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Abstract5

This article concerns the challenge of reliable broadband passive sonar target detection and tracking6

in complex acoustic environments. Addressing this challenge is becoming increasingly crucial for7

safeguarding underwater infrastructure, monitoring marine life, and providing defense during seabed8

warfare. To that end, a solution is proposed based on a vector-autoregressive model for the ambient9

noise and a heavy-tailed statistical model for the distribution of the raw hydrophone data. These models10

are integrated into a Bernoulli track-before-detect (TkBD) filter that estimates the probability of target11

existence, target bearing, and signal-to-noise ratio (SNR). The proposed solution is evaluated on both12

simulated and real-world data, demonstrating the effectiveness of the proposed ambient noise modeling13

and the statistical model for the raw hydrophone data samples to obtain early target detection and robust14

target tracking. The simulations show that the SNR at which the target can be detected is reduced by 4 dB15

compared to when using the standard constant false alarm rate detector-based tracker. Further, the test16

with real-world data shows that the proposed solution increases the target detection distance from 250m17

to 390m. The presented results illustrate that the TkBD technology, in combination with data-driven18

ambient noise modeling and heavy-tailed statistical signal models, can enable reliable broadband passive19

sonar target detection and tracking in complex acoustic environments and lower the SNR required to20

detect and track targets.21
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I. INTRODUCTION24

A significant portion of today’s critical infrastructure is located underwater. This includes gas25

pipelines, power transmission lines, and communication cables, which are essential in modern26

society. Due to their remote locations and strategic importance, these assets are vulnerable to27

damage and sabotage. Monitoring these infrastructures is crucial, especially during times of28

conflict, when targeted attacks on them could have severe consequences [1]. This has led to29

the emergence of a new domain of conflict on the world’s seafloors, known as seabed warfare,30

which necessitates the development of advanced countermeasures [2], [3].31

Passive sonar surveillance is essential for discreetly monitoring underwater infrastructure. This32

technique enables the detection of submarines and other underwater vehicles without disclosing33

the location of the sonar system. Moreover, passive sonar does not introduce noise pollution in the34

ocean, benefiting marine life [4], [5], while allowing for continuous, unobtrusive monitoring of35

the underwater environment. However, compared to active sonar, passive sonar systems typically36

operate at a lower signal-to-noise ratio (SNR) and are more susceptible to ambient noise. This37

requires them to have higher sensitivity and use more complex noise models.38

Passive surveillance has historically relied on a combination of signal processing techniques39

such as low frequency analysis and recording (LOFAR), beamforming, and bearing time record40

(BTR) analysis. These methods are often manually operated by human sonar operators, who may41

also listen to the sounds. However, relying on human expertise is costly and resource-limited,42

making large-scale monitoring challenging. Energy-based detectors, such as the constant false43

alarm rate (CFAR) detector, have been employed to automate the surveillance process. These44

detectors output a set of bearings at each time step, corresponding to potential target detections.45

When a target is present, some detections may over time form a track, which can be identified46

using target tracking methods such as multiple hypothesis tracking [6] or more recent approaches47

such as the Poisson multi-Bernoulli mixture (PMBM) filter [7]. Applications of these methods48

to underwater surveillance have been explored in [8], [9]. However, a prerequisite for successful49

detection is that the SNR is sufficient to exceed the detection threshold.50

One way to increase the performance in poor SNR is by using the track-before-detect (TkBD)51

tracking strategy [10, p. 239]. In this approach, the target detection occurs much later in the52



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

signal processing chain, after constructing the potential track, hence the name. Thus, target53

detection and tracking are done jointly. The major benefit of this method is that no information54

is discarded in the detection process, allowing for a longer integration time of the raw data before55

the decision is made, consequently lowering the SNR requirement. Theoretically, a performance56

gain of approximately 6 dB is possible [11, p. 318]. However, TkBD makes the tracker more57

sensitive to signal and noise modeling errors, which is why the application of TkBD to the58

underwater passive sonar problem has been so challenging. Consider the BTR in Fig. 1a, which59

shows the received signal energy in different bearings over time. From Fig. 1a, it is evident60

that the signal energy varies greatly over time and bearing, implying that the received signal is61

spatiotemporally correlated. These correlations are difficult to discern from the signal components62

produced by a target, as seen in Fig. 1b. Another challenge is that ambient noise is known to63

exhibit a heavy-tailed distribution [12, p. 403]. Previous work has attempted to model the acoustic64

samples using alpha-stable distributions [13] or Gaussian mixture models [14] to address this65

issue, but this has not been done in the context of target tracking.66

Different approaches utilizing TkBD for passive sonar are explored in [15]–[18]. Many of67

these methods rely on modeling signal energy post-beamforming as their measurements and68

only consider narrowband signals. Some approaches have attempted to address the challenges69

posed by spatiotemporal correlations. For instance, the work in [17] averages the signal energy70

post-beamforming in different bearing bins, thereby reducing the impact of the temporal energy71

variations. Similarly, the post-beamforming energy is also used in [18]. By comparing the72

beamforming energy in the presence and absence of a target, the authors of [18] fit a probability73

distribution to each bearing bin. Although this approach adapts to spatial variations in ambient74

noise, the fitted distributions are time-invariant, meaning that temporal energy variations are not75

accounted for. Likewise, the work in [19] and [20] applies models that assume noise interferers76

at specific bearings that emit independent, constant power signals. None of these models handle77

the temporal variation in the ambient noise.78

A. Contributions79

This article builds upon and extends the work presented in [20], [21], which explored the80

possibility of sample-level source and ambient sound modeling in a passive sonar TkBD ap-81

plication, circumventing the challenges of developing accurate statistical models for the signal82

after beamforming. In [20], it was observed that spatiotemporal correlations and other modeling83



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

0 20 40 60 80 100
Time [s]

−50

0

50
B

ea
ri

n
g

[d
eg

]

−15

−10

−5

0
N

orm
alized

10
log

1
0
B

(ψ
,y

k )

(a) No target

0 25 50 75 100 125
Time [s]

−50

0

50

B
ea

ri
n

g
[d

eg
] True Bearing

−15

−10

−5

0

N
orm

alized
10

log
1
0
B

(ψ
,y

k )

(b) With target

Fig. 1. BTRs from data collected during a sea trial. The BTR values were calculated using the conventional delay-and-sum

beamformer B(ψ, yk) in (11). The upper and lower plots show the BTR without and with a target present. From the plots, it

is clear that the temporal and spatially correlated ambient noise causes disturbances that are hard to distinguish from the actual

target.

errors make the tracker prone to initiating false tracks. This article proposes a solution to this84

challenge by adding a new data preprocessing step and a new measurement model for the data85

samples. In summary, the contributions of this work are:86

1) a vector auto-regressive (VAR) model for modeling of the spatially and temporally corre-87

lated ambient noise;88

2) a measurement model for wideband signals with a heavy-tailed distribution; and89

3) an experimental evaluation of the proposed models within a bearing-only TkBD framework.90

Reproducible research: The code and data used to reproduce the presented results can be91
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downloaded at https://gitlab.liu.se/coast/tkbd using raw data.92

II. TARGET TRACKING AND BAYESIAN ESTIMATION93

The objective of target detection and tracking is to, given a set of measurements z1:k =94

{z1, z2, . . . , zk} collected at discrete time instances 1, 2, . . . , k, determine if a target is present95

and, if so, estimate its current state. Commonly, the measurements z1:k are a set of detections,96

but in TkBD applications, they may instead be intensity measurements, images, beamforming97

outputs, or, as this article proposes, a set of hydrophone samples.98

To simultaneously describe the target state and the probability of its existence, the target is99

modeled using a Bernoulli random finite set (BRFS). To that end, let qk denote the probability of100

existence, and xk denote the state of the target, given that the target exists. The BRFS Xk jointly101

describes these components with the finite set statistics (FISST) probability density function102

(PDF) [22]103

fk(X) =

1− qk ifX = ∅,

qksk(x) ifX = {x},
(1)

where sk(x) is the PDF of state xk. The posterior PDF104

fk|k′(X) ≡ fk(X|z1:k′) =

1− qk|k′ ifX = ∅,

qk|k′sk|k′(x) ifX = {x},
(2)

can be calculated using the Bernoulli filter [23]. Here, qk|k′ and sk|k′(x) denote the posterior105

probability of existence and posterior state distribution at time instant k given measurements106

up to time instant k′. Given the posterior PDF fk−1|k−1(X), the Bernoulli filter recursions for107

calculating the posterior distribution fk|k(X) are given by the time and measurement updates108

[23]109

qk|k−1 = pb(1− qk−1|k−1) + psqk−1|k−1, (3a)

sk|k−1(x) =
pb(1− qk−1|k−1bk|k−1(x))

qk|k−1

+
psqk−1|k−1

∫
πk|k−1(x|x′)sk−1|k−1(x

′) dx′

qk|k−1

,

(3b)
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and110

qk|k =
qk|k−1

∫
L(zk|x)sk|k−1(x) dx

1− qk|k−1 + qk|k−1

∫
L(zk|x)sk|k−1(x) dx

, (4a)

sk|k(x) =
L(zk|x)sk|k−1(x)∫
L(zk|x)sk|k−1(x) dx

, (4b)

respectively. Here, pb and ps are the probability of target birth and survival between time steps,111

respectively. Further, bk|k−1(x) denotes the PDF for states of newly born targets. Moreover,112

πk|k−1(x|x′) is a PDF of the state x conditioned on the state x′, describing the target motion.113

Finally, L(zk|x) is the conditional likelihood ratio given the target state x. This article uses the114

particle filter to implement the recursions in (3) and (4). Pseudocode describing the particle filter115

implementation can be found in [23].116

To execute the filter recursion, one must specify models for the target dynamics, target birth and117

survival probability, and measurement likelihood. This article focuses on how the measurement118

likelihood should be modeled in a broadband passive sonar system. Next, the pros and cons of119

the commonly used CFAR likelihood model will be reviewed, and a new likelihood model that120

addresses some of the cons of existing measurement models will be proposed.121

III. MEASUREMENT MODELS122

The section describes how the relationship between the measurements zk and the target state123

xk, and the associated likelihood ratio function L(zk|xk), is modeled. First, the traditional case124

when zk consists of detections is described. Second, a new measurement model for when zk125

consists of raw hydrophone samples is presented.126

A. Spatial Signal Processing and Beamforming127

Consider a hydrophone array consisting of M hydrophones. Let y(m)
n denote sample n from128

hydrophone m in the array. Define129

y⃗n =
[
y
(0)
n . . . y

(M−1)
n

]⊤
∈ RM , (5)

as the collection of samples from all the M hydrophones. Between the two time steps k−1 and130

k, N such samples are collected, denoted131

yk =
[
y⃗⊤(k−1)N+1 . . . y⃗⊤kN

]⊤
∈ RNM , (6)

and is referred to as a batch of samples.132
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If the target is in the far field and emits a broadband signal sk ∈ RN , the batch of hydrophone133

samples yk can be modeled as134

yk = H(ψ)sk + ek, (7)

where ek is given by135

ek =
[
e⃗⊤(k−1)N+1 . . . e⃗⊤kN

]⊤
∈ RNM , (8a)

e⃗n =
[
e
(0)
n . . . e

(M−1)
n

]⊤
∈ RM , (8b)

and e(m)
n is the measurement noise of hydrophone m at time instant n. Furthermore, H(ψ) is a136

fractional delay filter matrix, given by [24]137

H(ψ) =
[
H⊤

0 (ψ) . . . H⊤
M−1(ψ)

]⊤
∈ RNM×N , (9)

where138

Hm(ψ) = W ∗Λ(τ (m)(ψ))W, (10a)

Λ(τ) = diag(γ0(τ), . . . , γN−1(τ)), (10b)

γn(τ) =


exp(−2πinτfs/N) if n < N

2
,

cos(τπfs) if n = N
2
,

exp(2πi(N − n)τfs/N) if n > N
2
.

(10c)

Here, ∗ denotes the conjugate transpose operator. Further, τ (m)(ψ) is the time shift of the signal139

at hydrophone m caused by the direction of arrival (DOA) ψ. Moreover, W is the unitary discrete140

Fourier transform matrix, and fs is the sampling frequency of the hydrophone system.141

The delay-and-sum beamformer reverses the delays in the signals, then sums the signals, and142

finally calculates the energy of the summed signals. That is, the beamformer output B(ψ, yk)143

for DOA angle ψ and hydrophone sample batch yk is given by144

B(ψ, yk) = ∥H⊤(ψ)yk∥22. (11)

B. Detection-Based Measurement Model145

Traditional target detection methods take target detections and associated bearings as inputs.146

In passive sonar, detections are obtained by applying a peak detector, typically a CFAR detector,147

to the beamformer output B(ψ, yk). The resulting measurements are a set of bearings,148

zk ≡ {ψ0, . . . , ψD}, (12)
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Fig. 2. Illustration of the CFAR detector. The CFAR processor evaluates a cell under test to determine whether it contains a

detection or not. This is done by comparing the energy in the cell under test with the energy in training cells.

where the number of detections D will vary. The cell-averaging CFAR detector evaluates B(ψ, yk)149

over a discrete set of angles ψ. Each bearing-value pair (ψ,B(ψ, yk)), known as the cell150

under test, is a detection candidate. To account for the ambient noise variations, a Gaussian151

distribution is fitted to the energy in neighboring cells, including those from previous time steps.152

A significance threshold calculated from the fitted Gaussian distribution is then used to classify153

whether the cell under test deviates from the training cells. If so, the bearing of the test cell is154

added to the set of detections in zk. This process is illustrated in Fig. 2. More details on the155

CFAR detector can be found in [25]. Several detections may be directly adjacent to each other156

due to the beamwidth of the beamformer. Such detections are clustered into a single detection157

at their mean using the DBScan algorithm [26]. For this application, the algorithm is configured158

with half a bearing bin width as the neighborhood radius and a minimum of one detection per159

cluster.160

Among the true detections, there will be false detections. The false detections are assumed to161

follow a Poisson point process, implying that the likelihood of observing zk when no target is162

present is given by163

ℓ0(z) = e−λ
∏
ψ∈z

λκ(ψ). (13)

Here, λ is the Poisson point process intensity, and κ(ψ) is the PDF of each false detection. The164

false detections are assumed to be independent, identically, and uniformly distributed over the165

beamforming interval.166
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The likelihood of zk given that a target with state x exists is derived in [23, Sec. V] and is167

given by168

ℓ1(z|x) =ℓ0(z)(1− pd) + pd

∑
ψd∈z

g(ψd|x)ℓ0(z \ ψd), (14)

where (·\·) denote the set difference, pd is the probability that the target generates a detection, and169

g(ψd|x) is the likelihood function of detection ψd due to the target. The measurement uncertainty170

is assumed to follow a Gaussian distribution with variance R. That is,171

g(ψd|x) = N (ψd;ψ,R), (15)

where ψ is the bearing of the target. In summary, the log-likelihood ratio of the detection172

measurements is given by173

lnL(z|x) = ln ℓ1(z|x)− ln ℓ0(z)

= ln

(
1− pd + pd

∑
ψ∈z

N (ψd;ψ,R)
ℓ0(z \ ψ)
ℓ0(z)

)
. (16)

A CFAR-based tracker is then constructed by using (16) as the likelihood ratio in the filter174

recursions in (3) and (4).175

A CFAR-based tracker is computationally efficient as it compresses samples into a set of176

detections. Since a significant amount of data is discarded in the detection process, a high SNR177

is required for the tracker to function well. Furthermore, the training cells may not accurately178

represent the ambient noise, leading to a degraded performance. As will be shown next, this179

issue may be addressed by defining the measurement model in terms of the raw hydrophone180

samples. The drawback is an increased computational complexity.181

C. Proposed TkBD Measurement Model182

Recall that underwater noise is known to exhibit heavy-tailed distribution in its samples, see183

e.g., [12, p. 403]. Thus, the proposed TkBD measurement model assumes that each batch of184

hydrophone samples follows a multivariate-t distribution185

yk ∼ tNM

(
ν, 0,

ν − 2

ν
Σ(ψk)

)
ν > 2, (17)

where186

Σ(ψ) = H(ψ)ΣssH
⊤(ψ) + Σee, (18)
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Σss = cov(sk), and Σee = cov(ek). Further, the PDF of the multivariate-t distribution is given187

by188

tNM(y; ν, µ, S) =
Γ([ν +NM ]/2)

Γ(ν/2)(νπ)NM/2|S|1/2

·
(
1 +

1

ν
((y − µ)⊤S−1(y − µ))

)− ν+NM
2

, (19)

where Γ is the gamma function, ν is the degrees of freedom, µ is the mean, and S is the scale189

matrix. For ν > 2 then cov(y) = ν
ν−2

S. Smaller values of ν imply heavier tails in the distribution.190

Noteworthy is that when ν → ∞, the frequently used Gaussian distribution is obtained.191

To evaluate the PDF in (19), the determinant and the inverse of Σ(ψk) must be computed,192

which is computationally expensive due to its size NM ×NM . This computational complexity193

may be unmanageable for particle filter-based trackers that evaluate the measurement likelihood194

many times at each step of the filter recursions. However, prior work [21] demonstrates that if195

the signal sk and noise ek are temporally and spatially white, i.e., Σss = σ2
sIN and Σee = σ2

eINM ,196

so that Σ(ψ) = σ2
sH(ψ)H

⊤(ψ) + σ2
eINM , then197

log |Σ(ψ)| = N log(Mσ2
s + σ2

e) +N(M − 1) log(σ2
e), (20a)

and198

y⊤Σ−1(ψ)y =
∥y∥22
σ2
e

− σ2
s

σ2
e

B(ψ, y)

σ2
e +Mσ2

s

. (20b)

Hence, under these assumptions, the log of the PDF in (19) can be efficiently calculated from199

the beamformer B(ψ, y) and the signal energy ∥y∥2. Note that the use of the delay-and-sum200

beamformer follows from the measurement model rather than a discretionary choice.201

In reality, the ambient noise ek is seldom white, i.e., Σee ̸= σ2
eINM . However, if covariance202

of the ambient noise Σee is known the batch data yk may be whitened as203

ỹk = Σ−⊤/2
ee yk ∼ tNM(ν, 0, Σ̄ss(ψ) + INM), (21)

where204

Σ̄ss(ψ) = Σ−⊤/2
ee H(ψ)ΣssH

⊤(ψ)Σ−1/2
ee , (22)

Next, if one assumes that the source signal sk is white so that Σss = σ2
sIN and neglecting the205

effect (except for scaling) of the whitening on the source signal, then206

Σ̄ss(ψ) ≈ ηH(ψ)H⊤(ψ). (23)
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Here, η is the power of the signal originating from the target relative to the ambient noise207

power after whitening, i.e., η is the SNR after whitening. The motivation for making the ad-208

hoc approximation in (23) is that it enables the PDF of ỹk to be calculated efficiently via the209

beamformer. The argument in support of the approximation is that the distortion caused to the210

signal sk by the whitening is likely negligible compared to other modeling errors, such that the211

assumption of sk being a white signal; this assumption will be further discussed in Sec. V.212

In summary, the proposed measurement model uses the batch ỹk of whitened hydrophone213

samples as inputs, i.e.,214

zk ≡ ỹk. (24)

The likelihood of z given that target with state x is modeled as215

ℓ1(z|x) = tNM

(
z; ν, 0,

ν − 2

ν
(Σ̄ss(ψ) + INM)

)
. (25)

When no target is present, i.e., η = 0, the likelihood simplifies to216

ℓ0(z) = tNM

(
z; ν, 0,

ν − 2

ν
INM

)
. (26)

Thus, the log-likelihood ratio can efficiently be calculated from the beamformer as217

lnL(z|x) =− N

2
ln (Mη + 1)

− ν +NM

2
ln(1− cB(ψ, z)),

(27)

where218

c =
η

(ν + ∥z∥2)(1 +Mη)
. (28)

For a derivation, see Appendix.219

D. Data-efficient Learning of Σee using VAR Models220

Typically, the covariance Σee of the ambient noise is unknown and must be learned from221

historical data. Directly estimating Σee using the sample covariance matrix requires a substantial222

amount of data. Instead, it is proposed that the correlation structure of the ambient noise is223

modeled using a VAR model. This allows for more data-efficient learning of Σee and, as224

will be shown, the whitening to be done without factorizing and inverting Σee. VAR models225

have previously been successfully applied in other sonar applications to capture the spatial and226

temporal characteristics of underwater sounds [27], though they are more commonly used in227

economic modeling to capture relationships between variables over time [28].228



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

A ϱ:th order VAR model describes the ambient noise e⃗n as229

e⃗n = A1e⃗n−1 + · · ·+ Aϱe⃗n−ϱ + Σ1/2
w w⃗n, (29)

where w⃗n is white noise with cov(w⃗n) = IM . The matrices A1, . . . , Aϱ, and Σw are model230

parameters that defines the structure of Σee. However, instead of directly constructing Σee from231

the model parameters and then factorizing and inverting the matrix to do the whitening in (21),232

the fact that the VAR model is invertible can be used. That is, the white noise w⃗n can be retrieved233

from e⃗n, . . . , e⃗n−ϱ as follows234

w⃗n = Σ−1/2
w (e⃗n − A1e⃗n−1 − · · · − Aϱe⃗n−ϱ). (30)

Hence, the whitening of yk in (21) can be efficiently implemented using the inverted VAR model235

by substituting e⃗n in (30) with the samples y⃗n from the batch yk.236

The model parameters A1, . . . , Aϱ,Σw can be learned using linear least squares [28, Ch. 3].237

That is, the parameters are calculated as238

{Â1, . . . , Âϱ} = argmin
A1,...,Aϱ

Nt∑
n=ϱ+1

ϵ⊤n ϵn (31a)

where239

ϵn = y⃗n − A1y⃗n−1 − · · · − Aϱy⃗n−ϱ, (31b)

and Nt denotes the number of samples in the dataset used to estimate the parameters. Further,240

the covariance Σw is estimated as241

Σ̂w =
1

Nt − ϱ− 1

Nt∑
n=ϱ+1

ϵnϵ
⊤
n . (32)

The model order ϱ can be selected using, e.g., the Akaike information criterion [29, p.221]. An242

alternative method for learning the parameters that take into account the heavy-tailed distribution243

of the data can be found in [30].244

IV. TARGET DYNAMICS MODEL245

Recall from Sec. II that the Bernoulli filter recursions require a model of the target state246

dynamics π(x|x′) and a birth model bk|k−1(x). These models are defined next.247
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A. Motion Model248

Given a multi-array setup, it would be possible to track the target in a cartesian state space.249

For simplicity of analysis, a bearing-only target detection and tracking setup with only one250

hydrophone array is considered. To that end, let the target state at time step k be251

xk =
[
ψk ψ̇k η

(dB)
k

]⊤
, (33)

where ψ̇k is the bearing change rate and η
(dB)
k is the SNR ηk in dB, i.e., η(dB)

k = 10 log10 ηk.252

Changes in target bearing ψ are modeled according to a constant velocity model, and the SNR253

η(dB) of the target is modeled as a random walk. Details about these models and other motion254

models commonly used in target tracking can be found in [31]. Hence, conditioned on target255

state xk, the PDF of xk+1 is modeled as256

π(xk+1|xk) = N (xk+1;Fxk, GQG
⊤), (34)

where257

F =


1 T 0

0 1 0

0 0 1

 G =


T 2/2 0

T 0

0 T

 Q =

q2CV 0

0 q2dBSNR

 .
Here T is the time between instant k and k + 1. Further, q2CV and q2dBSNR are the process noise258

variances for the constant velocity model and the random walk model, respectively.259

B. Birth Model260

The birth model bk|k−1(x) describes the probability distribution of the state x =
[
ψ ψ̇ η(dB)

]⊤
261

of a new target given the latest measurement zk−1. Since zk−1 contains information about the262

bearing ψ and the SNR η(dB), they are assumed to be distributed proportionally to the likelihood263

ratio of the measurement. That is, their joint PDF is modeled as264

p(ψ, η(dB)|zk−1) ∝ L(zk−1|x)p(ψ)p(η(dB)), (35)

where p(ψ) and p(η(dB)) denote uniform prior distributions assigned to the bearing ψ and SNR265

η(dB), respectively. Recall that the likelihood L(zk−1|x) in (27) is a function of the target bearing266

ψ and the SNR η = 10η
(dB)/10 which are part of the target state x. The prior p(η(dB)) should267

reflect the expected SNR of yet-to-be-detected targets, that is, newly sampled targets have a268

low SNR. This ensures the tracker is less prone to lock onto a noisy source that momentarily269
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Fig. 3. CFAR detections and BTRs after the data whitening step in the different trackers. All BTRs are normalized by a factor

b so that maxψ,k bB(ψ, zk) = 1. The BTR of the raw samples is shown in the top left. The top right plot shows the BTR of

the whitened data in the TVAR0 tracker, which uses a VAR model of order ϱ = 0. The bottom left plot shows the BTR after the

whitening in the GVAR14 and TVAR14 trackers, which uses a VAR model of order ϱ = 14. The bottom right plot shows the

CFAR detections for the CFARVAR14 tracker, obtained by running the detector on the whitened BTR from the GVAR14 and

TVAR14 models.

produces much sound energy. Moreover, the prior p(ψ) ensures that the newborn targets are born270

within the considered field of view of the array, and not in the end-fire directions.271

The measurement zk−1 contains no information about the bearing change rate ψ̇. Consequently,272

ψ̇ is assumed to be normal distributed as N (ψ̇; 0, Pψ̇). Bringing it all together, the probability273

distribution of the state x of a new target is modeled as274

bk|k−1(x) = p(ψ, η(dB)|zk−1)N (ψ̇; 0, Pψ̇). (36)

V. EVALUATION275

The proposed tracking method is evaluated through experiments on both real and simulated276

datasets. The objective of the evaluation is to examine the impact of the ambient noise modeling277

and the associated data whitening, as well as the use of the t-distribution for modeling the278

raw acoustic data. These factors are analyzed in isolation by comparing the proposed tracker279

with variants that either do not include the ambient noise modeling and data whitening step or280
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assume the data to be Gaussian distributed. All trackers use the same underlying particle filter281

implementation from [23], where the only difference is the used likelihood ratio L(z|x) and the282

used VAR model. To that end, the following five trackers will be evaluated.283

• The TVAR14 tracker, which uses a VAR model of order ϱ = 14 and a t-distributed signal284

model.285

• The TVAR0 tracker, which uses a VAR model of order ϱ = 0 (equivalent to only modeling286

the spatial correlations in the noise) and a t-distributed signal model.287

• The GVAR14 tracker, which uses a VAR model of order ϱ = 14 and a Gaussian distributed288

signal model.289

• The CFAR tracker, which uses detections from a CFAR detector as its input.290

• The CFARVAR14 tracker, which uses detections from a CFAR detector as its input where291

the data fed to the detector has been whitened using a VAR model of order ϱ = 14.292

The CFAR detection-based trackers are included for reference. Comparison between the CFAR293

and CFARVAR14 tracker highlights the potential effects of the whitening filter on detection-based294

trackers.295

A. Performance Metrics296

The performance of each tracker is assessed by analyzing the estimated probability that a target297

exists and the optimal subpattern assignment (OSPA) metric [32]. In the case of single-target298

tracking, the OSPA metric is given by299

d̄
(ρ)
f (Yk|k, Yk) =

∑
x̂∈Yk|k

d(ρ)(x̂, xk) + ρf (1− |Yk|k|), (37)

where xk is the ground truth target state, f is the norm order, and d(ρ) is the distance measure300

with cut-off ρ. Here, targets are compared based on their bearing differences, i.e.,301

d(ρ)(x̂, xk) = min(∥ψ̂ − ψk∥f , ρ). (38)

Furthermore, Yk|k is the set of confirmed targets302

Yk|k = {x |x ∈ Xk|k and qk|k > γ}, (39)

where γ = 90%. The cut-off is set to be ρ = 30◦ and the norm order f = 1 is used.303
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TABLE I

PARAMETER VALUES USED IN THE EVALUATION. VALUES IN PARENTHESES ARE VALUES USED IN THE SIMULATION IF THEY

DIFFER FROM THE PARAMETER VALUES USED IN THE REAL-WORLD DATA EVALUATION.

(a) TRACKER AND FILTER PARAMETERS.

Sym. Value Description

ps 1− 10−6 (0.99347) Prob. of survival.

pb 2 · 10−10 (4.56 · 10−8) Prob. of target birth.

qCV 0.13 ◦/s2 Motion process noise.

qdBSNR 0.05 dB/s SNR process noise.

Pψ̇ 0.001 °2/s2
Initial uncertainty in target bearing

change rate

ν 3 (12) Deg. of freedom in mv-t dist.

N 64 Number of samples per batch.

T 0.17 s Time between batches.

ϱ 14 Model order of the VAR model.

(b) CFAR PARAMETERS. “COLUMNS” AND “ROWS” REFER TO

FIG. 2.

Value Description

25% CFAR false alarm rate.

36
Width of CFAR guard band in bearing cells.

Number of white columns.

20
Length CFAR guard band in time steps.

Number of rows.

32
Total width of CFAR training cells in bearing cells.

Number of yellow columns.

B. Parameter Settings304

The uniform prior p(η(dB)) on the SNR for newborn states x in (35) is calibrated individually305

for each tracker. The lower and upper bounds of the prior are increased simultaneously until306

false tracks start to appear in a target-free dataset. This ensures that each tracker is as sensitive307

as possible without generating false detections when applied to the target-free dataset. For the308

CFAR-based tracker, the false detection intensity λ in (13) is adjusted similarly. The support of309

the uniform prior p(ψ) is −60◦ to 60◦. All other parameters are kept the same to the greatest310

extent possible to ensure a fair comparison of the trackers. The parameter values used are listed311
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(b) Real-world scenario. The array is located at (0, 0), and

the target begins its journey in the lower part of the figure,

traveling in the positive y direction.

Fig. 4. Illustration of the target trajectories and array locations in the simulation and real-world scenarios.

in Tab. I.312

C. Simulated Scenario313

The simulated scenario consists of a target that moves towards an 8-element array tuned for314

800Hz signals. The frequency content of the considered signals is between 750Hz and 937.5Hz,315

demodulated using a 750Hz cosine signal and sampled at a sampling frequency of 375Hz. The316
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Algorithm 1: Generating a simulated dataset.
input : Target bearing ψk and SNR ηk, VAR parameters A1, . . . , Aϱ, Σw, and degrees of

freedom ν of the t-distribution.

output: Sample yk

/* Sample ambient signal */

1 Sample w⃗n ∼ N (0, IM)

2 Compute e⃗n using (29) and w⃗n

3 Estimate σ2
e = |E[e⃗ne⃗⊤n ]|1/M

4 Batch e⃗n into ek as in (8a)

/* Sample target signal */

5 Calculate σ2
s = ηkσ

2
e

6 Sample sk ∼ N (0, σ2
sH(ψk)H

⊤(ψk))

/* Construct the full multivariate-t distributed signal */

7 Sample ck ∼ χ2(ν)

8 Compute yk =
√
ν/ck · (sk + ek)

target moves at a constant velocity of 2.5m s−1, starting at a bearing of −50◦ at a distance of317

2000m away from the array and ending at bearing 50◦ at a distance of 300m away from the318

array. The trajectory is shown in Fig. 4a. The range to the target is mapped to an SNR according319

to320

η(dB) = 10 log10

( r

200

)1.8
, (40)

where r is measured in meters. This mimics a propagation loss between cylindrical and spherical321

spreading [33, p. 39]. As the likelihood ratio functions of the trackers are independent of the322

absolute noise level σ2
e , the covariance of the innovation noise w⃗k can be set arbitrarily as long323

as it is a scaled identity matrix. For simplicity, cov(w⃗k) = IM is used. Generating the simulated324

dataset is a multistep process, as detailed in Alg. 1. Notably, the target signal is added to the325

correlated noise, which means that the inaccuracies of the approximation in (23) should affect326

the trackers similarly as it will in the later analyzed real data scenario. The same VAR model327

parameters are used both in the data generation and the data whitening in the tracker.328

The true bearing, true SNR, B(ψ, y), and the estimated tracks can be seen in Fig. 5. The results329

show that the CFAR tracker detects the target at approximately 700 s when the target is around330
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Fig. 5. Results of 100 Monte Carlo runs of the simulated scenario. The top plot shows the BTR of the generated signal for a

single run, together with the ground truth bearing in dashed blue. Below the BTR, the OSPA, estimated SNR, and estimated

target existence probability are shown. The transparent regions in the estimated target existence probability correspond to the

top 90 and bottom 10 quantiles.

300m from the array. This corresponds to an SNR of −5 dB. Prewhitening the measurements331

before constructing the detections does not contribute to any significant performance gain, as332

evident when one compares the CFAR tracker to the CFARVAR14 tracker. The TVAR0 tracker333

shows similar performance. Modeling the ambient noise using VAR model of order 14 improves334

the detection performance, as demonstrated by the GVAR14 tracker. The GVAR14 tracker detects335
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Fig. 6. Results from the real-world scenario. The top plot shows the BTR, along with the truth and estimated bearings. Below

the BTR, the OSPA, estimated SNR, and estimated target existence probability are shown.

the target at a distance of 550m, which corresponds to an SNR of −8 dB. However, the estimated336

target existence probability fluctuates rapidly above and below the detection threshold, causing337

the OSPA metric to vary correspondingly. Further improvement is observed when the Gaussian338

distribution is replaced by the proposed multivariate-t distribution, as seen from the performance339

of the TVAR14 tracker. The multivariate-t distribution stabilizes the estimates of target existence340

probability and leads to a smoother OSPA measure. It also enhances the tracker’s detection341
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capability, enabling even earlier target detection. The target is detected at a distance of 560m,342

which corresponds to an SNR of −9 dB. It is noted that the SNR is systematically underestimated343

by the trackers. There are two likely causes behind this. First, it may be due to the approximations344

made in the derivation of the measurement model. Secondly, newborn targets are assumed to345

have a low SNR to increase the robustness of the tracker against false tracks, resulting in a bias.346

347

D. Real-world Scenario348

The real-world dataset was collected during a sea trial in the Stockholm archipelago using349

an 8-element horizontal hydrophone array and a SAAB AUV62 autonomous underwater vehicle350

acting as the target. The array’s shape, orientation, and location were calibrated using the method351

described in [34]. The distance between the hydrophone elements was approximately 0.93m.352

Given that the speed of sound in the baltic sea is approximately 1500m s−1, this corresponds to353

a design frequency of 800Hz. The SAAB AUV62 followed the trajectory shown in Fig. 4 (b),354

starting at a distance of 675m and ending at 220m from the array. Throughout the trajectory, the355

AUV maintained a speed of 6.2m s−1 (approximately 12 knots) and a constant depth of 25m.356

The depth ranges from 30m to 45m at the test site, with a few islands located to the left of357

the array in the plot. Due to the shallow water at the site, the hydroacoustic environment is358

expected to be complex, with many reflections and other unmodeled properties. As a result, the359

t-distribution model in the TVAR14 and TVAR0 trackers were set to have a degree-of-freedom360

ν = 3, the lowest value for which the covariance matrix of the t-distribution remains defined.361

Before the trackers processed the recorded hydrophone, the data was preprocessed as follows.362

Similarly to the simulated scenario, the data were bandpass-filtered with cut-off frequencies363

750Hz and 937.5Hz, then demodulated using a 750Hz cosine signal and finally downsampled to364

a sampling frequency of 375Hz. In the frequency band 750Hz and 937.5Hz, the received signal365

can be considered approximately white. This is because the spectrum of the sound generated by366

the AUV62 is approximately flat, and the differences in propagation loss across the frequency367

band are negligible.368

1) Effects of Ambient Noise Modeling: In Fig. 3, the effect of whitening the hydrophone data369

in Fig. 1b with a VAR model learned on the data in Fig. 1a, is shown in terms of BTR after370

the whitening process. Also shown are the detections found by applying the CFAR detector371

to the same dataset. Note that the CFARVAR14, TVAR14 and GVAR14 trackers use the same372
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VAR model of order ϱ = 14 for the ambient noise modeling and data whitening, whereas the373

TVAR0 tracker uses a ϱ = 0 order model. The effects of the whitening processes are apparent374

by comparing the BTR after the data whitening in the TVAR14 and TVAR0 trackers to the BTR375

calculated on the raw data. The energy distribution across the bearings is more uniform after376

the whitening. Specifically, bearings within 20◦ to 60◦ exhibit lower signal energy in the BTR377

of the raw data and in TVAR0, compared to TVAR14 and GVAR14. Conversely, the energy in378

bearings −60◦ to −20◦ during the timespan 90 s to 110 s is higher in TVAR0379

2) Detection and Tracking Performance: In Fig. 6, the estimated target track, SNR, target380

existence probability, and the calculated OSPA for the five trackers are shown. The detections381

and tracks are slightly offset compared to the true bearing, which may be due to errors in the382

calibration of the array geometry and orientation. The CFAR tracker detects and starts to track383

the target at a distance of 250m. By prewhitening the data before constructing the detections,384

the the CFARVAR14 tracker is able to detect the target at a distance of 325m and maintains385

the track for 20 s before it is dropped. The TVAR0 tracker detects the target at a distance of386

325m, but the estimated bearing is too far from the ground truth to be considered a valid track.387

This is in line with the observations in Fig. 3, where the negative bearings exhibited higher388

beamforming energy due to the absence of temporal whitening. The GVAR14 tracker detects the389

target at approximately 325m and maintains the track for approximately 125 s until the SNR390

temporarily decreases. However, the method quickly recovers the track.391

A common issue across the CFAR, CFARVAR14, GVAR14, and TVAR0 trackers is that they392

either lose track or initiate false tracks. In contrast, the TVAR14 tracker detects the target the393

earliest, when the target is 390m from the array, and maintains a stable track thereafter.394

VI. DISCUSSION AND CONCLUSIONS395

The challenge of reliable broadband passive sonar target detection and tracking in complex396

acoustic environments has been addressed. A solution has been proposed based on a vector-397

autoregressive model for the ambient noise and a heavy-tailed statistical model for the distri-398

bution of the raw hydrophone data. These models have been integrated into a Bernoulli track-399

before-detect (TkBD) filter to realize a bearing-only tracker. To facilitate a computationally less400

expensive evaluation of the proposed statistical model, approximations have been introduced to401

compensate for the effects of the ambient noise via a recursive preprocessing step where the402

data is whitened. The whitening of the data facilitates the statistical model to be expressed as403
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a function of the conventional beamformer, significanly reducing the computational complexity404

of the statistical model.405

The proposed solution has been evaluated on both simulated and real-world data. Results406

showed that the proposed vector-autoregressive model can learn and compensate for a lot of407

the spatiotemporal correlations in ambient noise, which was also seen to be useful for con-408

ventional detection-based trackers. Moreover, the results showed that the proposed heavy-tailed409

multivariate-t distribution model made the trackers more robust than the case when the data410

was modeled as Gaussian distributed. The simulations show that the SNR at which the target411

can be detected is reduced by 4 dB compared to when using the standard constant false alarm412

rate detector based tracker. Further, the test with real-world data shows that using the vector-413

autoregressive model improves the detection distance of the conventional CFAR tracker from414

250m to 325m. The proposed solution increases the target detection distance further to 390m.415

The presented results illustrate that the TkBD technology, in combination with data-driven416

ambient noise modeling and heavy-tailed statistical signal models, can enable reliable broadband417

passive sonar target detection and tracking in complex acoustic environments and lower the418

SNR required to detect and track targets. Hence, the technology can contribute to more effective419

monitoring of critical underwater infrastructure and potentially increase the safety of maritime420

activities. Additionally, the technology’s capability to whiten stochastic disturbances makes it421

well-suited for use in the archipelago or other shallow water environments with complex acoustic422

interference.423

While the proposed solution shows promise, it has limitations. If the motion model does not424

align with the true target motion, tracking effectiveness might be compromised. Additionally,425

assuming that the target is stationary during each batch could lead to “smearing” of energy if426

the target moves quickly. Although this has not been investigated, the proposed solution might427

already be able to adapt to this by using a more spread-out particle cloud.428

Future research should explore the possibility to integrate the proposed ambient noise model429

and heavy-tailed signal model in multi-target tracking. While multiple target TkBD is still in430

development, methods such as the information exchange filter [35] and belief propagation for431

multi-Bernoulli filters [36] have shown promising results. Multi-target TkBD tracking using432

superpositional maritime radar measurements has been explored in [37]. The reason behind the433

observed bias in the SNR estimates should also be investigated.434
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APPENDIX435

Given the PDF in (19), it holds that436

ℓ0(z) = tNM

(
z; ν, 0,

ν − 2

ν
INM

)
=

C

|INM |1/2
(
1 +

∥z∥2
ν − 2

)−(ν+NM)/2

,

for some constant C and437

ℓ1(z|x) = tNM

(
z; ν, 0,

ν − 2

ν
Σ

)
=

C

|Σ|1/2
[
1 +

z⊤Σ−1z

ν − 2

]−(ν+NM)/2

,

where Σ = ηH(ψ)H⊤(ψ) + INM . According to [20], [21], it holds that438

z⊤Σ−1z ≈ ∥z∥2 − ηB(ψ, z)

(1 +Mη)
,

and439

ln |Σ| ≈ N ln(Mη + 1).

This gives the likelihood ratio440

lnL(z|x) = ln ℓ1(z|x)− ln ℓ0(z)

≈ −N
2
ln (Mη + 1)

+
ν +NM

2

(
ln

(
1 +

∥z∥2
ν

)

− ln

(
1 +

∥z∥2
ν

− ηB(ψ, z)

ν(1 +Mη)

))
,

By using that ln(a)− ln(a− b) = − ln(1− b/a), the likelihood may be rewritten as441

lnL(z|x) ≈− N

2
ln (Mη + 1)

− ν +NM

2
ln (1− cB(ψ, z)) ,

where442

c =
η

(ν + ∥z∥2)(1 +Mη)
.
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