3 Primitive Roots, Indices and the Discrete Logarithm

It is well-understood that exponential and logarithmic functions are mutual inverses when thought
of as functions on the real numbers:

y=g" = x =log,y

This is number theory, so we want to know if something similar can be said for integers, or more
precisely within modular arithmetic. The first operation, taking powers, makes perfect sense: for
instance 5° = 8 (mod 9). To what extent can we reverse this? In our example, is it reasonable to
write, and/or make sense of, the following?

3=1log;8 (mod?9)
Answering this question will lead to the notion of a discrete logarithm.

3.1 A Little Abstract Algebra: Groups, Rings and Units

We start with a primer on group/ring theory.

( )
Definition 3.1. A group is a set G together with a binary operation - which satisfies the following
properties:

Closure: Vx,y € G,wehave x -y € G.
e Associativity: Vx,y,z € G,wehave (x-y)-z=x-(y-z).

Identity: de € G such that Vx € Gwehavee-g=g-e=g.
¢ Inverse:Vx € G,Jdy € Gsuchthatx-y=vy-x=e.

A group is abelian if - is commutative: thatis if Vx,y € Gwehavex -y =y - x.
A ring is a set R together with two binary operations + and -, which satisfy the following;:
* Ris an abelian group under +: the symbol 0 is often used for the additive identity element, i.e.
VxeR, 0+x=x+0=x.
¢ Ris associative with respect to -.
* Rhas a multiplicative identity element, often called 1:i.e. Vx € R, 1-x = x-1 = x.

* R has the distributive laws: Vx,y,z € R, we have
x-(y+z)=x-y+x-z (x+y)-z=x-z4+y -z

A ring is a field F if multiplication is commutative and every non-zero element has a multiplicative

inverse: otherwise said, we require F \ {0} to be an abelian group under multiplication.
\, J

Rings generalize the concepts of addition and multiplication, while a field also does this for division
by non-zero elements. In number theory, the prototypical examples of rings are the sets of remain-
ders Z, under addition and multiplication modulo 7, although we shall see others later. It is worth
recalling the following related results, and how they can be rephrased in terms of groups and rings:



Theorem 3.2. 1. (Bézout's identity) gcd(g,n) =1 <= 3h,s € Z such that gh+ ns = 1.

2. (DivisioninZ,) gx =gy (mod n) = x =y (mod )gcd(g,n).

n

The first part of the Theorem can instead be written:
ged(g,n) =1 <= Jh € Zsuchthatgh=1 (mod n)
<= dhe€Z,suchthatgh=1
<= g has a multiplicative inverse h = gil in Z,

We have the following immediate consequences:

p
Corollary 3.3. 1. The set of remainders coprime to n is an abelian group under multiplication.

2. Z, is a field if and only if n is prime.

.

s

Definition 3.4. Theset Z := {x € Z, : ged(x,n) = 1} is the groupf| of units modulo n.

?Generally, a unit is an element with has a multiplicative inverse: the set of such forms a group under multiplication.

L

Recall that the number of units modulo # is given by Euler’s totient function ¢ ().

Example 3.5. In Zj4, the addition and multiplication tables are

+4/0 1 2 3 4]0 1 23
0012 3 0/0 00O
112 30 11012 3
212301 210 2 0 2
313012 3|0 3 21

One can see the group of units in the second table:

zi =1{13}

W =W
— W W

1
1
3

Modulo 10, we have Z;, = {1,3,7,9} and, with a slight rearrangement, the multiplication table

q0]1 397
1139 7
313971
919 713
717 1 3 9

Up to relabelling, this has exactly the same form as that for Z4 under addition. We say that the groups
(Z3y, -10) and (Z4, +4) are isomorphic and that the function

wiZ — Z4:(1,3,9,7) = (0,1,2,3)

is an isomorphism.



( )
Definition 3.6. Groups G and H are isomorphic if there exists a function y : G — H which satisfies:

1. u is bijective;

2. uis a homomorphism: Vg1,92 € G, we have u(g1 ¢ §2) = u(g1) -u 1(g2)-

We call y an isomorphism and write G = H.
\

The above groups have another special property.

| Definition 3.7.  The cyclic subgroup generated by g € G is the seff]

(g) :{gk:kGZ}:{...,g_l,e,g,gz,...}

A group G is cyclic if there exists g such that G = (g): we call g a generator of G.

It is conventional to take g° = e (the identity) and g¥ = (¢~1)* if k < 0. Our definition is for groups where the operation
is multiplication: in an additive group, x = g+ --- + g = kg.
| S —

k times

.

Example mk.II).  (Z4,+) is generated by 1, since
H={1,1+1,1+1+1,14+1+1+4+1,...} ={1,2,3,0} =Z4
(Z3,, -) is generated by 3, since
(3) ={3,3%,3%,3%...} ={3,9,7,1} = Z};

Both groups are cyclic, and the isomorphism y maps a generator of Z;, to a generator of Zj.

In fact the generator approach allows us to spot a simple formula for the isomorphism:
(3% =x
Otherwise said, y is playing the role of log.

It is worth thinking a little about the standard (continuous) logarithms in this language. If b > 0 and
b # 1, then the logarithm base b is a bijection

log, : R" — R suchthat log,(xy) = log,(x) + log,(v)

Otherwise said, log, : (R, -) — (R, +) is a group isomorphism. This motivates our search for discrete
logartihms: such should be isomorphisms of groups i : (Z,, ) = (Z (), +)-

Exercises 1. We work in the ring Z7 of remainders modulo 7.

(a) Compute the values 3* in Zj7, show that the group of units Z is cyclic and describe an
isomorphism y : Z; — Zs.
(b) Use your answer to part (a) to solve the equation 3* = 6 (mod 7).

2. Find the group of units Z; modulo 8 and show that it is not cyclic.

3. If x and y are units, prove directly that xy is also a unit.
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3.2 Primitive Roots
We have the following questions:

* Isitalways possible to define a logarithm-like function y : Z; — Z,(,,) as we did above? More
precisely, for which moduli # can this be done?

¢ Given n, for what bases (e.g. ¢ = 3 modulo 10 in the above example) can this be done?

To start answering these questions, we need a new piece of terminology.

Definition 3.8. If g € Z,, define the order of g modulo n to be

en(g) =min{fk e N:¢g* =1 (mod n)}

More generally, the order of a group G is its cardinality: the order of an element ¢ € G is the order of
the cyclic subgroup (g). Indeed it should be easy to convince yourself that

@) ={88¢ -y ={gg . ...g"¥ 1}

since ¢*(8) = 1 (mod 7). The following proof should help if you're stuck. ..

(Theorem 3.9. The order of an element g € Z,¢ divides ¢(n). J

This is just an special case of Lagrange’s Theorem from Group Theory: the order of an element
divides the order of the group. Here is a proof adapted to our situation.

Proof. We know that ¢(8) = 1 (mod n). Now assume that ¢ = 1 (mod n) where k > 0. By the
division algorithm, we know that there exist unique g, 7 € IN such that

k=qen(g)+r
0<r<eu(g)

It follows that
1= gk = 8q6"(g)+r = (gg"(g))q 8" =¢" (mod n)

This is a contradiction unless r = 0, since e,(g) is the smallest positive power that raises g to obtain
1. It follows that e, (g) | k.

Finally, Euler’s Theorem says that g?(") = 1 (mod n): taking k = @(n) gives the result. i
Our notion of a discrete logarithm is predicated on the existence of an isomorphism between Z; and

Z y(y)- Otherwise said, we want Z;; to be cyclic. Since a cyclic group requires a generator. ...

Definition 3.10. A unit ¢ € Z, is a primitive root modulo n if e,(g) = ¢(n).
Equivalently, g is a generator of the group of units: (g) = Z.

In the special case that n = p is prime, recall that ¢(p) = p — 1 since every non-zero element of Z, is
a unit. An element ¢ € Z is therefore a primitive root provided ¢,(g) = p — 1.
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Examples 3.11.

32 =1 (mod 4), the subgroup of Z generated by 3is (3) = {3,1} = Z;.

2. Also from the same page, we see that the primitive roots modulo 10 are 3 and 7. Written in
order ¢!, ¢?, ¢, ..., the subgroups generated by the primitive roots are

(3) ={3,9,7,1},

(7) = {7,9,3,1}

1. Thinking back to page[2]we see that 3 is the only primitive root modulo 4: since

Note that (9) = {9,1} since 9> = 1 (mod 10), thus 9 is not a primitive root modulo 10.
3. Here is the multiplication table for Z}; = {1,3,5,9,11,13} in its full glory:

411 3 5 9 11 13
171 3 5 9 11 13
313 9 1 13 5 11
515 1 11 3 13 9
919 13 3 11 1 5
11|11 5 13 1 9 3
13/13 11 9 5 3 1

In this case 3 and 5 are primitive roots and the group of units is isomorphic to Z¢. For each of
these generators, consider the elements g* as k increases:

(3) = {3,9,13,11,5,1},

(5) = {5,11,13,9,3,1}

By contrast, (9) = {9,11,1}: clearly e14(9) = 3 # ¢(14) whence 9 is not a primitive root.

We list the units for each modulus < 16. For each unit

discover the generators (primitive roots), if there are any.

€ Z), we give its order ¢,(g) and thus

n | Units g € Z Orders of units e, (g) Isomorph | Primitive roots
2|1 1 74 1
3112 1,2 Z, 2

4 11,3 1,2 Z, 3
511,23,4 1,4,4,2 Z4 2,3

6 1,5 1,2 Z, 5
711,2,3,4,5,6 1,3,6,3,6,2 Zs 3,5

8 11,357 1,2,2,2 Zy X Zy
911,2,4,5,7,8 1,6,3,6,3,2 Zs 2,5
1011,3,7,9 1,4,4,2 Zy 3,7
111,2,3,4,5,6,7,8,9,10 1,10,5,5,5,10,10,10,5,2 Zq 2,6,7,8
12 11,5,7,11 1,2,2,2 Zy X Zy
1311,2,3,4,5,6,7,8,9,10,11,12 | 1,12,3,6,4,12,6,12,4,3,6,12,2 | Z1, 2,6,7,11
14 1,3,5,9,11,13 1,6,6,3,3,2 Zs 3,5
1511,2,4,7,8,11,13,14 1,4,2,4,4,2,4,2 Zy X Zy4

16 |11,3,5,7,9,11,13,15 1,4,4,2,2,4,4,2 Zy X Zy4

See if you can spot any patterns as to which n have primitive roots. It certainly seems that primes
have primitive roots, though this is plainly not the whole story.

IThe isomorph is the abelian group to which Z is isomorphic. This is only relevant to us when primitive roots exist.



Indices and Calculation

For the present we consider how primitive roots can help us calculate. We know that g is a primitive
root modulo 7 if g generates the group of units Z,;. Thus

Zy ={g8"...,8"" g}
The following is immediate:

Va € Z, uniquek € [1,¢(n)]: ¢* =a (mod n)

Definition 3.12. We call k = I¢(a) the indexﬂ or discrete logarithm, of a with base g modulo n.

“If the index is understood, you can simply write I(a) for brevity. Some authors prefer I;(1) = 0 rather than ¢(1).

Examples 3.13. 1. Recall that g = 3 is a primitive root modulo 10. The powers of g produces a
table of indices:

k|1
33

2 3 4 a |13709
97 1 Ia) |4 1 3 2

2. Similarly, 5 is a primitive root modulo 14 and we have

k|1 2 3 456 a |
515 11 13 9 3 1
3. When n = 11, we have ¢ = 2 as a primitive root. This time the tables are

10
5

k|1 234 5 10 a |1 2 3 4
2812 4 8 5 10 18 2

6 7 8 9 5 6 7 8 9

9 7 3 6 1 Iz(a)‘lo 4 9 7 3 6

As an example of a calculation for which indices are helpful, consider
58.74.85=(2H)8. (27)*. (2%)° =2 =28 =3 (mod 11)

While there are other ways of doing this calculation, it should be clear that the use of indices
made things very easy: the problem is that we needed to know the indices first!

You might have heard of log tables from the days before calculators: these were large tomes filled with
values of logarithms which could be used to simplify large computations. For example, the following
procedure was used to multiply large numbers a and b:

1. Find log,,a and log,, b in the book of log tables: these will be much smaller than a and b.

2. Compute x = log,,a + log,, b.

3. By the log laws, ab = 10*, which could be looked up in a log table or otherwise approximated.
Such calculations were very simple, provided you had access to the log table! Indices perform the same

role for modular exponentiation: if you already have a table of indices and are only computing with
units, then calculations are significantly simplified.



Since the exponential laws hold in modular arithmetic, so too do the standard logarithm laws.

Theorem 3.14.  If I(a) is the index with respect to a primitive root § € Z,, then
1. I(ab) = I(a) + I(b) (mod ¢(n))
2. I(a*) = kI(a) (mod ¢(n))

The primary challenge is to remember to reduce indices modulo ¢(n), not modulo n!

Proof. We prove part 1 similarly to the logarithm laws you’ll find in an algebra textbook.

Since a, b are units, we know that gl (1) = g and gI ) =p (mod n). Moreover, ab is a unit, so we also
have ab = g'(®). By the law of exponents,

g@) = gp = gl@lt) = J@HIB) —y @) T@-10) =1 (mod n)
Since g is a primitive root, it follows that I(ab) = I(a) + I(b) (mod ¢(n)).
Here is Example 3.13.3|recast in this language:

L(5%-7%-8%) = 81y(5) + 41y(7) + 61,(8) =8-4+4-7+6-3=8=L(3) (mod 10)
— 5%.7.8°=3 (mod 11)

Solving Equations with Indices

In elementary algebra, we can solve equations using alogarithms: e.g.,

50°=8 = In5+3Inx=1In8

g m8-m5 1 8 8\
o 3 35

8 1/3
~ =)

Indices and primitive roots work the same way for congruence equations. The only problem is that
we need to have previously computed a table of indices! This approach is therefore appropriate if
you expect to have to solve many similar congruences.

Examples 3.15. 1. We solve 5x°> = 8 (mod 11). Recall that 2 is a primitive root modulo 11 and
reference the tables of powers/indices on page[6] Now take indices with base 2:

I15)+3I(x)=1(8) = 3I(x)=1I1(8)—I(5)=3—-4=9 (mod 10)
= I(x) =3=1(8) (mod 10)
= x=8 (mod 11)

Things are very simple in comparison to the method you likely saw for solving this in a previ-
ous course (Exercise|3.2.7).



. Solve 27x13 = 47 (mod 50), given the following tables for the primitive root 3 € Z,

k‘123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3k‘3927314329371133494741 23 19 7 21 13 39 17 1

a ‘137911131719212327293133373941434749
13(61)‘201152817191416133 6 4 9 7 18 12 5 11 10

Since 27 and 47 are units, it should be clear that any solution x is also. Now take indices:

1(27) +13I(x) = [(47) = 13[(x)=11-3=8 (mod 20)
= [(x)=-3-8=—-4=16=1(21) (mod 20)
— x =21 (mod 50)

where we used the fact that =3 -13 = -39 =1 (mod 20).
. If 27x* = 47 (mod 50), then

1(27) +4I(x) = 1(47) = 4I(x) =11-3=8 (mod 20)
= I(x) =2 (mod 5)
= I(x)=2,7,12,17 (mod 20)
= x=9, 37,41, 13 (mod 50)

. If 27x° = 47 (mod 50), then
1(27) +51(x) = [(47) = 5I(x) =11 -3=8 (mod 20)

This has no solutions, whence the original congruence has no solutions either.

Exercises 1. For each unit ¢ € Z), compute its order e, (g):

@) eo(2)  (b) e15(2)  (9) e16(3)  (d) ew(3)
. Let k be a positive integer. If x* = u is a unit in Z,, prove that x must also be a unit.

3. If a is relatively prime to both m and n, and if gcd(m, n) = 1, find a formula for e, (a) in terms

of ey, (a) and e, (a). Check your answer form =5, n =9, a = 2.

. Ifa = b?* (mod p) is a perfect square and p an odd prime, explain why a isn’t a primitive root.
(Hint: use Fermat’s Little Theorem)

5. Prove the second index law: I(a*) = kI(a) (mod ¢(n)).

. You are given the table of powers base 2, modulo 37.

ki1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2K[2 4 8 16 32 27 17 34 31 25 13 26 15 30 23 9 18 36

k119 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
2K135 33 29 21 5 10 20 3 6 12 24 11 22 7 14 28 19 1

Use the table to find all solutions, if any, to the following congruences modulo 37:

(@ 12x=23 () 5x2 =18 (o) x2=11 (d) 7x*¥ =34




7. Recall the method for finding unique k' roots in a previous course.
If ged(b,n) = 1 = ged (k, ¢(n)) then x* = b (mod n) has the unique solution x = b*
(mod n), where ku =1 (mod ¢(n))
(a) Use this, after multiplying through by 57! =9 (mod 11), to solve 5x> = 8 (mod 11)
(b) Why does the old method fail when applied to 27x* = 47 and 27x° = 47 (mod 50)?

8. You are given that ¢ = 2 is a primitive root modulo 27.

(a) Construct a table of indices for g = 2.
(b) Use your table of indices to solve the congruence x! = 20 (mod 27).

11 —

(c) Here is an alternative approach, if slower, approach: if x 20 has a solution, then it

must also solve x'! =2 (mod 3).
i. Explain why x =2 (mod 3).
ii. Use this to find the solution(s) to part (b)

(d) Use indices to solve the congruence x*! = 17 (mod 27).
(e) Find all integers n € Zg for which x" = 17 (mod 27) has a solution (since ¢(27) = 18, by

Euler’s Theorem, these are the only n which matter).
3.3 Existence of Primitive Roots and the Structure of the Group of Units

If we know that a primitive root exists, then the whole power of cyclic group theory is at our disposal.
In particular, we are able to compute precisely how many elements of Z,* have a particular order.

p
Theorem 3.16. Suppose that g is a primitive root modulo n.

1. The order of ¢ is e, (g* :%
8158 = gedk, o)

2. Ifd | ¢(n), then there are ¢(d) elements of Z¢ with order d. Indeed g has order d if and only if

_ ¢(n)
ged (k, g(n)) = =

\. J

Part 1is a special case of a standard result from the theory of cyclic groups (a proof is in the Exercises),
while part 2 is an elementary property of Euler’s functionE] Since a primitive root modulo n must
have order ¢(n), we immediately get the following:

Corollary 3.17.  If Z, has a primitive root g, then it has precisely ¢(¢p(n)) of them: ¢* is a primitive
root <= gecd(k, p(n)) = 1.

One can verify this using examples from the table on page |5} e.g. n = 14 has ¢(¢(14)) = ¢(6) = 2
primitive roots.

21f ¢ | m, then there are ¢(2) remainders a € Z,, such that ged(a, m) = c. This is since
a m
d(a,m) = d(—-,—) =1
ged(a,m) =c < gc (c c>

Letm = ¢(n) and d = @ for our purposes.



The main thing missing from our discussion is existence! We will at least do this for prime moduli. In
essence, the strategy is to prove the previous theorem without assuming that a primitive root exists.
That is, we count all the terms in Z; which have a particular order.

Theorem 3.18.  Let p be prime. For eachd | p —1, theset {a € Z, : e,(a) = d} has cardinality ¢(d).
In particular, p has a primitive root (indeed ¢(p — 1) of them).

Replacing p — 1 by ¢(m) results in a falsehood for some composites .

Proof. We know thatep(a) | p—1foralla € Z;. Foreachd | p — 1, define

9(d) = [{a € Z; : ep(a) = a}|
Our goal is to show that ¢(d) = ¢(d). Start by supposing that p — 1 = nk and consider
W1 = k= (20— 1) () kD) )
We count the number of roots of various parts of this polynomial:
e (Fermat’s Little Theorem) x*~! — 1 =0 (mod p) has exactly p — 1 roots: every 1 < x < p — 1.
e (Lagrange’s Theorem) x" —1 =0 (mod p) has at most n solutions.

o x(k=1) yn(k=2) 4 ... 4 x" +1 =0 (mod p) has at most n(k — 1) = p — 1 — n solutions, again
by Lagrange.

It follows that the at mosts must be exactly’s: if n | p — 1, then " =1 (mod p) has exactly n solutions.
Now count these solutions differently. We clearly havef]
¥ =1 (mod p) <= ep(x)|n

If the divisors of n are d, . . ., d,, then the number of solutions to " =1 (mod p) is precisely

pldi) + - +p(dy)

By the above discussion, this must equal n:
L yd)=n
dn

This should look familiar: it’s the same formula satisfied by the totient function! A quick induction
finishes things off.

The base case (1) = 1 = ¢(1) is clear. Now fix n € IN and assume that ¢(d) = ¢(d) for alld < n.
We know that

n=) y(d) =) o)

d|n dln

By cancelling all the terms for d < n we conclude that (n) = ¢(n).

?This is the proof of Theoremwithout the last line!
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For completeness, we state without proof exactly which moduli have primitive roots.

[ Theorem 3.19. Z, has a primitive root if and only if n = 2,4, p¥,2p* where p is an odd prime.

While lengthy, the proof is nicely constructive and shows the following:
e If ¢ is a primitive root modulo p, then at least one of ¢ or ¢ + p is a primitive root modulo p*.

e If g is a primitive root modulo p*, then whichever of ¢ and ¢ + p* is odd is a primitive root
modulo 2p*.

Think about the examples on page[5|and see how they fit with this. One consequence of the Theorem,
which isn’t clear from our examples, is that comparatively few moduli have primitive roots!

Example 3.20.  Find all the primitive roots modulo 50 = 2 - 52.

We know that 2 and 3 are primitive roots modulo 5. Therefore at least one each of the pairs
(2,2+45)=(27), (33+5)=(338)

are primitive roots modulo 25. Quickly checking
(8) =143,9,2,6,18,4,12,11,8,24, .. .}

has 31 = —1 (mod 25), whence 3 is a primitive root modulo 25. Since 3 is odd, it must also be a
primitive root modulo 50. Indeed

(3) = {3,9,27,31,43,29,37,11,33,49,47,41,23,19,7,21,13,39,17,1}

All primitive roots modulo 50 therefore have the form 3% where k is comprime to ¢(50) = 20: the
complete set is therefore

{3,3%,37,3°,31,313,3'7 39 = (3,27,37,33,47,23,13,17}

Exercises 1. Find all the primitive roots for the given moduli: do this systematically as in Example
rather than by guessing.

(a) Modulo 49 = 7. (b) Modulo 54 =2 - 35,

2. (a) Explain where the proof of Theorem fails when the modulus is composite.

(b) What are the orders of the elements in Z; ? If Theorem applied to all positive integers,
what should the orders of the elements be?

3. We prove Theorem Suppose g is a primitive root modulo 7 so that Z,; = (g). Since gis a
primitive root, observe that

(89" =1 < o¢(n) | ak

Use this to prove that (¢)* =1 <= (P(d”) v, where d = ged (k, ¢(n)).
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4. Suppose that I is an index modulo an odd prime p.

(a) If a, b satisfy ab =1 (mod p), how are the indices I(a), I(b) related to each other?
(b) If a,bsatisfy a+b =0 (mod p), how are the indices I(a), I(b) related to each other?
(Hint: 3 a unique k € Z,,_1 such that I(p — 1) = k: what is it?)

5. Let p be an odd prime and let ¢ be a primitive root modulo p.

(a) Prove that ¢* is a quadratic residue modulo p if and only if k is even.
(b) Use (a) to give a quick proof that the product of two non-residues is a residue, and more
b\ _ (ab
generally that (%) (;) = (%)
(c) Use (a) to give a quick proof of Euler’s Criterion a(P~1)/2 = <%) (mod p).
6. Suppose that p is prime.

(a) Ifk divides p — 1, show that the congruence x* = 1 (mod p) has exactly k distinct solutions
modulo p.
k

(b) Consider the congruence x* = a (mod p). Find a simple way to use the values of k, p and
the index I(a) to determine how many solutions this congruence has.
(c) The number 3 is a primitive root modulo the prime 1987. How many solutions are there
to the congruence x''! = 729 (mod 1987)? (Hint: 729 = 3°.)
7. (Only if you've done Rings and Fields)
(a) Suppose p is an odd prime. You are given that p* has a primitive root for any k € IN. To
what elementary group is the group of units Z;k isomorphic?

(b) Prove that
(Zpy X - X L)) 2 Loy, ><~--><an1j

for any m; € IN>,. Otherwise said, the group of units of a direct product ring is precisely
the direct product of the groups of units of the individual rings.

(c) Suppose n = pt* - .- p;lj is the unique prime decomposition of some odd n € IN>3 (the p;
are distinct primes). Use (b) to prove that Z; is cyclic if and only if j = 1.
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