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Jan Snellman RSA public key cryptosystem

RSA

e Used to transfer short messages, e.g. keys for symmetric ciphers
e Public key: A,B both have a private, secret key and a public, open key
e A can send an encoded message to B, without prior arrangement

e The eavesdropper Eve can not decode the message, even when in
possession of the encrypted message and the public part of A's and
B's keys

e B can make use of her secret, private key to decrypt the message

e If Eve wants to brute-force decrypt the message, must factor a large
integer, computationally infeasible
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RSA B has secret: two large primes p, g.

e B makes public: n = pq, e positive integer with gcd(e, d(n)) = 1.

e A sends message to B: breaks up into “letters” or “blocks”, integers
0<P<n

Encodes each "block” and sends it: E(P) = C = P¢ mod n,
0<C<«<n.

B receives C, and decrypt by D(C) = C? where d multiplicative
inverse of e modulo ¢(n), easily computed by B since B knows
factorization n = pq, thus ¢(pq) = d(p)d(q) = (p—1)(qg —1).
Extended Euclidean algorithm finds d, k such that ed = kd(n) + 1,
throw away k.
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RSA CY = (Pe)d = ped = pkbin+l = pe p = p mod n

assuming gcd(P,n) =1
e In most cases, gcd(P, n) =1, probability 1 —1/p—1/g+ 1/pqg
e If gcd(P, pg) > 1 then either p|P or p }P.
o If p JP, then D(C) = PP~ Vla=1kp = P mod p, by Fermat.
e If p|P, then P =0 mod p, but also D(C) = P*=0 mod p
e Similarly, D(C) =P mod q.
e By CRT, D(C) =P mod pq.

e Note that if s = gcd(P, n) > 1, and r is a prime factor of s, then
since r|pg we have that r = p or r = g, so Eve can factor n, and
decrypt the message!
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Definition
Integer part
func%ionp A positive integer n is perfect iff o(n) = 2n, where o(n) = Zk|n 1.

Thus n is perfect iff

nzZl.

k|n
1<k<n

Example

6 =142+ 3 is perfect, 7 # 1 is not.
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n is even and perfect iff n = 2™"1(2™ — 1) with m > 2, 2™ — 1 prime.

Integer part
function Proof

pa+17

pfll on prime powers

o multiplicative, o(p?)
e Assume n of above form.
e 2™ even, 2™ — 1 odd, gcd(2™ 1, 2™ —1) =1
e o(n) =0(2™)o(2™ —1) = (2™ —1)2™ = 2n, so n is perfect.
e Now assume n = 2°t perfect, s > 1, t odd.
e o(n) =0(2%0(t) = (25T — 1)o(t) =2n =25t so
(251 —1)o(t) = 25t1¢.
o 25t|RHS = 25T|LHS = 25*1|o(t)
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Proof (cont)

Integer part e o(t) =25"q

function
o (2s+1 _ 1)25+1q — s+l
o (M —1)g=1t
e glt, t>q.

(2t —1)g+qg=2"g=t+gqg soo(t)=t+q
If g > 1 then 1,q,t all divide t, so sigma(t) >1+qg+t, a
contradiction. Hence g = 1.

Sot=25t1_1.

Furthermore, o(t) =t + 1, so t prime.
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Integer part Theorem

function g . . .
2™ —1 is only prime when m is prime.

Proof.
If m = ab then

2m — 1= (22 —1)(22b"D 4 2262 4 ... 4 27 4
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Integer part

functi . el
unction Definition

M, =2™ —1 m'th Mersenne number, M, Mersenne prime (if prime).

Example

M; =27 — 1 prime, My; =21 — 1 =23%89
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Integer part Theorem
function

p odd prime. Then any divisor of M, = 2P —1 is of the form 2kp + 1.

Proof.
Check Rosen!

e There are more efficient primality tests for M,, see Rosen

e Largest known M,: p ~ 108, M, ~ 101°



For x € R, [x] is the largest integer < x.

17/3] = 2.
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Theorem
x€eER, neZ.
Decimal fractions
e x—1<|x]<x<|x]+1
o x+n|=|x]+n
- 1B =12

[ )
—
X
_|_
T
=X
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Decimal fractions

Theorem

myn € Z, myn>0. Then

|m/n] —|(m—1)/n] = {(1) :|’)7(7m

Proof.
If m = kn then |m/n| =k, and |(m—1)/n] =k —1, so
[m/n] — |(m—1)/n] = 1.
Ifm=kn+r,0<r<n, thenk=|m/n|, and
Lm—1J _ Ll<n—|—nr—1J k4 Lr—

n

1
|=k+0=k

so |m/n|] —|[(m—1)/n| =0.
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Theorem

DsaiE] Ul n positive integer. Then

1 nis a perfect square
VAl = |VA=T1] =

0 otherwise
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Theorem

. 9 [ )
Decimal fractions

[x]/2 = [x/2] +{

L(x+1)/2] :{

0 2|«
1/2 2 flx]

[x]/2 2|[x]
(Ix]+1)/2 2 f|x]
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Theorem

Let m, n be positive integers, with gcd(m, n) = d. Then

Decimal fractions

Zum/nzf ~1)(n—1)+ (@~ 1)

If d =1 then

n—1 m—1

> Lim/n] =" Ljn/m| = >(m—1)(n—1)

j=1 Jj=1
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Let x e R, 0 < x < 1, and let b be a positive integer. Then x can be

written as
(o]
X = E cib™,
Jj=1

and this expression is unique if we demand that there are infinitely many j
st. ¢ #b—1.
We write

x =0.cioc3. ..

after specifying the base b.
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Example

In base 2, we write

1
-~ =0.10000...
2

rather than

1
5= 00111111 =1/4+1/8 +1/16+ ...
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Lemma

Let x, = b" Y ., ¢ib™ so that
x = Z cib? =c1/b+...cn/b" + xu/b"
j=1

Then
1 = LbXJ
X1 =bx—oqc

Ck = Lka_lJ

XKk = ka — Ck
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Let b=2, x=1/3. Then

a=12/3=0
x1=2/3—0=2/3
o =4/3] =1
xx=4/3—1=1/3
¢ =[2/3] =0

x3=2/3—0=2/3

Since x3 = x3, the binary expansion repeats, with
O=ag=c¢g=g=--=1,ag=a=cg=c=---=0,so0

x =1/3=0.0101010101...

in base 2.
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Definition
The base-b expansion of x terminates if ¢, = 0 for all sufficiently large n.
It is periodic with pre-period N and (least) period d if

Ciyd = ¢j forall j > N
and d is the smallest positive integer with this property.

Example

The binary expansion 1/3 = 0.01010101... is periodic with period 2, and
pre-period 0. 5/6 =1/2+1/3 =0.11010101... is periodic with period 2,
and pre-period 1.
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Lemma

If x has a terminating or periodic expansion, then x is rational.

Proof.

First assertion: obvious.
Second assertion: assume

x:O.alag...aNcl...cd

Let y = x— ZJN 1 ajb*j = 0.c1 ... cq; clearly y is rational iff x is. But

Yy = (Clbil aF ...Cdbid) + (Clb*dfl + ...Cdb72d) +..
= b e+ b (1 b+ 52

_ b_l(Cl o000 Cdb_d+1)
N 1— bd

which is rational.

]
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Example

Let x have binary expansion 0.111010010100101001 ... Then

y =0.1010010100- - - = x — 0.11 = x — 3/4, and furthermore

2%y =10100.10100101 - - - = (10100), +y =32 +8+y =40+ y, so
y=40/(2°—1), x =y + 3/4.
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Lemma

If x is rational, then it has a terminating or periodic expansion.

Proof.

Let x = r/s. Recall that ¢x = | bxk—1], xk = bxk—1 — ¢k, and that

0 < xx < 1. By induction, one can prove that xx € %Z, thus x, can attain
at most s + 1 different values; inevitably, there will be a collision. Ol
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Theorem

Let b > 1 be an integer, x = r/s with gcd(r,s) =1, 0 < r < s, and write
s = TU with T containing the prime factors of s that also occur in b, and
U the rest.

Then

@ the period length of the base-b expansion of x is ordy(b), the order
of [b]U € ZE
@ the preperiod is N, the smallest positive integer s.t. T|bV.
In particular, x has terminating base-b expansion iff U = 1.

If b is prime, then T = b' = v (s), ordy(b) still needs to be computed,
but the preperiod simplifies to {.
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Example

Let b =2, x = 13/17. Then since 17 = 29 % 17, the pre-period of the
binary expansion of x is zero. The period is ord;7(2) = 8. Indeed,

13/17 = 0.11000011 11000011 11000011 11000011 11000100. ..
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