
Muhis511, Muhammad Ismail, Lab: 6: Testing Planning

Part 1: White Box Testing

Jump search Control flow graph:

Cyclomatic complexity:

V(G) = E – N + 2P

V(G) = 13 – 11 + 2*1

V(G) = 4

Paths:

1 ABCDEFGHIK

2 ABCDEFGHIJK

3 ABCDEFFGEFGEFGHIJK

Description:

Path 1, going through the path that found the required element.

Path 2, going through the path that don’t find the required element.

Part 2: Black Box Testing & Planning

Identify Feature Sets (TD1):

In the insurance application basically it is the app that use to calculate insurance cost and
deductible for client. It vary from client to client depending on how many cars they register for
insurance also if they have red car that gone be change more. In an accident client get deductible
calculated according to age and driving experience and no of accidents in a year.

Features:

 Calculate insurance cost for clients depending on their membership, no of accidents,
driving license years, and age and car color.

 Update increase cost with change in no of accidents.

 Register cars, members, accidents in the system.

Assumptions:

Assume Db is created and working perfectly with the application.

Derive Test Conditions (TD2):

Input values are:

YearofBirth* Integer 1990, 1986, 2020

YearofLicence** Integer 2015, 2010, 1990

CarColor String Red, blue, white

IsGoldMember bool True, False

NoofAccidents Integer 0, 3, 5
* YearofBirth convert to Age

**YearofLicence convert to Year of Licence

These are the inputs that effect the result of insurance application. I will create test cases by
variation in above values.

Testing Conditions:

1. Age < 30
2. Age > 30
3. License > 5
4. License < 5
5. CarColor = Red
6. CarColor = Other
7. IsGoldMember = Yes
8. IsGoldMember = No
9. NoofAccidents = 0
10. NoofAccidents = 1
11. NoofAccidents = 2
12. NoofAccidents = 3
13. NoofAccidents = 4

Derive Test Coverage Items (TD3):

Test cases:

Test ID Age Licence CarColor IsGoldMember NoOfAccidents Coverage

1 35 4 Black yes 0 2, 4, 6, 7, 9

2 25 3 Red yes 1 1, 4, 5, 7, 10

3 37 6 Black & Red No 2 2, 4, 5, 6, 8,
11

4 37 6 Black Yes 4 2, 4, 6, 7, 13

5 26 7 Red No 0 1, 3, 5, 8, 9

6 22 0 White Yes 3 1, 4, 6, 7, 12

7 40 8 Blue,White,Red No 0 2, 3, 5, 6, 8, 9

Derive Test Cases (TD4):

Test
ID

Age Licence CarColor IsGold
Member

NoOf
Accidents

Coverage Insurance
Cost

Deductible
to client

1 35 4 Black yes 0 2, 4, 6, 7, 9 500 5000

2 25 3 Red yes 1 1, 4, 5, 7, 10 700 8000

3 37 6 Black &
Red

No 2 2, 4, 5, 6, 8, 11 800 7500

4 37 6 Black Yes 4 2, 4, 6, 7, 13 500 15000

5 26 7 Red No 0 1, 3, 5, 8, 9 600 5000

6 22 0 White Yes 3 1, 4, 6, 7, 12 600 12000

7 40 8 Blue,
White,
Red

No 0 2, 3, 5, 6, 8, 9 1000 5000

Assemble Test Sets (TD5):

 Test Set (1-7)

Derive Test Procedures (TD6):

We can run above test cases on working database. And then we can add some data of clients,
cars, membership etc. so we can run these tests to verify features of the system. We can use
Junit to test all the above cases by implementing them in Junit tests.

Part 3: Integration testing

 @Override
 public int registerNewAccident(int clientId) {
 ClientProfile cl = clientDB.findById(clientId);
 int accidents = cl.getNumberOfAccidentsThisYear() + 1;
 cl.setNumberOfAccidentsThisYear(accidents);
 clientDB.updateClientProfile(clientId, cl);
 return accidents;
 }

 A

B

C

D

E

G

H

F

I

J

K

L

M

O

P

N

Q

R

Module:

RegisterNewAccount

Module: findById

Module:
getNumberOfAccident

sThisYear

Module:
setNumberOfAccident

sThisYear

Module:
updateClientProfile

