>
1000 : iterator
1001 : insert(const_iterator __hint, _Pair&& __v)
1002 : {
1003 : __hashtable& __h = this->_M_conjure_hashtable();
1004 : return __h._M_emplace(__hint, __unique_keys(),
1005 : std::forward<_Pair>(__v));
1006 : }
1007 : };
1008 :
1009 : template<typename _Policy>
1010 : using __has_load_factor = typename _Policy::__has_load_factor;
1011 :
1012 : /**
1013 : * Primary class template _Rehash_base.
1014 : *
1015 : * Give hashtable the max_load_factor functions and reserve iff the
1016 : * rehash policy supports it.
1017 : */
1018 : template<typename _Key, typename _Value, typename _Alloc,
1019 : typename _ExtractKey, typename _Equal,
1020 : typename _H1, typename _H2, typename _Hash,
1021 : typename _RehashPolicy, typename _Traits,
1022 : typename =
1023 : __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1024 : struct _Rehash_base;
1025 :
1026 : /// Specialization when rehash policy doesn't provide load factor management.
1027 : template<typename _Key, typename _Value, typename _Alloc,
1028 : typename _ExtractKey, typename _Equal,
1029 : typename _H1, typename _H2, typename _Hash,
1030 : typename _RehashPolicy, typename _Traits>
1031 : struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1032 : _H1, _H2, _Hash, _RehashPolicy, _Traits,
1033 : std::false_type>
1034 : {
1035 : };
1036 :
1037 : /// Specialization when rehash policy provide load factor management.
1038 : template<typename _Key, typename _Value, typename _Alloc,
1039 : typename _ExtractKey, typename _Equal,
1040 : typename _H1, typename _H2, typename _Hash,
1041 : typename _RehashPolicy, typename _Traits>
1042 : struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1043 : _H1, _H2, _Hash, _RehashPolicy, _Traits,
1044 : std::true_type>
1045 : {
1046 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1047 : _Equal, _H1, _H2, _Hash,
1048 : _RehashPolicy, _Traits>;
1049 :
1050 : float
1051 : max_load_factor() const noexcept
1052 : {
1053 : const __hashtable* __this = static_cast<const __hashtable*>(this);
1054 : return __this->__rehash_policy().max_load_factor();
1055 : }
1056 :
1057 : void
1058 : max_load_factor(float __z)
1059 : {
1060 : __hashtable* __this = static_cast<__hashtable*>(this);
1061 : __this->__rehash_policy(_RehashPolicy(__z));
1062 : }
1063 :
1064 : void
1065 : reserve(std::size_t __n)
1066 : {
1067 : __hashtable* __this = static_cast<__hashtable*>(this);
1068 : __this->rehash(__builtin_ceil(__n / max_load_factor()));
1069 : }
1070 : };
1071 :
1072 : /**
1073 : * Primary class template _Hashtable_ebo_helper.
1074 : *
1075 : * Helper class using EBO when it is not forbidden (the type is not
1076 : * final) and when it is worth it (the type is empty.)
1077 : */
1078 : template<int _Nm, typename _Tp,
1079 : bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1080 : struct _Hashtable_ebo_helper;
1081 :
1082 : /// Specialization using EBO.
1083 : template<int _Nm, typename _Tp>
1084 21 : struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1085 : : private _Tp
1086 : {
1087 20 : _Hashtable_ebo_helper() = default;
1088 :
1089 : template<typename _OtherTp>
1090 5 : _Hashtable_ebo_helper(_OtherTp&& __tp)
1091 5 : : _Tp(std::forward<_OtherTp>(__tp))
1092 5 : { }
1093 :
1094 : static const _Tp&
1095 12768 : _S_cget(const _Hashtable_ebo_helper& __eboh)
1096 12768 : { return static_cast<const _Tp&>(__eboh); }
1097 :
1098 : static _Tp&
1099 5068 : _S_get(_Hashtable_ebo_helper& __eboh)
1100 5068 : { return static_cast<_Tp&>(__eboh); }
1101 : };
1102 :
1103 : /// Specialization not using EBO.
1104 : template<int _Nm, typename _Tp>
1105 : struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1106 : {
1107 : _Hashtable_ebo_helper() = default;
1108 :
1109 : template<typename _OtherTp>
1110 : _Hashtable_ebo_helper(_OtherTp&& __tp)
1111 : : _M_tp(std::forward<_OtherTp>(__tp))
1112 : { }
1113 :
1114 : static const _Tp&
1115 : _S_cget(const _Hashtable_ebo_helper& __eboh)
1116 : { return __eboh._M_tp; }
1117 :
1118 : static _Tp&
1119 : _S_get(_Hashtable_ebo_helper& __eboh)
1120 : { return __eboh._M_tp; }
1121 :
1122 : private:
1123 : _Tp _M_tp;
1124 : };
1125 :
1126 : /**
1127 : * Primary class template _Local_iterator_base.
1128 : *
1129 : * Base class for local iterators, used to iterate within a bucket
1130 : * but not between buckets.
1131 : */
1132 : template<typename _Key, typename _Value, typename _ExtractKey,
1133 : typename _H1, typename _H2, typename _Hash,
1134 : bool __cache_hash_code>
1135 : struct _Local_iterator_base;
1136 :
1137 : /**
1138 : * Primary class template _Hash_code_base.
1139 : *
1140 : * Encapsulates two policy issues that aren't quite orthogonal.
1141 : * (1) the difference between using a ranged hash function and using
1142 : * the combination of a hash function and a range-hashing function.
1143 : * In the former case we don't have such things as hash codes, so
1144 : * we have a dummy type as placeholder.
1145 : * (2) Whether or not we cache hash codes. Caching hash codes is
1146 : * meaningless if we have a ranged hash function.
1147 : *
1148 : * We also put the key extraction objects here, for convenience.
1149 : * Each specialization derives from one or more of the template
1150 : * parameters to benefit from Ebo. This is important as this type
1151 : * is inherited in some cases by the _Local_iterator_base type used
1152 : * to implement local_iterator and const_local_iterator. As with
1153 : * any iterator type we prefer to make it as small as possible.
1154 : *
1155 : * Primary template is unused except as a hook for specializations.
1156 : */
1157 : template<typename _Key, typename _Value, typename _ExtractKey,
1158 : typename _H1, typename _H2, typename _Hash,
1159 : bool __cache_hash_code>
1160 : struct _Hash_code_base;
1161 :
1162 : /// Specialization: ranged hash function, no caching hash codes. H1
1163 : /// and H2 are provided but ignored. We define a dummy hash code type.
1164 : template<typename _Key, typename _Value, typename _ExtractKey,
1165 : typename _H1, typename _H2, typename _Hash>
1166 : struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1167 : : private _Hashtable_ebo_helper<0, _ExtractKey>,
1168 : private _Hashtable_ebo_helper<1, _Hash>
1169 : {
1170 : private:
1171 : using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1172 : using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1173 :
1174 : protected:
1175 : typedef void* __hash_code;
1176 : typedef _Hash_node<_Value, false> __node_type;
1177 :
1178 : // We need the default constructor for the local iterators and _Hashtable
1179 : // default constructor.
1180 : _Hash_code_base() = default;
1181 :
1182 : _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1183 : const _Hash& __h)
1184 : : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1185 :
1186 : __hash_code
1187 : _M_hash_code(const _Key& __key) const
1188 : { return 0; }
1189 :
1190 : std::size_t
1191 : _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1192 : { return _M_ranged_hash()(__k, __n); }
1193 :
1194 : std::size_t
1195 : _M_bucket_index(const __node_type* __p, std::size_t __n) const
1196 : noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1197 : (std::size_t)0)) )
1198 : { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1199 :
1200 : void
1201 : _M_store_code(__node_type*, __hash_code) const
1202 : { }
1203 :
1204 : void
1205 : _M_copy_code(__node_type*, const __node_type*) const
1206 : { }
1207 :
1208 : void
1209 : _M_swap(_Hash_code_base& __x)
1210 : {
1211 : std::swap(_M_extract(), __x._M_extract());
1212 : std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1213 : }
1214 :
1215 : const _ExtractKey&
1216 : _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1217 :
1218 : _ExtractKey&
1219 : _M_extract() { return __ebo_extract_key::_S_get(*this); }
1220 :
1221 : const _Hash&
1222 : _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1223 :
1224 : _Hash&
1225 : _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1226 : };
1227 :
1228 : // No specialization for ranged hash function while caching hash codes.
1229 : // That combination is meaningless, and trying to do it is an error.
1230 :
1231 : /// Specialization: ranged hash function, cache hash codes. This
1232 : /// combination is meaningless, so we provide only a declaration
1233 : /// and no definition.
1234 : template<typename _Key, typename _Value, typename _ExtractKey,
1235 : typename _H1, typename _H2, typename _Hash>
1236 : struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1237 :
1238 : /// Specialization: hash function and range-hashing function, no
1239 : /// caching of hash codes.
1240 : /// Provides typedef and accessor required by C++ 11.
1241 : template<typename _Key, typename _Value, typename _ExtractKey,
1242 : typename _H1, typename _H2>
1243 : struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1244 : _Default_ranged_hash, false>
1245 : : private _Hashtable_ebo_helper<0, _ExtractKey>,
1246 : private _Hashtable_ebo_helper<1, _H1>,
1247 : private _Hashtable_ebo_helper<2, _H2>
1248 : {
1249 : private:
1250 : using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1251 : using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1252 : using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1253 :
1254 : // Gives the local iterator implementation access to _M_bucket_index().
1255 : friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1256 : _Default_ranged_hash, false>;
1257 :
1258 : public:
1259 : typedef _H1 hasher;
1260 :
1261 : hasher
1262 : hash_function() const
1263 : { return _M_h1(); }
1264 :
1265 : protected:
1266 : typedef std::size_t __hash_code;
1267 : typedef _Hash_node<_Value, false> __node_type;
1268 :
1269 : // We need the default constructor for the local iterators and _Hashtable
1270 : // default constructor.
1271 : _Hash_code_base() = default;
1272 :
1273 1 : _Hash_code_base(const _ExtractKey& __ex,
1274 : const _H1& __h1, const _H2& __h2,
1275 : const _Default_ranged_hash&)
1276 1 : : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1277 :
1278 : __hash_code
1279 1613 : _M_hash_code(const _Key& __k) const
1280 1613 : { return _M_h1()(__k); }
1281 :
1282 : std::size_t
1283 1698 : _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1284 1698 : { return _M_h2()(__c, __n); }
1285 :
1286 : std::size_t
1287 2935 : _M_bucket_index(const __node_type* __p, std::size_t __n) const
1288 : noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1289 : && noexcept(declval<const _H2&>()((__hash_code)0,
1290 : (std::size_t)0)) )
1291 2935 : { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1292 :
1293 : void
1294 1201 : _M_store_code(__node_type*, __hash_code) const
1295 1201 : { }
1296 :
1297 : void
1298 : _M_copy_code(__node_type*, const __node_type*) const
1299 : { }
1300 :
1301 : void
1302 : _M_swap(_Hash_code_base& __x)
1303 : {
1304 : std::swap(_M_extract(), __x._M_extract());
1305 : std::swap(_M_h1(), __x._M_h1());
1306 : std::swap(_M_h2(), __x._M_h2());
1307 : }
1308 :
1309 : const _ExtractKey&
1310 3261 : _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1311 :
1312 : _ExtractKey&
1313 92 : _M_extract() { return __ebo_extract_key::_S_get(*this); }
1314 :
1315 : const _H1&
1316 4548 : _M_h1() const { return __ebo_h1::_S_cget(*this); }
1317 :
1318 : _H1&
1319 : _M_h1() { return __ebo_h1::_S_get(*this); }
1320 :
1321 : const _H2&
1322 4633 : _M_h2() const { return __ebo_h2::_S_cget(*this); }
1323 :
1324 : _H2&
1325 : _M_h2() { return __ebo_h2::_S_get(*this); }
1326 : };
1327 :
1328 : /// Specialization: hash function and range-hashing function,
1329 : /// caching hash codes. H is provided but ignored. Provides
1330 : /// typedef and accessor required by C++ 11.
1331 : template<typename _Key, typename _Value, typename _ExtractKey,
1332 : typename _H1, typename _H2>
1333 : struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1334 : _Default_ranged_hash, true>
1335 : : private _Hashtable_ebo_helper<0, _ExtractKey>,
1336 : private _Hashtable_ebo_helper<1, _H1>,
1337 : private _Hashtable_ebo_helper<2, _H2>
1338 : {
1339 : private:
1340 : // Gives the local iterator implementation access to _M_h2().
1341 : friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1342 : _Default_ranged_hash, true>;
1343 :
1344 : using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1345 : using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1346 : using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1347 :
1348 : public:
1349 : typedef _H1 hasher;
1350 :
1351 : hasher
1352 : hash_function() const
1353 : { return _M_h1(); }
1354 :
1355 : protected:
1356 : typedef std::size_t __hash_code;
1357 : typedef _Hash_node<_Value, true> __node_type;
1358 :
1359 : // We need the default constructor for _Hashtable default constructor.
1360 : _Hash_code_base() = default;
1361 : _Hash_code_base(const _ExtractKey& __ex,
1362 : const _H1& __h1, const _H2& __h2,
1363 : const _Default_ranged_hash&)
1364 : : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1365 :
1366 : __hash_code
1367 : _M_hash_code(const _Key& __k) const
1368 : { return _M_h1()(__k); }
1369 :
1370 : std::size_t
1371 : _M_bucket_index(const _Key&, __hash_code __c,
1372 : std::size_t __n) const
1373 : { return _M_h2()(__c, __n); }
1374 :
1375 : std::size_t
1376 : _M_bucket_index(const __node_type* __p, std::size_t __n) const
1377 : noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1378 : (std::size_t)0)) )
1379 : { return _M_h2()(__p->_M_hash_code, __n); }
1380 :
1381 : void
1382 : _M_store_code(__node_type* __n, __hash_code __c) const
1383 : { __n->_M_hash_code = __c; }
1384 :
1385 : void
1386 : _M_copy_code(__node_type* __to, const __node_type* __from) const
1387 : { __to->_M_hash_code = __from->_M_hash_code; }
1388 :
1389 : void
1390 : _M_swap(_Hash_code_base& __x)
1391 : {
1392 : std::swap(_M_extract(), __x._M_extract());
1393 : std::swap(_M_h1(), __x._M_h1());
1394 : std::swap(_M_h2(), __x._M_h2());
1395 : }
1396 :
1397 : const _ExtractKey&
1398 : _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1399 :
1400 : _ExtractKey&
1401 : _M_extract() { return __ebo_extract_key::_S_get(*this); }
1402 :
1403 : const _H1&
1404 : _M_h1() const { return __ebo_h1::_S_cget(*this); }
1405 :
1406 : _H1&
1407 : _M_h1() { return __ebo_h1::_S_get(*this); }
1408 :
1409 : const _H2&
1410 : _M_h2() const { return __ebo_h2::_S_cget(*this); }
1411 :
1412 : _H2&
1413 : _M_h2() { return __ebo_h2::_S_get(*this); }
1414 : };
1415 :
1416 : /**
1417 : * Primary class template _Equal_helper.
1418 : *
1419 : */
1420 : template <typename _Key, typename _Value, typename _ExtractKey,
1421 : typename _Equal, typename _HashCodeType,
1422 : bool __cache_hash_code>
1423 : struct _Equal_helper;
1424 :
1425 : /// Specialization.
1426 : template<typename _Key, typename _Value, typename _ExtractKey,
1427 : typename _Equal, typename _HashCodeType>
1428 : struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1429 : {
1430 : static bool
1431 : _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1432 : const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1433 : { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1434 : };
1435 :
1436 : /// Specialization.
1437 : template<typename _Key, typename _Value, typename _ExtractKey,
1438 : typename _Equal, typename _HashCodeType>
1439 : struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1440 : {
1441 : static bool
1442 326 : _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1443 : const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1444 326 : { return __eq(__k, __extract(__n->_M_v())); }
1445 : };
1446 :
1447 :
1448 : /// Partial specialization used when nodes contain a cached hash code.
1449 : template<typename _Key, typename _Value, typename _ExtractKey,
1450 : typename _H1, typename _H2, typename _Hash>
1451 : struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1452 : _H1, _H2, _Hash, true>
1453 : : private _Hashtable_ebo_helper<0, _H2>
1454 : {
1455 : protected:
1456 : using __base_type = _Hashtable_ebo_helper<0, _H2>;
1457 : using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1458 : _H1, _H2, _Hash, true>;
1459 :
1460 : _Local_iterator_base() = default;
1461 : _Local_iterator_base(const __hash_code_base& __base,
1462 : _Hash_node<_Value, true>* __p,
1463 : std::size_t __bkt, std::size_t __bkt_count)
1464 : : __base_type(__base._M_h2()),
1465 : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1466 :
1467 : void
1468 : _M_incr()
1469 : {
1470 : _M_cur = _M_cur->_M_next();
1471 : if (_M_cur)
1472 : {
1473 : std::size_t __bkt
1474 : = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1475 : _M_bucket_count);
1476 : if (__bkt != _M_bucket)
1477 : _M_cur = nullptr;
1478 : }
1479 : }
1480 :
1481 : _Hash_node<_Value, true>* _M_cur;
1482 : std::size_t _M_bucket;
1483 : std::size_t _M_bucket_count;
1484 :
1485 : public:
1486 : const void*
1487 : _M_curr() const { return _M_cur; } // for equality ops
1488 :
1489 : std::size_t
1490 : _M_get_bucket() const { return _M_bucket; } // for debug mode
1491 : };
1492 :
1493 : // Uninitialized storage for a _Hash_code_base.
1494 : // This type is DefaultConstructible and Assignable even if the
1495 : // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1496 : // can be DefaultConstructible and Assignable.
1497 : template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1498 : struct _Hash_code_storage
1499 : {
1500 : __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1501 :
1502 : _Tp*
1503 : _M_h() { return _M_storage._M_ptr(); }
1504 :
1505 : const _Tp*
1506 : _M_h() const { return _M_storage._M_ptr(); }
1507 : };
1508 :
1509 : // Empty partial specialization for empty _Hash_code_base types.
1510 : template<typename _Tp>
1511 : struct _Hash_code_storage<_Tp, true>
1512 : {
1513 : static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1514 :
1515 : // As _Tp is an empty type there will be no bytes written/read through
1516 : // the cast pointer, so no strict-aliasing violation.
1517 : _Tp*
1518 : _M_h() { return reinterpret_cast<_Tp*>(this); }
1519 :
1520 : const _Tp*
1521 : _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1522 : };
1523 :
1524 : template<typename _Key, typename _Value, typename _ExtractKey,
1525 : typename _H1, typename _H2, typename _Hash>
1526 : using __hash_code_for_local_iter
1527 : = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1528 : _H1, _H2, _Hash, false>>;
1529 :
1530 : // Partial specialization used when hash codes are not cached
1531 : template<typename _Key, typename _Value, typename _ExtractKey,
1532 : typename _H1, typename _H2, typename _Hash>
1533 : struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1534 : _H1, _H2, _Hash, false>
1535 : : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1536 : {
1537 : protected:
1538 : using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1539 : _H1, _H2, _Hash, false>;
1540 :
1541 : _Local_iterator_base() : _M_bucket_count(-1) { }
1542 :
1543 : _Local_iterator_base(const __hash_code_base& __base,
1544 : _Hash_node<_Value, false>* __p,
1545 : std::size_t __bkt, std::size_t __bkt_count)
1546 : : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1547 : { _M_init(__base); }
1548 :
1549 : ~_Local_iterator_base()
1550 : {
1551 : if (_M_bucket_count != -1)
1552 : _M_destroy();
1553 : }
1554 :
1555 : _Local_iterator_base(const _Local_iterator_base& __iter)
1556 : : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1557 : _M_bucket_count(__iter._M_bucket_count)
1558 : {
1559 : if (_M_bucket_count != -1)
1560 : _M_init(*__iter._M_h());
1561 : }
1562 :
1563 : _Local_iterator_base&
1564 : operator=(const _Local_iterator_base& __iter)
1565 : {
1566 : if (_M_bucket_count != -1)
1567 : _M_destroy();
1568 : _M_cur = __iter._M_cur;
1569 : _M_bucket = __iter._M_bucket;
1570 : _M_bucket_count = __iter._M_bucket_count;
1571 : if (_M_bucket_count != -1)
1572 : _M_init(*__iter._M_h());
1573 : return *this;
1574 : }
1575 :
1576 : void
1577 : _M_incr()
1578 : {
1579 : _M_cur = _M_cur->_M_next();
1580 : if (_M_cur)
1581 : {
1582 : std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1583 : _M_bucket_count);
1584 : if (__bkt != _M_bucket)
1585 : _M_cur = nullptr;
1586 : }
1587 : }
1588 :
1589 : _Hash_node<_Value, false>* _M_cur;
1590 : std::size_t _M_bucket;
1591 : std::size_t _M_bucket_count;
1592 :
1593 : void
1594 : _M_init(const __hash_code_base& __base)
1595 : { ::new(this->_M_h()) __hash_code_base(__base); }
1596 :
1597 : void
1598 : _M_destroy() { this->_M_h()->~__hash_code_base(); }
1599 :
1600 : public:
1601 : const void*
1602 : _M_curr() const { return _M_cur; } // for equality ops and debug mode
1603 :
1604 : std::size_t
1605 : _M_get_bucket() const { return _M_bucket; } // for debug mode
1606 : };
1607 :
1608 : template<typename _Key, typename _Value, typename _ExtractKey,
1609 : typename _H1, typename _H2, typename _Hash, bool __cache>
1610 : inline bool
1611 : operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1612 : _H1, _H2, _Hash, __cache>& __x,
1613 : const _Local_iterator_base<_Key, _Value, _ExtractKey,
1614 : _H1, _H2, _Hash, __cache>& __y)
1615 : { return __x._M_curr() == __y._M_curr(); }
1616 :
1617 : template<typename _Key, typename _Value, typename _ExtractKey,
1618 : typename _H1, typename _H2, typename _Hash, bool __cache>
1619 : inline bool
1620 : operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1621 : _H1, _H2, _Hash, __cache>& __x,
1622 : const _Local_iterator_base<_Key, _Value, _ExtractKey,
1623 : _H1, _H2, _Hash, __cache>& __y)
1624 : { return __x._M_curr() != __y._M_curr(); }
1625 :
1626 : /// local iterators
1627 : template<typename _Key, typename _Value, typename _ExtractKey,
1628 : typename _H1, typename _H2, typename _Hash,
1629 : bool __constant_iterators, bool __cache>
1630 : struct _Local_iterator
1631 : : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1632 : _H1, _H2, _Hash, __cache>
1633 : {
1634 : private:
1635 : using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1636 : _H1, _H2, _Hash, __cache>;
1637 : using __hash_code_base = typename __base_type::__hash_code_base;
1638 : public:
1639 : typedef _Value value_type;
1640 : typedef typename std::conditional<__constant_iterators,
1641 : const _Value*, _Value*>::type
1642 : pointer;
1643 : typedef typename std::conditional<__constant_iterators,
1644 : const _Value&, _Value&>::type
1645 : reference;
1646 : typedef std::ptrdiff_t difference_type;
1647 : typedef std::forward_iterator_tag iterator_category;
1648 :
1649 : _Local_iterator() = default;
1650 :
1651 : _Local_iterator(const __hash_code_base& __base,
1652 : _Hash_node<_Value, __cache>* __p,
1653 : std::size_t __bkt, std::size_t __bkt_count)
1654 : : __base_type(__base, __p, __bkt, __bkt_count)
1655 : { }
1656 :
1657 : reference
1658 : operator*() const
1659 : { return this->_M_cur->_M_v(); }
1660 :
1661 : pointer
1662 : operator->() const
1663 : { return this->_M_cur->_M_valptr(); }
1664 :
1665 : _Local_iterator&
1666 : operator++()
1667 : {
1668 : this->_M_incr();
1669 : return *this;
1670 : }
1671 :
1672 : _Local_iterator
1673 : operator++(int)
1674 : {
1675 : _Local_iterator __tmp(*this);
1676 : this->_M_incr();
1677 : return __tmp;
1678 : }
1679 : };
1680 :
1681 : /// local const_iterators
1682 : template<typename _Key, typename _Value, typename _ExtractKey,
1683 : typename _H1, typename _H2, typename _Hash,
1684 : bool __constant_iterators, bool __cache>
1685 : struct _Local_const_iterator
1686 : : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1687 : _H1, _H2, _Hash, __cache>
1688 : {
1689 : private:
1690 : using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1691 : _H1, _H2, _Hash, __cache>;
1692 : using __hash_code_base = typename __base_type::__hash_code_base;
1693 :
1694 : public:
1695 : typedef _Value value_type;
1696 : typedef const _Value* pointer;
1697 : typedef const _Value& reference;
1698 : typedef std::ptrdiff_t difference_type;
1699 : typedef std::forward_iterator_tag iterator_category;
1700 :
1701 : _Local_const_iterator() = default;
1702 :
1703 : _Local_const_iterator(const __hash_code_base& __base,
1704 : _Hash_node<_Value, __cache>* __p,
1705 : std::size_t __bkt, std::size_t __bkt_count)
1706 : : __base_type(__base, __p, __bkt, __bkt_count)
1707 : { }
1708 :
1709 : _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1710 : _H1, _H2, _Hash,
1711 : __constant_iterators,
1712 : __cache>& __x)
1713 : : __base_type(__x)
1714 : { }
1715 :
1716 : reference
1717 : operator*() const
1718 : { return this->_M_cur->_M_v(); }
1719 :
1720 : pointer
1721 : operator->() const
1722 : { return this->_M_cur->_M_valptr(); }
1723 :
1724 : _Local_const_iterator&
1725 : operator++()
1726 : {
1727 : this->_M_incr();
1728 : return *this;
1729 : }
1730 :
1731 : _Local_const_iterator
1732 : operator++(int)
1733 : {
1734 : _Local_const_iterator __tmp(*this);
1735 : this->_M_incr();
1736 : return __tmp;
1737 : }
1738 : };
1739 :
1740 : /**
1741 : * Primary class template _Hashtable_base.
1742 : *
1743 : * Helper class adding management of _Equal functor to
1744 : * _Hash_code_base type.
1745 : *
1746 : * Base class templates are:
1747 : * - __detail::_Hash_code_base
1748 : * - __detail::_Hashtable_ebo_helper
1749 : */
1750 : template<typename _Key, typename _Value,
1751 : typename _ExtractKey, typename _Equal,
1752 : typename _H1, typename _H2, typename _Hash, typename _Traits>
1753 : struct _Hashtable_base
1754 : : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1755 : _Traits::__hash_cached::value>,
1756 : private _Hashtable_ebo_helper<0, _Equal>
1757 : {
1758 : public:
1759 : typedef _Key key_type;
1760 : typedef _Value value_type;
1761 : typedef _Equal key_equal;
1762 : typedef std::size_t size_type;
1763 : typedef std::ptrdiff_t difference_type;
1764 :
1765 : using __traits_type = _Traits;
1766 : using __hash_cached = typename __traits_type::__hash_cached;
1767 : using __constant_iterators = typename __traits_type::__constant_iterators;
1768 : using __unique_keys = typename __traits_type::__unique_keys;
1769 :
1770 : using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1771 : _H1, _H2, _Hash,
1772 : __hash_cached::value>;
1773 :
1774 : using __hash_code = typename __hash_code_base::__hash_code;
1775 : using __node_type = typename __hash_code_base::__node_type;
1776 :
1777 : using iterator = __detail::_Node_iterator<value_type,
1778 : __constant_iterators::value,
1779 : __hash_cached::value>;
1780 :
1781 : using const_iterator = __detail::_Node_const_iterator<value_type,
1782 : __constant_iterators::value,
1783 : __hash_cached::value>;
1784 :
1785 : using local_iterator = __detail::_Local_iterator<key_type, value_type,
1786 : _ExtractKey, _H1, _H2, _Hash,
1787 : __constant_iterators::value,
1788 : __hash_cached::value>;
1789 :
1790 : using const_local_iterator = __detail::_Local_const_iterator<key_type,
1791 : value_type,
1792 : _ExtractKey, _H1, _H2, _Hash,
1793 : __constant_iterators::value,
1794 : __hash_cached::value>;
1795 :
1796 : using __ireturn_type = typename std::conditional<__unique_keys::value,
1797 : std::pair<iterator, bool>,
1798 : iterator>::type;
1799 : private:
1800 : using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1801 : using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1802 : __hash_code, __hash_cached::value>;
1803 :
1804 : protected:
1805 : _Hashtable_base() = default;
1806 1 : _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1807 : const _Hash& __hash, const _Equal& __eq)
1808 1 : : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1809 1 : { }
1810 :
1811 : bool
1812 326 : _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1813 : {
1814 326 : return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1815 326 : __k, __c, __n);
1816 : }
1817 :
1818 : void
1819 : _M_swap(_Hashtable_base& __x)
1820 : {
1821 : __hash_code_base::_M_swap(__x);
1822 : std::swap(_M_eq(), __x._M_eq());
1823 : }
1824 :
1825 : const _Equal&
1826 326 : _M_eq() const { return _EqualEBO::_S_cget(*this); }
1827 :
1828 : _Equal&
1829 : _M_eq() { return _EqualEBO::_S_get(*this); }
1830 : };
1831 :
1832 : /**
1833 : * struct _Equality_base.
1834 : *
1835 : * Common types and functions for class _Equality.
1836 : */
1837 : struct _Equality_base
1838 : {
1839 : protected:
1840 : template<typename _Uiterator>
1841 : static bool
1842 : _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1843 : };
1844 :
1845 : // See std::is_permutation in N3068.
1846 : template<typename _Uiterator>
1847 : bool
1848 : _Equality_base::
1849 : _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1850 : _Uiterator __first2)
1851 : {
1852 : for (; __first1 != __last1; ++__first1, ++__first2)
1853 : if (!(*__first1 == *__first2))
1854 : break;
1855 :
1856 : if (__first1 == __last1)
1857 : return true;
1858 :
1859 : _Uiterator __last2 = __first2;
1860 : std::advance(__last2, std::distance(__first1, __last1));
1861 :
1862 : for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1863 : {
1864 : _Uiterator __tmp = __first1;
1865 : while (__tmp != __it1 && !bool(*__tmp == *__it1))
1866 : ++__tmp;
1867 :
1868 : // We've seen this one before.
1869 : if (__tmp != __it1)
1870 : continue;
1871 :
1872 : std::ptrdiff_t __n2 = 0;
1873 : for (__tmp = __first2; __tmp != __last2; ++__tmp)
1874 : if (*__tmp == *__it1)
1875 : ++__n2;
1876 :
1877 : if (!__n2)
1878 : return false;
1879 :
1880 : std::ptrdiff_t __n1 = 0;
1881 : for (__tmp = __it1; __tmp != __last1; ++__tmp)
1882 : if (*__tmp == *__it1)
1883 : ++__n1;
1884 :
1885 : if (__n1 != __n2)
1886 : return false;
1887 : }
1888 : return true;
1889 : }
1890 :
1891 : /**
1892 : * Primary class template _Equality.
1893 : *
1894 : * This is for implementing equality comparison for unordered
1895 : * containers, per N3068, by John Lakos and Pablo Halpern.
1896 : * Algorithmically, we follow closely the reference implementations
1897 : * therein.
1898 : */
1899 : template<typename _Key, typename _Value, typename _Alloc,
1900 : typename _ExtractKey, typename _Equal,
1901 : typename _H1, typename _H2, typename _Hash,
1902 : typename _RehashPolicy, typename _Traits,
1903 : bool _Unique_keys = _Traits::__unique_keys::value>
1904 : struct _Equality;
1905 :
1906 : /// Specialization.
1907 : template<typename _Key, typename _Value, typename _Alloc,
1908 : typename _ExtractKey, typename _Equal,
1909 : typename _H1, typename _H2, typename _Hash,
1910 : typename _RehashPolicy, typename _Traits>
1911 : struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1912 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1913 : {
1914 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1915 : _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1916 :
1917 : bool
1918 : _M_equal(const __hashtable&) const;
1919 : };
1920 :
1921 : template<typename _Key, typename _Value, typename _Alloc,
1922 : typename _ExtractKey, typename _Equal,
1923 : typename _H1, typename _H2, typename _Hash,
1924 : typename _RehashPolicy, typename _Traits>
1925 : bool
1926 : _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1927 : _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1928 : _M_equal(const __hashtable& __other) const
1929 : {
1930 : const __hashtable* __this = static_cast<const __hashtable*>(this);
1931 :
1932 : if (__this->size() != __other.size())
1933 : return false;
1934 :
1935 : for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1936 : {
1937 : const auto __ity = __other.find(_ExtractKey()(*__itx));
1938 : if (__ity == __other.end() || !bool(*__ity == *__itx))
1939 : return false;
1940 : }
1941 : return true;
1942 : }
1943 :
1944 : /// Specialization.
1945 : template<typename _Key, typename _Value, typename _Alloc,
1946 : typename _ExtractKey, typename _Equal,
1947 : typename _H1, typename _H2, typename _Hash,
1948 : typename _RehashPolicy, typename _Traits>
1949 : struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1950 : _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1951 : : public _Equality_base
1952 : {
1953 : using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1954 : _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1955 :
1956 : bool
1957 : _M_equal(const __hashtable&) const;
1958 : };
1959 :
1960 : template<typename _Key, typename _Value, typename _Alloc,
1961 : typename _ExtractKey, typename _Equal,
1962 : typename _H1, typename _H2, typename _Hash,
1963 : typename _RehashPolicy, typename _Traits>
1964 : bool
1965 : _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1966 : _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1967 : _M_equal(const __hashtable& __other) const
1968 : {
1969 : const __hashtable* __this = static_cast<const __hashtable*>(this);
1970 :
1971 : if (__this->size() != __other.size())
1972 : return false;
1973 :
1974 : for (auto __itx = __this->begin(); __itx != __this->end();)
1975 : {
1976 : const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1977 : const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1978 :
1979 : if (std::distance(__xrange.first, __xrange.second)
1980 : != std::distance(__yrange.first, __yrange.second))
1981 : return false;
1982 :
1983 : if (!_S_is_permutation(__xrange.first, __xrange.second,
1984 : __yrange.first))
1985 : return false;
1986 :
1987 : __itx = __xrange.second;
1988 : }
1989 : return true;
1990 : }
1991 :
1992 : /**
1993 : * This type deals with all allocation and keeps an allocator instance through
1994 : * inheritance to benefit from EBO when possible.
1995 : */
1996 : template<typename _NodeAlloc>
1997 21 : struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1998 : {
1999 : private:
2000 : using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2001 : public:
2002 : using __node_type = typename _NodeAlloc::value_type;
2003 : using __node_alloc_type = _NodeAlloc;
2004 : // Use __gnu_cxx to benefit from _S_always_equal and al.
2005 : using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2006 :
2007 : using __value_type = typename __node_type::value_type;
2008 : using __value_alloc_type =
2009 : __alloc_rebind<__node_alloc_type, __value_type>;
2010 : using __value_alloc_traits = std::allocator_traits<__value_alloc_type>;
2011 :
2012 : using __node_base = __detail::_Hash_node_base;
2013 : using __bucket_type = __node_base*;
2014 : using __bucket_alloc_type =
2015 : __alloc_rebind<__node_alloc_type, __bucket_type>;
2016 : using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2017 :
2018 20 : _Hashtable_alloc() = default;
2019 : _Hashtable_alloc(const _Hashtable_alloc&) = default;
2020 : _Hashtable_alloc(_Hashtable_alloc&&) = default;
2021 :
2022 : template<typename _Alloc>
2023 1 : _Hashtable_alloc(_Alloc&& __a)
2024 1 : : __ebo_node_alloc(std::forward<_Alloc>(__a))
2025 1 : { }
2026 :
2027 : __node_alloc_type&
2028 4976 : _M_node_allocator()
2029 4976 : { return __ebo_node_alloc::_S_get(*this); }
2030 :
2031 : const __node_alloc_type&
2032 : _M_node_allocator() const
2033 : { return __ebo_node_alloc::_S_cget(*this); }
2034 :
2035 : template<typename... _Args>
2036 : __node_type*
2037 : _M_allocate_node(_Args&&... __args);
2038 :
2039 : void
2040 : _M_deallocate_node(__node_type* __n);
2041 :
2042 : // Deallocate the linked list of nodes pointed to by __n
2043 : void
2044 : _M_deallocate_nodes(__node_type* __n);
2045 :
2046 : __bucket_type*
2047 : _M_allocate_buckets(std::size_t __n);
2048 :
2049 : void
2050 : _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2051 : };
2052 :
2053 : // Definitions of class template _Hashtable_alloc's out-of-line member
2054 : // functions.
2055 : template<typename _NodeAlloc>
2056 : template<typename... _Args>
2057 : typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2058 1201 : _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2059 : {
2060 1201 : auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2061 1201 : __node_type* __n = std::__addressof(*__nptr);
2062 : __try
2063 : {
2064 2402 : __value_alloc_type __a(_M_node_allocator());
2065 1201 : ::new ((void*)__n) __node_type;
2066 1201 : __value_alloc_traits::construct(__a, __n->_M_valptr(),
2067 : std::forward<_Args>(__args)...);
2068 2402 : return __n;
2069 : }
2070 0 : __catch(...)
2071 : {
2072 0 : __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2073 0 : __throw_exception_again;
2074 : }
2075 : }
2076 :
2077 : template<typename _NodeAlloc>
2078 : void
2079 1201 : _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2080 : {
2081 : typedef typename __node_alloc_traits::pointer _Ptr;
2082 1201 : auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2083 2402 : __value_alloc_type __a(_M_node_allocator());
2084 1201 : __value_alloc_traits::destroy(__a, __n->_M_valptr());
2085 : __n->~__node_type();
2086 1201 : __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2087 1201 : }
2088 :
2089 : template<typename _NodeAlloc>
2090 : void
2091 1222 : _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2092 : {
2093 2423 : while (__n)
2094 : {
2095 1201 : __node_type* __tmp = __n;
2096 1201 : __n = __n->_M_next();
2097 1201 : _M_deallocate_node(__tmp);
2098 : }
2099 21 : }
2100 :
2101 : template<typename _NodeAlloc>
2102 : typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2103 86 : _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
2104 : {
2105 172 : __bucket_alloc_type __alloc(_M_node_allocator());
2106 :
2107 86 : auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2108 86 : __bucket_type* __p = std::__addressof(*__ptr);
2109 86 : __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2110 172 : return __p;
2111 : }
2112 :
2113 : template<typename _NodeAlloc>
2114 : void
2115 86 : _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2116 : std::size_t __n)
2117 : {
2118 : typedef typename __bucket_alloc_traits::pointer _Ptr;
2119 86 : auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2120 172 : __bucket_alloc_type __alloc(_M_node_allocator());
2121 86 : __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2122 86 : }
2123 :
2124 : //@} hashtable-detail
2125 : _GLIBCXX_END_NAMESPACE_VERSION
2126 : } // namespace __detail
2127 : } // namespace std
2128 :
2129 : #endif // _HASHTABLE_POLICY_H
|