diff --git a/lab3/assignment3.R b/lab3/assignment3.R index fe91786a70f7dde06f7d69a8775d80a15297d52d..18d9602eba53ae4b4581b67b14fbc747a7e07106 100644 --- a/lab3/assignment3.R +++ b/lab3/assignment3.R @@ -89,9 +89,7 @@ err3 # 3. Implementation of SVM predictions. -rbf_kernel <- function(x1, x2, lambda = 0.05) { - exp(-(dist(rbind(x1,x2)) ^ 2) * lambda) -} +rbf_kernel <- rbfdot(sigma = 0.05) sv <- alphaindex(filter3)[[1]] co <- coef(filter3)[[1]] @@ -100,9 +98,9 @@ k <- NULL for (i in 1:10) { # We produce predictions for just the first 10 points in the dataset. k2 <- inte - data_point <- spam[i, -58] + data_point <- as.numeric(spam[i, -58]) for (j in 1:length(sv)) { - support_vector <- spam[sv[j], -58] + support_vector <- as.numeric(spam[sv[j], -58]) kernel_value <- rbf_kernel(support_vector, data_point) k2 <- k2 + co[j] * kernel_value }