
1. Is your browser running HTTP version 1.0 or 1.1? What version of
HTTP is the server running?

We can see in the GET request that the http version is 1.1 and in the
response the http version is also 1.1.

2. What languages (if any) does your browser indicate that it can accept
to the server? In the captured session, what other information (if any)
does the browser provide the server with regarding the user/browser?

In the GET trace we see “accept-language: en-us” so it accepts
English. It also provides encoding, charset, file types and user agent.

3. What is the IP address of your computer? Of the gaia.cs.umass.edu
server?

Gaia: 128.119.245.12

Self: 192.168.1.102

4. What is the status code returned from the server to your browser?

Its 200 OK seen in the headline of the http response.

5. When was the HTML file that you are retrieving last modified at the
server?

“Last-modified: tue, 23 sep 2003 05:29:00 GMT” seen in the response
trace.

6. How many bytes of content are being returned to your browser?

Seen at the bottom of the response trace, its 73 bytes.

7. By inspecting the raw data in the packet content pane, do you see
any HTTP headers within the data that are not displayed in the
packet-listing window? If so, name one.

No we didn’t find any.

Discussion: We have been examining the data sent between a browser and
a webserver. There’s a lot of information but it’s structured in a way that
makes it easy to sift through it to find what you’re looking for.

8. Inspect the contents of the first HTTP GET request from your browser
to the server. Do you see an “IF-MODIFIED-SINCE” line in the HTTP
GET?

There is no such header in the first HTTP GET.

9. Inspect the contents of the server response. Did the server explicitly
return the contents of the file? How can you tell?

We can find the line-based text data in the response, so yes the
server returned the contents.

10. Now inspect the contents of the second HTTP GET request from
your browser to the server. Do you see an “IF-MODIFIED-SINCE:”
line in the HTTP GET? If so, what information follows the “IF-
MODIFIED-SINCE:” header?

There is such a header in this HTTP GET. The information that
follows is: “Tue, 23 sep 2003 05:35:00 GMT”.

11. What is the HTTP status code and phrase returned from the
server in response to this second HTTP GET? Did the server
explicitly return the contents of the file? Explain.

The status code is 304 not modified, the server did not return the
contents this time since it had not modified it since the browser last
downloaded the contents.

Discussion: If a file has been modified, the updated version must be
downloaded by the browser, but if it has not been modified then the server
will just refer to the browser’s cache and confirm that it’s still up to date.

12. How many HTTP GET request messages did your browser
send? Which packet number in the trace contains the GET message
for the Bill or Rights?

Only one request was sent. Packet nr.8 was the GET for Bill of
Rights.

13. Which packet number in the trace contains the status code and
phrase associated with the response to the HTTP GET request?
What is the status code and phrase in the response?

Packet nr. 14 contains the status code. The code was 200 OK.

14. How many data-containing TCP segments were needed to carry
the single HTTP response and the text of the Bill of Rights?

4 packets, as seen in the [4 reassembled TCP segments…].

15. Is there any HTTP header information in the transmitted data
associated with TCP segmentation? For this question you may want
to think about at what layer each protocol operates, and how the
protocols at the different layers interoperate.

The segmentation is the transport layer’s responsibility which means
it has nothing to to with HTTP or it’s headers. So no there is no such
data in the HTTP header information.

Discussion: Big packages cannot be sent in one piece, instead they must
be split up into different segments. This process takes place in the transport
layer, meaning the application layer does not need to worry about this.

16. How many HTTP GET request messages were sent by your
browser? To which Internet addresses were these GET requests
sent?
3 were sent to ethereal-labs/lab2-4.html, catalog/images/pearson-
logo-footer.gif, ~kurose/cover.jpg.

17. Can you tell whether your browser downloaded the two images
serially, or whether they were downloaded from the two web sites in
parallel? Explain

 They were not done in parallel. This can be seen in TCP sequence
numbers. The first image ends with segment 25, and the second
image start with segment 29.

Discussion: The browser can download images in parallel to speed up the
overall experience of the website. When downloading images the packet
counts quickly balloon compared to just text files.

18. What is the server’s response (status code and phrase) in
response to the initial HTTP GET message from your browser?

401 Authorization required.

19. When your browser sends the HTTP GET message for the
second time, what new field is included in the HTTP GET message?

The authorization field.

Discussion: Websites may require authorization for some actions, to comply
with this the browser adds the authorization field to confirm the identity of
the user to the server.

20. What does the "Connection: close" and "Connection: keep-alive"
header field imply in HTTP protocol? When should one be used over
the other?

It’s to determine if the connection is persistent or not. E.g., if
subsequent requests to the same server are to be ignored or
complied with. (Without doing another Syn/ack process). Keeping
connections alive reduces CPU usage and memory usage for the
server so it’s preferable in most cases. All modern browsers use this
if the server cooperates.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

