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Definition

Variations e Pell's equation is the Diophantine equation in x, y
Trivial cases

Relation to CF

New solutions from old

with d an integer
o Negative Pell is
e We also study the Pell-like equations
x> —dy?>=n

where n is an integer
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Trivial cases

Study
x2—dy2:n

e If d, n < 0 then no solution
e Id d <0, n > 0 then a solution satisfies |x| < v/n, |y| < +/n/|d|, so
finitely many solns
e if d = D? then
n=x?>—dy? = x> — D?y?> = (x+ Dy)(x — Dy)

so soln correspond to soln to eqn sys

x+Dy=a
x—Dy=0>b
ab=n

and again finitely many solns
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Theorem

Suppose 0 < d, |n| < \/d, d not a square. If (x,y) € Z? satisfies
x? — dy? = n, then x/y is a convergent of the CF of \/d.

Proof.

Assume n > 0, then
(x + yVd)(x — yVd) = n,
so x —yvVd >0, so x > yVd, sof—\/a>0. Then

% _x—\/ay_ x2 — dy? _ In| _ Vd B
y y y(x+yVd) yyVvd) 2y2V/d

Such good approximation must come frome a convergent.

1

2y2
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Theorem
¥;U:,'i:es d positive integer, not square. Then the CF of \/d = [ag, a1, a»,...], and
Relation to CF the corresponding convergents py/qx, can be computed as follows:

New solutions from old

® oo=Vd a= ||, Po=0, Q =1, pp=a0,q0 =1
O ;= Pk%;/g, ak = | o]

© Pii1=akQu— Pr, Qa1 = (d— P2 1)/ Qx

(4]

Pri1pk — nqx = —Qi41Pk—1
Pk — Prs19k = Qus19k—1

For all k,
p; —dg? = (=) Qui1
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Theorem

d positive integer, not a square. Let \/d = [ag, a1, ...], and let n be the
period length of this periodic CF expansion. Let px/qi be the k'th
convergent.

e [f n even, negative Pell has no solns, and Pell x2 — dy2 =1 has
precisely the solns x = pjn_1, y = qjn—1, j = 1,2,3. ..

e If n odd, negative Pell has precisely the solns x = p(2j_1)n-1.
Y = qoj-1)n—1, J = 1,2,3,..., and Pell has precisely the solns
X = P2jn—1, Y = q2jn71r./. =1,23,...

Proof.

See Rosen.
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Example

V17 = [4,8], so the period length is 1. The odd numbered convergents are
33/8,2177/528,143649,/34840,9478657,/2298912, . ..
and indeed 332 — 17 * 82 = 1. The even numbered convergents are
268/65,17684,/4289,1166876,/283009, 76996132/18674305, . ..

and indeed 2682 — 17 x 652 = —1.
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Lemma

(¢ — dyf) (X3 — dy3) = (x1x2 + dy1y2)? — d(xay2 + xay1)?

so if (x1,x2), (x2,y2) are solns to (standard) Pell, then so is
(x1x2 + dy1y2, x1y2 + Xxay1).
In particular, (x? + dy2,2x1y1), is a solution.

Proof.

Obvious.

Note that
(x +Vdy)? = x>+ dy? + Vd2xy.
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Theorem
© If (x1,y1) is a soln to x*> — dy® = 1, then writing
(31 + y1Vd)* = xi + Vdyy,

it holds that (xx, yx) is also a soln to (standard) Pell.

@ All solns to standard Pell are obtainable from the smallest soln
(x1, 1), by the above procedure.

Proof.

© Easy.
® Hard, see Rosen.
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Example

We return to
x? — 17y2 =1,

with smallest soln (x1, y1) = (33,8) We calculate that
(334 8v17)2 =332 + 17 % 82+ 16 x 33 % V17 = 2177 + 528117,

so (2177,528) is the next soln.
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Applications

Example

Eliminating t from the pair of equations

x2—21t—11=0
y2—7t—9=0

gives the Pell-type eqn x? — 3y? + 16 = 0.
x> —21%t—7=0
y2—T7%t—2=0

gives x> —3x y2 =1.

Double equations
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Applications
Example

Since (x,y) = (2177,528) is a soln to x> — 17y? = 1, we have that

—=——=4.1231
y y 528

—1_ V- 2177
41231 ~ V17 = )
y2
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Problem
Applications When is ZZ:l k = ka:n+1 k?
1 1
LHS — RHS = Mn+ 1) n+ldm o

2 2

(n +n—nm+n—m+n—m? + mn)
1
(2n? —|—2n—m2—m):Z(4n2+4n—2m2—2m)

(2((2n+1)?—1)— (2m+1)?>—1)

(2m—1)2=2(2n+1)%+1)

(s2 =2t +1)

-l>\|—l-l>\|—l-l>\»—\l\)\l—ll\)\|—l
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