
Unit testing TDDD04 LAB 1-report

Part 1

Test Cases:

Input1 Input2 Input3 Expected Actual Exception

1 2 3 invalid invalid no

3 2 1 invalid invalid no

2 2 2 Equilateral Equilateral no

A B C invalid Exception Number
format
exception

1 2 a invalid Exception Number
format
exception

abc 3 xyz invalid Exception Number
format
exception

444444444444444 4 4 invalid Exception Number
format
exception

Empty Empty Empty invalid Exception Number
format
exception

Test cases in code: pass

Changes in triangle application:

1: I added try catch to handle wrong input error. For example if user enter char or string instead

of int then this try catch will handle the error.

try {
 intSides[i++] = Integer.parseInt(string);
}catch(NumberFormatException e) {
 System.err.println("invalid Input");
}

2: in below code it was throwing InvalidTriangleException but I change it with return because if

it receive more than 3 parameters or less than 3 parameter for triangle it should return Nat a

triangle.

TriangleType result = TriangleType.NaT;

if (sides.length != 3) {
 //throw new InvalidTriangleException();
 return result;
}

Part 2

Mock tests:

Integration Tests:

Motivation:

First I wrote Mock test and their stubs, by writing this I was able to understand the behaviors of

functions/methods. Then I wrote some integration tests that all fails in start but after

implementing code all tests are passed. As shown in above images. I try to write all cases test so

I can achieve full coverage of testing.

Part 3-FreeCol

Dependency diagram:

Questions:

1: Have all statements in the test methods been executed? If not, what does

that tell us?

This shows, our tests are not running through all the software. It means skipping some parts of

the code.

2: Suggest a design change that would simplify testing Colony methods?

In above design the thing that creating problem in testing is high dependency of classes on

other classes. We can change that to simplify the testing. We can use TDD approach to

minimize it. By trying to create individuals objects of each class.

3: Describe why it is a problem, in concrete terms and in this situation, to have

high coupling?

In this case when we wrote test cases for colony class, we can’t access the dependent classes

freely. Because when we create an abject of a dependent class, it can depending on other class.

That make it harder to reach the depth of code for testing. Reason is high coupling between

classes.

4: What are the effects on your test code? On your code coverage? Could there

be issues in understanding the reason behind failing tests?

Test code will be difficult to test, like we can test main class but for other classes it could be

difficult to test all methods and difficult to write test for deeper methods. This reduce the code

coverage and might be chances to skip part of code in testing. Yes, it will be difficult because

code complexity is high due to high coupling and find a reason behind failing of test is also

difficult.

