From b61b3c6264988227fd20aa05456aff700f492534 Mon Sep 17 00:00:00 2001 From: Jan Snellman <jan.snellman@liu.se> Date: Mon, 29 Apr 2024 11:12:20 +0200 Subject: [PATCH] =?UTF-8?q?uppgifter=20kedjebr=C3=A5k=20PPT?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .ipynb_checkpoints/Untitled1-checkpoint.ipynb | 6 + .ipynb_checkpoints/t2-checkpoint.ipynb | 463 ++++++++++++++++++ Untitled1.ipynb | 463 ++++++++++++++++++ homepage/index.org | 2 + homepage/sitemap.org | 2 +- public/index.html | 33 +- public/sitemap.html | 6 +- t2.ipynb | 463 ++++++++++++++++++ 8 files changed, 1422 insertions(+), 16 deletions(-) create mode 100644 .ipynb_checkpoints/Untitled1-checkpoint.ipynb create mode 100644 .ipynb_checkpoints/t2-checkpoint.ipynb create mode 100644 Untitled1.ipynb create mode 100644 t2.ipynb diff --git a/.ipynb_checkpoints/Untitled1-checkpoint.ipynb b/.ipynb_checkpoints/Untitled1-checkpoint.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/.ipynb_checkpoints/Untitled1-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/t2-checkpoint.ipynb b/.ipynb_checkpoints/t2-checkpoint.ipynb new file mode 100644 index 0000000..03d8318 --- /dev/null +++ b/.ipynb_checkpoints/t2-checkpoint.ipynb @@ -0,0 +1,463 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "9ecab153", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(x, y)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var('x,y')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ce0ab8a1", + "metadata": {}, + "outputs": [], + "source": [ + "g(x,y) = x^2 + y^2 - 9" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d63bdcf7", + "metadata": {}, + "outputs": [], + "source": [ + "f(x,y)= x^2 +x*y +y^2 -4*y" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "220e5c14", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2*x, 2*y)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gradg = g(x,y).gradient()\n", + "gradg" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2fb288a7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2*x + y, x + 2*y - 4)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gradf = f(x,y).gradient()\n", + "gradf" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "54d7ffa7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Multivariate Polynomial Ring in la, x, y over Algebraic Field" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "R.<la,x,y> = PolynomialRing(QQbar,order='lex')\n", + "R" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fbe53eff", + "metadata": {}, + "outputs": [], + "source": [ + "e1 = 2*x+y - la*2*x\n", + "e2 = x+2*y -4 - la*2*y\n", + "e3 = x^2 + y^2-9" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5635dddc", + "metadata": {}, + "outputs": [], + "source": [ + "I = ideal(e1,e2,e3)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f79e370f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[la + 1/18*y^3 + (-1/36)*y - 1, x + 1/2*y^2 - 9/4, y^4 + (-5)*y^2 - 63/4]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I.groebner_basis()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "d3392e18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{y: -2.681495060562937?, x: -1.345207879911715?, la: 1.996684267393276?},\n", + " {y: 2.681495060562937?, x: -1.345207879911715?, la: 0.003315732606724674?},\n", + " {y: -1.480005324255096?*I, x: 3.345207879911715?, la: 1 - 0.2212127582776941?*I},\n", + " {y: 1.480005324255096?*I, x: 3.345207879911715?, la: 1 + 0.2212127582776941?*I}]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I.variety()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "a4935561", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x^2 - 2*x - 9/2" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.subs(I.variety()[0]).minpoly()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "15a7d053", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5dcf93b0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "9081c07e", + "metadata": {}, + "outputs": [], + "source": [ + "R.<x,y,z> = PolynomialRing(QQbar,order='lex')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "f33912f1", + "metadata": {}, + "outputs": [], + "source": [ + "A = matrix(R,[[y*z,1,2*x],[x*z,1,2*y],[x*y,1,2*z]])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "4523617a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f1=A.det()\n", + "f1" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "fc38b38c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x + y + z - 1" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f2 = x+y+z-1\n", + "f2" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "a2d7db27", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x^2 + y^2 + z^2 - 1" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f3 = x^2 + y^2 + z^2-1\n", + "f3" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "ffb34a3f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ideal ((-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2, x + y + z - 1, x^2 + y^2 + z^2 - 1) of Multivariate Polynomial Ring in x, y, z over Algebraic Field" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J = ideal(f1,f2,f3)\n", + "J" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "991507b1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{z: 0, y: 0, x: 1},\n", + " {z: 0, y: 1, x: 0},\n", + " {z: 1, y: 0, x: 0},\n", + " {z: 0.6666666666666667?, y: 0.6666666666666667?, x: -0.3333333333333334?},\n", + " {z: 0.6666666666666667?, y: -0.3333333333333334?, x: 0.6666666666666667?},\n", + " {z: -0.3333333333333334?, y: 0.6666666666666667?, x: 0.6666666666666667?}]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J.variety()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "d950f08a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[x + y + z - 1, y^2 + y*z - y + z^2 - z, y*z^2 + (-2/3)*y*z + 1/2*z^3 + (-5/6)*z^2 + 1/3*z, z^4 + (-4/3)*z^3 + 1/9*z^2 + 2/9*z]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb=J.groebner_basis()\n", + "jgb" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "f71c0645", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "z^4 + (-4/3)*z^3 + 1/9*z^2 + 2/9*z" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "4b26bc25", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "z * (z - 1) * (z - 2/3) * (z + 1/3)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb[3].factor()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "7945c62d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ideal ((-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2, x + y + z - 1, x^2 + y^2 + z^2 - 1) of Multivariate Polynomial Ring in x, y, z over Algebraic Field" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5edad37f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 10.1", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Untitled1.ipynb b/Untitled1.ipynb new file mode 100644 index 0000000..19d9d5b --- /dev/null +++ b/Untitled1.ipynb @@ -0,0 +1,463 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d07ea913", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(x, y)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var('x,y')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "30b7e0f3", + "metadata": {}, + "outputs": [], + "source": [ + "g(x,y) = x^2 + y^2 - 9" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5f695aaa", + "metadata": {}, + "outputs": [], + "source": [ + "f(x,y)= x^2 +x*y +y^2 -4*y" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "701aed0e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2*x, 2*y)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gradg = g(x,y).gradient()\n", + "gradg" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ebb00f48", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2*x + y, x + 2*y - 4)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gradf = f(x,y).gradient()\n", + "gradf" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "dbc0ed3b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Multivariate Polynomial Ring in la, x, y over Algebraic Field" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "R.<la,x,y> = PolynomialRing(QQbar,order='lex')\n", + "R" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e82d9224", + "metadata": {}, + "outputs": [], + "source": [ + "e1 = 2*x+y - la*2*x\n", + "e2 = x+2*y -4 - la*2*y\n", + "e3 = x^2 + y^2-9" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c51a6b16", + "metadata": {}, + "outputs": [], + "source": [ + "I = ideal(e1,e2,e3)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5a9e061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[la + 1/18*y^3 + (-1/36)*y - 1, x + 1/2*y^2 - 9/4, y^4 + (-5)*y^2 - 63/4]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I.groebner_basis()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a51b0491", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{y: -2.681495060562937?, x: -1.345207879911715?, la: 1.996684267393276?},\n", + " {y: 2.681495060562937?, x: -1.345207879911715?, la: 0.003315732606724674?},\n", + " {y: -1.480005324255096?*I, x: 3.345207879911715?, la: 1 - 0.2212127582776941?*I},\n", + " {y: 1.480005324255096?*I, x: 3.345207879911715?, la: 1 + 0.2212127582776941?*I}]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I.variety()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "ff87ebbf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x^2 - 2*x - 9/2" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.subs(I.variety()[0]).minpoly()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45778ed0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a7f12dbb", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "aa794406", + "metadata": {}, + "outputs": [], + "source": [ + "R.<x,y,z> = PolynomialRing(QQbar,order='lex')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "f941187e", + "metadata": {}, + "outputs": [], + "source": [ + "A = matrix(R,[[y*z,1,2*x],[x*z,1,2*y],[x*y,1,2*z]])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "3ed1478f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f1=A.det()\n", + "f1" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "60c173ea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x + y + z - 1" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f2 = x+y+z-1\n", + "f2" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "9d9d2f92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x^2 + y^2 + z^2 - 1" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f3 = x^2 + y^2 + z^2-1\n", + "f3" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "c5388074", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ideal ((-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2, x + y + z - 1, x^2 + y^2 + z^2 - 1) of Multivariate Polynomial Ring in x, y, z over Algebraic Field" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J = ideal(f1,f2,f3)\n", + "J" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "4c83a33e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{z: 0, y: 0, x: 1},\n", + " {z: 0, y: 1, x: 0},\n", + " {z: 1, y: 0, x: 0},\n", + " {z: 0.6666666666666667?, y: 0.6666666666666667?, x: -0.3333333333333334?},\n", + " {z: 0.6666666666666667?, y: -0.3333333333333334?, x: 0.6666666666666667?},\n", + " {z: -0.3333333333333334?, y: 0.6666666666666667?, x: 0.6666666666666667?}]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J.variety()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "db8474fb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[x + y + z - 1, y^2 + y*z - y + z^2 - z, y*z^2 + (-2/3)*y*z + 1/2*z^3 + (-5/6)*z^2 + 1/3*z, z^4 + (-4/3)*z^3 + 1/9*z^2 + 2/9*z]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb=J.groebner_basis()\n", + "jgb" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "dacdffed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "z^4 + (-4/3)*z^3 + 1/9*z^2 + 2/9*z" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "ac01d945", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "z * (z - 1) * (z - 2/3) * (z + 1/3)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb[3].factor()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "586ad09b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ideal ((-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2, x + y + z - 1, x^2 + y^2 + z^2 - 1) of Multivariate Polynomial Ring in x, y, z over Algebraic Field" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d35170a9", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 10.1", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/homepage/index.org b/homepage/index.org index d6f96cb..0038e55 100644 --- a/homepage/index.org +++ b/homepage/index.org @@ -23,6 +23,8 @@ Skriftlig tentamen. | TATA54/TEN1 | Talteori | 2024-08-22 | 14-18 | Linköping | 2024-07-23 - 2024-08-12 | * Allra senaste nytt VT2024 <<allra-senaste-nytt>> +** 2024-04-29 +Till nästa gÃ¥ng sÃ¥ tittar vi pÃ¥ 12.4.3b, 12.4.8, 13.1.2, 13.1.3. ** 2024-04-23 Jag pratade om "Eulers regel" som uttrycker kedjebrÃ¥kskonvergenterna q_n/p_n till [x_0;x_1,x_2,\dots] som rationella funktioner i diff --git a/homepage/sitemap.org b/homepage/sitemap.org index c1e5cb8..aa4e7f7 100644 --- a/homepage/sitemap.org +++ b/homepage/sitemap.org @@ -2,7 +2,6 @@ - [[file:newlectures/newlecture.org][Föreläsningar i Talteori]] - [[file:newlectures/new-lect-0.org][Talteori översiktsföreläsning]] -- [[file:index.org][TATA54 Talteori]] - [[file:lectures/Henselfaktorisering.org][Henselfaktorisering]] - [[file:senaste-nytt.org][senaste-nytt]] - [[file:labs/lecture5.org][lecture5]] @@ -11,5 +10,6 @@ - [[file:labs/lecture2.org][lecture2]] - [[file:labs/lecture1.org][lecture1]] - [[file:labs/lecture0.org][lecture0]] +- [[file:index.org][TATA54 Talteori]] - [[file:labs/kedjebraklab.org][Sagemath-övningar pÃ¥ kedjebrÃ¥k]] - [[file:labs/HenselLyftLabHT2023.org][SageMath-övningar pÃ¥ Hensellyft, primitiva rötter, och KRS]] \ No newline at end of file diff --git a/public/index.html b/public/index.html index 960fa0f..e267400 100644 --- a/public/index.html +++ b/public/index.html @@ -1,7 +1,7 @@ <!DOCTYPE html> <html lang="sv"> <head> -<!-- 2024-04-23 --> +<!-- 2024-04-29 --> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>TATA54 Talteori</title> @@ -74,17 +74,18 @@ </li> <li><a href="#orgda7b5cb">Allra senaste nytt VT2024 </a> <ul> +<li><a href="#org6916c72">2024-04-29</a></li> <li><a href="#org2fc933f">2024-04-23</a></li> <li><a href="#org0e96bfa">2024-04-22</a></li> <li><a href="#org796ce06">2024-04-14</a> <ul> -<li><a href="#orge6da327">Uppgifter att räkna till nästa gÃ¥ng</a></li> +<li><a href="#org7d0c4fd">Uppgifter att räkna till nästa gÃ¥ng</a></li> <li><a href="#org87e8642">Datorlaboration</a></li> </ul> </li> <li><a href="#orgff00c35">2024-04-07</a> <ul> -<li><a href="#org7d0c4fd">Uppgifter att räkna till nästa gÃ¥ng</a></li> +<li><a href="#org1367de2">Uppgifter att räkna till nästa gÃ¥ng</a></li> <li><a href="#orgcb6d72a">Beviset för kvadratisk reciprocitet</a></li> </ul> </li> @@ -257,6 +258,14 @@ Skriftlig tentamen. <h2 id="orgda7b5cb">Allra senaste nytt VT2024 <a id="org53d52c1"></a></h2> <div class="outline-text-2" id="text-orgda7b5cb"> </div> +<div id="outline-container-org6916c72" class="outline-3"> +<h3 id="org6916c72">2024-04-29</h3> +<div class="outline-text-3" id="text-org6916c72"> +<p> +Till nästa gÃ¥ng sÃ¥ tittar vi pÃ¥ 12.4.3b, 12.4.8, 13.1.2, 13.1.3. +</p> +</div> +</div> <div id="outline-container-org2fc933f" class="outline-3"> <h3 id="org2fc933f">2024-04-23</h3> <div class="outline-text-3" id="text-org2fc933f"> @@ -286,9 +295,9 @@ Till pÃ¥ fredag 12.4.5b, 12.4.6b <h3 id="org796ce06">2024-04-14</h3> <div class="outline-text-3" id="text-org796ce06"> </div> -<div id="outline-container-orge6da327" class="outline-4"> -<h4 id="orge6da327">Uppgifter att räkna till nästa gÃ¥ng</h4> -<div class="outline-text-4" id="text-orge6da327"> +<div id="outline-container-org7d0c4fd" class="outline-4"> +<h4 id="org7d0c4fd">Uppgifter att räkna till nästa gÃ¥ng</h4> +<div class="outline-text-4" id="text-org7d0c4fd"> <p> 12.2.1bf, 12.2.2cd, 12.2.3c, 12.2.11 </p> @@ -309,9 +318,9 @@ gränsvärdet av a(k,m) dÃ¥ m gÃ¥r mot oändligheten? <h3 id="orgff00c35">2024-04-07</h3> <div class="outline-text-3" id="text-orgff00c35"> </div> -<div id="outline-container-org7d0c4fd" class="outline-4"> -<h4 id="org7d0c4fd">Uppgifter att räkna till nästa gÃ¥ng</h4> -<div class="outline-text-4" id="text-org7d0c4fd"> +<div id="outline-container-org1367de2" class="outline-4"> +<h4 id="org1367de2">Uppgifter att räkna till nästa gÃ¥ng</h4> +<div class="outline-text-4" id="text-org1367de2"> <p> 11.1.1d, 11.1.4, 11.1.25ab, 11.2.1cd, 11.2.2, 11.2.3,11.2.4 </p> @@ -439,7 +448,7 @@ H_L_tree(f,p,r).plot(layout='tree') </div> -<figure id="orgb640d28"> +<figure id="orga443756"> <img src="img/Henseluppgift.png" alt="Henseluppgift.png"> </figure> @@ -1665,7 +1674,7 @@ Another text is <a href="https://wstein.org/ent/">Elementary Number Theory</a> a </ul> -<figure id="org296c115"> +<figure id="orgd70112c"> <img src="img/sieveE.jpg" alt="sieveE.jpg"> </figure> @@ -1686,7 +1695,7 @@ Another text is <a href="https://wstein.org/ent/">Elementary Number Theory</a> a </main> <footer id="postamble" class="status"> <p class="author">Författare: Jan Snellman Jan Snellman</p> -<p class="date">Created: 2024-04-23</p> +<p class="date">Created: 2024-04-29</p> <p class="validation"><a href="https://validator.w3.org/check?uri=referer">Validate</a></p> </footer> </body> diff --git a/public/sitemap.html b/public/sitemap.html index c466128..7372682 100644 --- a/public/sitemap.html +++ b/public/sitemap.html @@ -1,7 +1,7 @@ <!DOCTYPE html> <html lang="en"> <head> -<!-- 2024-04-23 --> +<!-- 2024-04-29 --> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Kurshemsida</title> @@ -208,7 +208,6 @@ </header><ul class="org-ul"> <li><a href="newlectures/newlecture.html">Föreläsningar i Talteori</a></li> <li><a href="newlectures/new-lect-0.html">Talteori översiktsföreläsning</a></li> -<li><a href="index.html">TATA54 Talteori</a></li> <li><a href="lectures/Henselfaktorisering.html">Henselfaktorisering</a></li> <li><a href="senaste-nytt.html">senaste-nytt</a></li> <li><a href="labs/lecture5.html">lecture5</a></li> @@ -217,13 +216,14 @@ <li><a href="labs/lecture2.html">lecture2</a></li> <li><a href="labs/lecture1.html">lecture1</a></li> <li><a href="labs/lecture0.html">lecture0</a></li> +<li><a href="index.html">TATA54 Talteori</a></li> <li><a href="labs/kedjebraklab.html">Sagemath-övningar pÃ¥ kedjebrÃ¥k</a></li> <li><a href="labs/HenselLyftLabHT2023.html">SageMath-övningar pÃ¥ Hensellyft, primitiva rötter, och KRS</a></li> </ul> </main> <footer id="postamble" class="status"> <p class="author">Author: Jan Snellman</p> -<p class="date">Created: 2024-04-23</p> +<p class="date">Created: 2024-04-29</p> <p class="validation"><a href="https://validator.w3.org/check?uri=referer">Validate</a></p> </footer> </body> diff --git a/t2.ipynb b/t2.ipynb new file mode 100644 index 0000000..03d8318 --- /dev/null +++ b/t2.ipynb @@ -0,0 +1,463 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "9ecab153", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(x, y)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "var('x,y')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ce0ab8a1", + "metadata": {}, + "outputs": [], + "source": [ + "g(x,y) = x^2 + y^2 - 9" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d63bdcf7", + "metadata": {}, + "outputs": [], + "source": [ + "f(x,y)= x^2 +x*y +y^2 -4*y" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "220e5c14", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2*x, 2*y)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gradg = g(x,y).gradient()\n", + "gradg" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2fb288a7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2*x + y, x + 2*y - 4)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gradf = f(x,y).gradient()\n", + "gradf" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "54d7ffa7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Multivariate Polynomial Ring in la, x, y over Algebraic Field" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "R.<la,x,y> = PolynomialRing(QQbar,order='lex')\n", + "R" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fbe53eff", + "metadata": {}, + "outputs": [], + "source": [ + "e1 = 2*x+y - la*2*x\n", + "e2 = x+2*y -4 - la*2*y\n", + "e3 = x^2 + y^2-9" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5635dddc", + "metadata": {}, + "outputs": [], + "source": [ + "I = ideal(e1,e2,e3)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f79e370f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[la + 1/18*y^3 + (-1/36)*y - 1, x + 1/2*y^2 - 9/4, y^4 + (-5)*y^2 - 63/4]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I.groebner_basis()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "d3392e18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{y: -2.681495060562937?, x: -1.345207879911715?, la: 1.996684267393276?},\n", + " {y: 2.681495060562937?, x: -1.345207879911715?, la: 0.003315732606724674?},\n", + " {y: -1.480005324255096?*I, x: 3.345207879911715?, la: 1 - 0.2212127582776941?*I},\n", + " {y: 1.480005324255096?*I, x: 3.345207879911715?, la: 1 + 0.2212127582776941?*I}]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "I.variety()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "a4935561", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x^2 - 2*x - 9/2" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.subs(I.variety()[0]).minpoly()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "15a7d053", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5dcf93b0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "9081c07e", + "metadata": {}, + "outputs": [], + "source": [ + "R.<x,y,z> = PolynomialRing(QQbar,order='lex')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "f33912f1", + "metadata": {}, + "outputs": [], + "source": [ + "A = matrix(R,[[y*z,1,2*x],[x*z,1,2*y],[x*y,1,2*z]])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "4523617a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f1=A.det()\n", + "f1" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "fc38b38c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x + y + z - 1" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f2 = x+y+z-1\n", + "f2" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "a2d7db27", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "x^2 + y^2 + z^2 - 1" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f3 = x^2 + y^2 + z^2-1\n", + "f3" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "ffb34a3f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ideal ((-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2, x + y + z - 1, x^2 + y^2 + z^2 - 1) of Multivariate Polynomial Ring in x, y, z over Algebraic Field" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J = ideal(f1,f2,f3)\n", + "J" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "991507b1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{z: 0, y: 0, x: 1},\n", + " {z: 0, y: 1, x: 0},\n", + " {z: 1, y: 0, x: 0},\n", + " {z: 0.6666666666666667?, y: 0.6666666666666667?, x: -0.3333333333333334?},\n", + " {z: 0.6666666666666667?, y: -0.3333333333333334?, x: 0.6666666666666667?},\n", + " {z: -0.3333333333333334?, y: 0.6666666666666667?, x: 0.6666666666666667?}]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J.variety()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "d950f08a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[x + y + z - 1, y^2 + y*z - y + z^2 - z, y*z^2 + (-2/3)*y*z + 1/2*z^3 + (-5/6)*z^2 + 1/3*z, z^4 + (-4/3)*z^3 + 1/9*z^2 + 2/9*z]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb=J.groebner_basis()\n", + "jgb" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "f71c0645", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "z^4 + (-4/3)*z^3 + 1/9*z^2 + 2/9*z" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "4b26bc25", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "z * (z - 1) * (z - 2/3) * (z + 1/3)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jgb[3].factor()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "7945c62d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ideal ((-2)*x^2*y + 2*x^2*z + 2*x*y^2 + (-2)*x*z^2 + (-2)*y^2*z + 2*y*z^2, x + y + z - 1, x^2 + y^2 + z^2 - 1) of Multivariate Polynomial Ring in x, y, z over Algebraic Field" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "J" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5edad37f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 10.1", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} -- GitLab