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Definition

e The integers x, y, z constitue a
Pythagorean triple if there is a
right-angled triangle with these
side lengths; i.e. if

X2+y2222

Example

e The Pythagorean triple
(x,y,z) is primitive if
gcd(x,y,z) =1, i.e. if there
does not exist exist a prime p
dividing all of x, y, and z

(3,4,5) is a primitive Pythagorean triple, (6,8,10) is not primitive.
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Scaling
Lemma
e If (x,y,z) isa PT and d € Z, then (dx, dy,xz) is a PT
e If (x,y,z) is a PT, gcd(x,y,z) =d, then (x/d,y/d,z/d) is a PPT

So it is enough to enumerate all PPT.
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Lemma
If (x,y,z) is a PPT then

ged(x,y) = ged(x, z) = ged(y,z) =1

Proof.

Suppose, towards a contradiction, that gcd(x, y) > 1, so that there is some

prime p dividing x and y. Then p?|x2, p?|y?, so p?|x? + y? hence p?|z?,
whence p|z. So p divides x, y, z, contradicting that gcd(x, y,z) = 1.

O
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x#y mod?2

Definition, primitive
Classification
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Proof.

By the previous lemma it is impossible for both x and y to be even.
Should both x and y both be odd, then modulo 4

x x2 y y*> z 2
1 1 1 1 2
-1 1 1 1 2
1 1 -1 1 2
-1 1 -1 1 2

But nothing squares to 2.

]
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Theorem

Let r,s, t be positive integers. If gcd(r,s) = 1 and rs = t2 then there exists
positive integers m, n such that

Proof.

Since ged(r,s) =1, for each prime p it holds that v,(r)v,(s) = 0.
Furthermore, v,(t?) = 2d,, for some integer dp,. But rs = t2 so
2d, = vp(r) + vp(s), whence either

° vp(r) =vp(s) =d, =0,

e vp(r) =2d, >0, vp(s) =0, or

® vy(s) =2d, >0, vp(r) =0.
Put

m= J[ »r* n= ] »*

{p[vp(r)>0} {p|vp(s)>0}



r=2%%3%4%11% s =5%%x 78« 132,
rs =2% %38 x 5% x 78 % 114 % 132 = (2% 3* ¥ 112)2 x (52 * 7% % 13)?
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(x,y,2) is a PPT with y even if and only if there exists integers
0<n<m, m#n mod 2, such that

Definition, primitive

Classification X = m2 — n2
Rational
parametrization y = 2mn

z:m2—i-n2

Proof

e Assume (x,y,z) is a PPT. May assume y even, x odd, z odd.
e So z+ x, z— x both even. Put r = (z+ x)/2, s = (z—x)/2. Then
r+s=2z r—s=x.

e y2 =22 x?=(z+4x)(z—x), hence (y/2)? =rs.
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e d =gcd(r,s), then d|r, d|s, so d|z, d|x. But gcd(x,z) =1, so

Definition, primitive d = 1
Classification

Rational
parametrization

Previous thm: exists m, n with r = m?, s = n?.

X=r—s=m’—n’

=V4rs = V4m?n2 = 2mn

z=r+s=m’+n’

If p|m, p|n then p|m?® — n?, p|2mn, p|m? + n?. But gcd(x,y,z) = 1.
Hence ged(m, n) = 1.

e m, n can not both be odd, nor can both be even
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Proof (contd)

Now suppose 0 < n < m, gcd(m, n) = 1, m, n have different parity.
Put

X:IT72*n2

y =2mn

z:m2+n2

Want to show (x,y,z) PPT.

Check x? + y? = 22

d = gecd(x, y, z). Suppose exists prime p, p|d.
x odd, so p > 2.

p|x, ply, p|z, so p|z + x, so p|2m?. Hence p|m.
Similarly, p|n.

This contradicts ged(m,n) =1, so d = 1.
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Theorem

Let p(x,y,z) € Z[x, y, z] be a homogeneous polynomial. Then integer
triples (a, b, c) € Z3 with p(a, b,c) =0, ¢ # 0, correspond to rational
points on the affine curve C C A2, where C is the zeroset of the
polynomial p(x,y) = p(x,y,1)

Proof.

If p(a, b,c) =0, then p(a/c,b/c) =0, by homogeneity. Conversely, if
p(r,s) =0 then p(rd,sd,d) =0 for all d.

In particular, if a> + b> = ¢, then (a/c, b/c) lie on the unit circle
x? 4 y? = 1. Conversely, any (x,y) on the unit circle scale to (xd, yd, d)
with (xd)? + (yd)? = d?(x? + y?) = d?.

Ol
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So, finding PT is the same thing as finding rational points on the unit
circle. However:

Theorem

The parametrization

1—t> 2t
Rot—|(—,——= ] €S
<1+t2’1+t2>

maps the real line bijectively to the unit circle minus the point (—1,0),
and this map, and its inverse, preserves rationality.

Line: y = t(x + 1) intersect unit
1-t2> 2t

circle at (1+t2, 1?2) and tangent
7 line at (1,2t).

N
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Example

Take t = 7/11. Then the rational point

yields the PPT
(36,77, 85)
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Example

The rational parametrization 104
t2+1 2t
Rot— (55— >
(t2 —1" 22— 1)
of the hyperbola 5 5 10
5]
x? — y2 =1
10

allows us to find all rational points.
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Example
To find all integer solutions to
x* +3y? = 2%,
we find all rational points on
x24+3y% =1
using the rational parametrization
R> i (e roem)

and conclude that the primitive

solutions are

m? — 3n?
T2
y =mn
_mz—i-3n2
T
with m > v/3n.

-
N
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Fermat’s conjecture

n positive integer
Study

Xn+yn+zn:0> x,y,zGZ,(x,y,z);é(0,0,0)

Equivalent: x,y,z € N

Equivalent: x" 4+ y" = z"

Equivalent: x"+y" =1, x,y € Q

n = 1: trivial, n = 2: Pythagorean triples
If n= ab then

0=x"+y+2"=(x)"+(y)°+ ()°

so any soln for composite n gives soln for the factors



Number Theory, Lecture 8

Jan Snellman

Fermat’s
conjecture
The method of descent

Theorem (Fermat’s conjecture)

For n > 3, the equation x" + y" = z" has no non-trivial integer solutions.

e Fermat 1637: marginal note in Arithmetica by Diophantus:

It is impossible to separate a cube into two cubes, or a
fourth power into two fourth powers, or in general, any
power higher than the second, into two like powers. | have
discovered a truly marvelous proof of this, which this margin
is too narrow to contain

e Proved the case n = 4 by infinite descent

e Euler: n=3
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Theorem (Fermat)

The equation

The method of descent oo .
e method of descen have no non-trivial integer solutions.

Proof

e May assume ged(x,y) =1
o X2 +y2)(x2 _y2) 222
o If d|x?>+ y? and d|x? — y? then d|2x? and d|2y?, so

ged(x? + y?, x2 — y?) is either 1 or 2.
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e Suppose gcd(x? + y?, x2 — y?) = 1. Then since their product is z2,
X2 4y?=s?
X2 —y? = 2

The method of descent

s, t relatively prime, and both odd, since s? + t? = 2x°.

u=(s+1t)/2
v=_(s—1t)/2

u, v relatively prime. Since y? = 2uv, precisely one of them even

(suppose u).
u=2m? v=Kk>2

(s> +t2)/2 = v? + v? = x2, (u,v,x) PPT.
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Proof (contd)

e So
The method of descent u = 2de
v=d?>— e
x = d? + €?

e u=2m?=2de, gcd(d,e) =1, so d = g?, e = h°.
e Sov=d’—e?=g*—h =k

e But (g, h, k) another solution to x* — y*

= z2; this solution is strictly
smaller than original (x,y, z) in that g < x.
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e Suppose instead that ged(x? + y?,x%2 — y?) = 2. Then x,y odd, z
even.

e (y?,z,x) PPT, so

The method of descent

z = 2de

x? =d*+ €

with d > e >0
e So
X2y2 — d4 - e4
and (d, e, xy) another, strictly smaller soln to original eqn.

e So, any non-trivial soln yields another, strictly smaller non-trivial soln;
impossible since there can be only finitely many strictly smaller.
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No right triangle with integer sides can have an area which is a square (of
an integer).

Proof

The method of descent .
¢ method of descen e Suppose (u,v,w) PT, u? + v? = w?, area of triangle uv/2

e Suppose, towards a contradiction, that uv/2 = s

e Then
2uv = 4s?
—2uv = —4s°
hence
u? +2uv — v2 = w? 4 452

v? —2uv — v? = w? — 452
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Proof (contd)
e So

The method of descent (U + V)2 = W2 =F 452

(u—v)? =w?— 452
e Thus
(1 —v?)?2 = (u+v)?(u—v)? = (W? 4+ 45%)(w? — 4s%) = w? — 2%s*

e But we have proved that x* — y* = z? have no non-trivial integer
soln!
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