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Abstract

This article concerns the challenge of reliable broadband passive sonar target detection and tracking
in complex acoustic environments. Addressing this challenge is becoming increasingly crucial for
safeguarding underwater infrastructure, monitoring marine life, and providing defense during seabed
warfare. To that end, a solution is proposed based on a vector-autoregressive model for the ambient
noise and a heavy-tailed statistical model for the distribution of the raw hydrophone data. These models
are integrated into a Bernoulli track-before-detect (TkBD) filter that estimates the probability of target
existence, target bearing, and signal-to-noise ratio (SNR). The proposed solution is evaluated on both
simulated and real-world data, demonstrating the effectiveness of the proposed ambient noise modeling
and the statistical model for the raw hydrophone data samples to obtain early target detection and robust
target tracking. The simulations show that the SNR at which the target can be detected is reduced by 4 dB
compared to when using the standard constant false alarm rate detector-based tracker. Further, the test
with real-world data shows that the proposed solution increases the target detection distance from 250 m
to 390 m. The presented results illustrate that the TkBD technology, in combination with data-driven
ambient noise modeling and heavy-tailed statistical signal models, can enable reliable broadband passive
sonar target detection and tracking in complex acoustic environments and lower the SNR required to

detect and track targets.
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I. INTRODUCTION

A significant portion of today’s critical infrastructure is located underwater. This includes gas
pipelines, power transmission lines, and communication cables, which are essential in modern
society. Due to their remote locations and strategic importance, these assets are vulnerable to
damage and sabotage. Monitoring these infrastructures is crucial, especially during times of
conflict, when targeted attacks on them could have severe consequences [1]. This has led to
the emergence of a new domain of conflict on the world’s seafloors, known as seabed warfare,
which necessitates the development of advanced countermeasures [2], [3].

Passive sonar surveillance is essential for discreetly monitoring underwater infrastructure. This
technique enables the detection of submarines and other underwater vehicles without disclosing
the location of the sonar system. Moreover, passive sonar does not introduce noise pollution in the
ocean, benefiting marine life [4], [5], while allowing for continuous, unobtrusive monitoring of
the underwater environment. However, compared to active sonar, passive sonar systems typically
operate at a lower signal-to-noise ratio (SNR) and are more susceptible to ambient noise. This
requires them to have higher sensitivity and use more complex noise models.

Passive surveillance has historically relied on a combination of signal processing techniques
such as low frequency analysis and recording (LOFAR), beamforming, and bearing time record
(BTR) analysis. These methods are often manually operated by human sonar operators, who may
also listen to the sounds. However, relying on human expertise is costly and resource-limited,
making large-scale monitoring challenging. Energy-based detectors, such as the constant false
alarm rate (CFAR) detector, have been employed to automate the surveillance process. These
detectors output a set of bearings at each time step, corresponding to potential target detections.
When a target is present, some detections may over time form a track, which can be identified
using target tracking methods such as multiple hypothesis tracking [6] or more recent approaches
such as the Poisson multi-Bernoulli mixture (PMBM) filter [7]. Applications of these methods
to underwater surveillance have been explored in [8], [9]. However, a prerequisite for successful
detection is that the SNR is sufficient to exceed the detection threshold.

One way to increase the performance in poor SNR is by using the track-before-detect (TkBD)

tracking strategy [10, p. 239]. In this approach, the target detection occurs much later in the
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signal processing chain, after constructing the potential track, hence the name. Thus, target
detection and tracking are done jointly. The major benefit of this method is that no information
is discarded in the detection process, allowing for a longer integration time of the raw data before
the decision is made, consequently lowering the SNR requirement. Theoretically, a performance
gain of approximately 6dB is possible [11, p. 318]. However, TkBD makes the tracker more
sensitive to signal and noise modeling errors, which is why the application of TkBD to the
underwater passive sonar problem has been so challenging. Consider the BTR in Fig. 1a, which
shows the received signal energy in different bearings over time. From Fig. 1la, it is evident
that the signal energy varies greatly over time and bearing, implying that the received signal is
spatiotemporally correlated. These correlations are difficult to discern from the signal components
produced by a target, as seen in Fig. 1b. Another challenge is that ambient noise is known to
exhibit a heavy-tailed distribution [12, p. 403]. Previous work has attempted to model the acoustic
samples using alpha-stable distributions [13] or Gaussian mixture models [14] to address this
issue, but this has not been done in the context of target tracking.

Different approaches utilizing TkBD for passive sonar are explored in [15]-[18]. Many of
these methods rely on modeling signal energy post-beamforming as their measurements and
only consider narrowband signals. Some approaches have attempted to address the challenges
posed by spatiotemporal correlations. For instance, the work in [17] averages the signal energy
post-beamforming in different bearing bins, thereby reducing the impact of the temporal energy
variations. Similarly, the post-beamforming energy is also used in [18]. By comparing the
beamforming energy in the presence and absence of a target, the authors of [18] fit a probability
distribution to each bearing bin. Although this approach adapts to spatial variations in ambient
noise, the fitted distributions are time-invariant, meaning that temporal energy variations are not
accounted for. Likewise, the work in [19] and [20] applies models that assume noise interferers
at specific bearings that emit independent, constant power signals. None of these models handle

the temporal variation in the ambient noise.

A. Contributions

This article builds upon and extends the work presented in [20], [21], which explored the
possibility of sample-level source and ambient sound modeling in a passive sonar TkBD ap-
plication, circumventing the challenges of developing accurate statistical models for the signal

after beamforming. In [20], it was observed that spatiotemporal correlations and other modeling
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Fig. 1. BTRs from data collected during a sea trial. The BTR values were calculated using the conventional delay-and-sum
beamformer B(1,yx) in (11). The upper and lower plots show the BTR without and with a target present. From the plots, it
is clear that the temporal and spatially correlated ambient noise causes disturbances that are hard to distinguish from the actual

target.

errors make the tracker prone to initiating false tracks. This article proposes a solution to this
challenge by adding a new data preprocessing step and a new measurement model for the data
samples. In summary, the contributions of this work are:
1) a vector auto-regressive (VAR) model for modeling of the spatially and temporally corre-
lated ambient noise;
2) a measurement model for wideband signals with a heavy-tailed distribution; and

3) an experimental evaluation of the proposed models within a bearing-only TkBD framework.

Reproducible research: The code and data used to reproduce the presented results can be
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downloaded at https://gitlab.liu.se/coast/tkbd using raw data.

II. TARGET TRACKING AND BAYESIAN ESTIMATION

The objective of target detection and tracking is to, given a set of measurements 2y, =
{z1,29,..., 2} collected at discrete time instances 1,2,...,k, determine if a target is present
and, if so, estimate its current state. Commonly, the measurements z;., are a set of detections,
but in TkBD applications, they may instead be intensity measurements, images, beamforming
outputs, or, as this article proposes, a set of hydrophone samples.

To simultaneously describe the target state and the probability of its existence, the target is
modeled using a Bernoulli random finite set (BRFS). To that end, let ¢; denote the probability of
existence, and z; denote the state of the target, given that the target exists. The BRFS X, jointly
describes these components with the finite set statistics (FISST) probability density function
(PDF) [22]

1—q, ifX=0,

fe(X) = (D
qrsk(z) i X = {z},

where si(z) is the PDF of state ;. The posterior PDF
L — g if X =10,

Je (X) = fr(X]|z1w) = (2)
Qs () I X = {a},

can be calculated using the Bernoulli filter [23]. Here, gy» and sy (x) denote the posterior
probability of existence and posterior state distribution at time instant k£ given measurements
up to time instant &’. Given the posterior PDF fj_;j;_1(X), the Bernoulli filter recursions for

calculating the posterior distribution fy;(X) are given by the time and measurement updates

[23]

Q-1 = Po(1 = Ge—1jk—1) + Ps@r—1j—1, (3a)
pb(l - Qk71|k71bk|k71(1’))
Sklk_l(x) B qk|k
S N (3b)
n Dsqr—1|k—1 fﬂ'k\k—l(x‘x )Sk—1|k—1($ ) dx

Qk|k—1
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and
q _ Qk|k—1fL<Zk‘l')Sk|k_l<gj) dx (4a)
T Grlk—1 + Q-1 [ L(zk|2) sppp—1(x) da’
L _
Sklk () (2e|7) skp-1(2) )

:fL(zk|a:)sk|k_1(x) dr’
respectively. Here, p,, and p, are the probability of target birth and survival between time steps,
respectively. Further, by;_1(x) denotes the PDF for states of newly born targets. Moreover,
Trje—1(x|2") is a PDF of the state & conditioned on the state 2/, describing the target motion.
Finally, L(z|z) is the conditional likelihood ratio given the target state x. This article uses the
particle filter to implement the recursions in (3) and (4). Pseudocode describing the particle filter
implementation can be found in [23].

To execute the filter recursion, one must specify models for the target dynamics, target birth and
survival probability, and measurement likelihood. This article focuses on how the measurement
likelihood should be modeled in a broadband passive sonar system. Next, the pros and cons of
the commonly used CFAR likelihood model will be reviewed, and a new likelihood model that

addresses some of the cons of existing measurement models will be proposed.

III. MEASUREMENT MODELS

The section describes how the relationship between the measurements z; and the target state
xy, and the associated likelihood ratio function L(zx|zy), is modeled. First, the traditional case
when z; consists of detections is described. Second, a new measurement model for when z

consists of raw hydrophone samples is presented.

A. Spatial Signal Processing and Beamforming

Consider a hydrophone array consisting of M hydrophones. Let y,(Lm) denote sample n from

hydrophone m in the array. Define
-
R S U 5)

as the collection of samples from all the M hydrophones. Between the two time steps k£ — 1 and

k, N such samples are collected, denoted
T 1" - piM
Yk = [y(k—1)N+1 ykN] eR™, (6)

and is referred to as a batch of samples.
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If the target is in the far field and emits a broadband signal s, € RY, the batch of hydrophone

samples y, can be modeled as

vi = H(¢)sk + ex, (7
where e, is given by
.
€k = [5&—1)N+1 52]\/} €R™, (8a)
T
Z= e . M) R, (8b)

)

and e{™ is the measurement noise of hydrophone m at time instant n. Furthermore, H(y) is a

fractional delay filter matrix, given by [24]

HW) = [H () ... H]_ ()] B, ©)
where
Hy (1) = WA(T™ ()W, (10a)
A(7) = diag(1°(7),...,v" (7)), (10b)
exp(—2minT fs/N) ifn<%,
Y (7) = 4 cos(rnf,) if n =2 (10c)

exp(2mi(N —n)rfs/N) if n > %

Here, * denotes the conjugate transpose operator. Further, 7(™) (1)) is the time shift of the signal

at hydrophone m caused by the direction of arrival (DOA) 1. Moreover, W is the unitary discrete
Fourier transform matrix, and f is the sampling frequency of the hydrophone system.

The delay-and-sum beamformer reverses the delays in the signals, then sums the signals, and

finally calculates the energy of the summed signals. That is, the beamformer output B(v), yy)

for DOA angle 1 and hydrophone sample batch yy is given by

B, yi) = [H" (¥)yill3- (11)

B. Detection-Based Measurement Model

Traditional target detection methods take target detections and associated bearings as inputs.
In passive sonar, detections are obtained by applying a peak detector, typically a CFAR detector,

to the beamformer output B(v, y;). The resulting measurements are a set of bearings,

2 = {¢o, ..., ¥p}, (12)



149

150

151

152

153

154

155

156

157

159

160

161

162

163

164

165

166

JOURNAL OF I4IEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

CFAR processor «
BCye) (I _ False alarm rate
Cell under test > No detection
Training Training [>—
cells cells — Detection
B <., Vi Nc) i < - Comparator

Sliding window in bearing

Fig. 2. Illustration of the CFAR detector. The CFAR processor evaluates a cell under test to determine whether it contains a

detection or not. This is done by comparing the energy in the cell under test with the energy in training cells.

where the number of detections D will vary. The cell-averaging CFAR detector evaluates B(v), yy)
over a discrete set of angles . Each bearing-value pair (¢, B(¢,yx)), known as the cell
under test, 1S a detection candidate. To account for the ambient noise variations, a Gaussian
distribution is fitted to the energy in neighboring cells, including those from previous time steps.
A significance threshold calculated from the fitted Gaussian distribution is then used to classify
whether the cell under test deviates from the training cells. If so, the bearing of the test cell is
added to the set of detections in zj. This process is illustrated in Fig. 2. More details on the
CFAR detector can be found in [25]. Several detections may be directly adjacent to each other
due to the beamwidth of the beamformer. Such detections are clustered into a single detection
at their mean using the DBScan algorithm [26]. For this application, the algorithm is configured
with half a bearing bin width as the neighborhood radius and a minimum of one detection per
cluster.

Among the true detections, there will be false detections. The false detections are assumed to
follow a Poisson point process, implying that the likelihood of observing z; when no target is

present is given by

lo(z) = e [[ Ma(w). (13)
Pez

Here, A is the Poisson point process intensity, and x(1)) is the PDF of each false detection. The
false detections are assumed to be independent, identically, and uniformly distributed over the

beamforming interval.
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The likelihood of z; given that a target with state x exists is derived in [23, Sec. V] and is
given by
Ci(zl2) =lo(2)(1 = pa) + pa Y 9(alx)lo(2 \ Ya), (14)
Pa€z
where (-\-) denote the set difference, pq is the probability that the target generates a detection, and
g(14|z) is the likelihood function of detection 1), due to the target. The measurement uncertainty

is assumed to follow a Gaussian distribution with variance R. That is,

where 1 is the bearing of the target. In summary, the log-likelihood ratio of the detection

measurements is given by

In L(z|z) = Inty(z]z) — Inly(2)

=In (1 — Pa + pa ZNWC”D’ R)%) . (16)

wer 0(2)
A CFAR-based tracker is then constructed by using (16) as the likelihood ratio in the filter
recursions in (3) and (4).

A CFAR-based tracker is computationally efficient as it compresses samples into a set of
detections. Since a significant amount of data is discarded in the detection process, a high SNR
is required for the tracker to function well. Furthermore, the training cells may not accurately
represent the ambient noise, leading to a degraded performance. As will be shown next, this
issue may be addressed by defining the measurement model in terms of the raw hydrophone

samples. The drawback is an increased computational complexity.

C. Proposed TkBD Measurement Model

Recall that underwater noise is known to exhibit heavy-tailed distribution in its samples, see
e.g., [12, p. 403]. Thus, the proposed TkBD measurement model assumes that each batch of

hydrophone samples follows a multivariate-t distribution

v—2
Vi ~ tnm (1/, 0, TE(@Z)k)) v>2, (17)

where

S(¢) = H)ZHT (¥) + Zee, (18)
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Yss = cov(sg), and X, = cov(eg). Further, the PDF of the multivariate-t distribution is given
by

o T(reNM)2)
PSP I 5) = G o) () VST

_v+NM
2

: <1+%((Y—M)TS_1(Y—M))> . (19)
where [ is the gamma function, v is the degrees of freedom, p is the mean, and S is the scale
matrix. For v > 2 then cov(y) = -%35. Smaller values of v imply heavier tails in the distribution.
Noteworthy is that when v — oo, the frequently used Gaussian distribution is obtained.

To evaluate the PDF in (19), the determinant and the inverse of ¥ () must be computed,
which is computationally expensive due to its size NM x N M. This computational complexity
may be unmanageable for particle filter-based trackers that evaluate the measurement likelihood
many times at each step of the filter recursions. However, prior work [21] demonstrates that if
the signal s and noise e are temporally and spatially white, i.e., 55 = af] yand Y., = JEI NM>s

so that $(v) = o2H()H' (¢) + 0% In s, then
log [2(¢)| = Nlog(Mo? +0?) + N(M — 1) log(a?), (20a)

and

2 2
_ylz o5 Byy) (20b)

y' ST W)y o7 " oto? i Mot
Hence, under these assumptions, the log of the PDF in (19) can be efficiently calculated from
the beamformer B(v,y) and the signal energy ||y||?>. Note that the use of the delay-and-sum
beamformer follows from the measurement model rather than a discretionary choice.

In reality, the ambient noise e is seldom white, i.e., .. # af[ ~nu. However, if covariance

of the ambient noise >... is known the batch data y, may be whitened as

Vi = 5. 2ye ~ tyar (1,0, B (W) + Inar), 1)

where

Ses(¥) = 2L PH() S HT ()22, (22)

ee

Next, if one assumes that the source signal s; is white so that Y, = a?[ ~ and neglecting the

effect (except for scaling) of the whitening on the source signal, then

S (1) m nH()HT (). (23)
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Here, n is the power of the signal originating from the target relative to the ambient noise
power after whitening, i.e., n is the SNR after whitening. The motivation for making the ad-
hoc approximation in (23) is that it enables the PDF of y; to be calculated efficiently via the
beamformer. The argument in support of the approximation is that the distortion caused to the
signal s; by the whitening is likely negligible compared to other modeling errors, such that the
assumption of s; being a white signal; this assumption will be further discussed in Sec. V.

In summary, the proposed measurement model uses the batch y; of whitened hydrophone
samples as inputs, i.e.,

2k = Vk- (24)

The likelihood of z given that target with state x is modeled as

v—2

0 (z|z) =tnm (2’; v, 0, —— (S4s(¢) + [NM)) . (25)

When no target is present, i.e., n = 0, the likelihood simplifies to
-2
60(2) :tNM (Z7 V,O,V—]NM) . (26)
v
Thus, the log-likelihood ratio can efficiently be calculated from the beamformer as

N
InL(z|z) =— 5 In(Mn+1)

v+ NM

- Tln(l —cB(Y, 2)),

27)

where

c= n (28)

(v 4 l121P) (1 + M)

For a derivation, see Appendix.

D. Data-efficient Learning of Y., using VAR Models

Typically, the covariance .. of the ambient noise is unknown and must be learned from
historical data. Directly estimating >... using the sample covariance matrix requires a substantial
amount of data. Instead, it is proposed that the correlation structure of the ambient noise is
modeled using a VAR model. This allows for more data-efficient learning of .. and, as
will be shown, the whitening to be done without factorizing and inverting >... VAR models
have previously been successfully applied in other sonar applications to capture the spatial and
temporal characteristics of underwater sounds [27], though they are more commonly used in

economic modeling to capture relationships between variables over time [28].
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A o:th order VAR model describes the ambient noise €,, as
En = A1yt + o+ Ayl + S 20, (29)

where ), is white noise with cov(w,) = I);. The matrices A;, ..., A,, and ¥, are model
parameters that defines the structure of ... However, instead of directly constructing .. from
the model parameters and then factorizing and inverting the matrix to do the whitening in (21),
the fact that the VAR model is invertible can be used. That is, the white noise w,, can be retrieved

from €,,...,¢é,_, as follows
Wy = N2 (8 — A1y — - — Ayen_y). (30)

Hence, the whitening of y; in (21) can be efficiently implemented using the inverted VAR model
by substituting ¢, in (30) with the samples #,, from the batch yy.
The model parameters A, ..., A,, >, can be learned using linear least squares [28, Ch. 3].

That is, the parameters are calculated as

Nt
{Al,...,fl@} = arg min Z ezen (31a)
Al A, S
n=p+1
where
€n — f’jn - Algn—l - Ag?jn—ga (31b)

and NV, denotes the number of samples in the dataset used to estimate the parameters. Further,

the covariance >, is estimated as

Ny

A 1
Y= —— nEr. 32
D DT ()

n=0+1

The model order p can be selected using, e.g., the Akaike information criterion [29, p.221]. An
alternative method for learning the parameters that take into account the heavy-tailed distribution

of the data can be found in [30].

IV. TARGET DYNAMICS MODEL

Recall from Sec. II that the Bernoulli filter recursions require a model of the target state

dynamics 7(z|z’) and a birth model by, (2). These models are defined next.
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A. Motion Model

Given a multi-array setup, it would be possible to track the target in a cartesian state space.
For simplicity of analysis, a bearing-only target detection and tracking setup with only one

hydrophone array is considered. To that end, let the target state at time step k be

. T
Ty = |k U ﬁ;(de) ’ (33)

i . (dB) . : : (dB) _
where 1)y, is the bearing change rate and 7,  is the SNR 7, in dB, i.e., n, ' = 10log;, 1.

Changes in target bearing 1) are modeled according to a constant velocity model, and the SNR
n(dB) of the target is modeled as a random walk. Details about these models and other motion
models commonly used in target tracking can be found in [31]. Hence, conditioned on target

state y, the PDF of x;,; is modeled as

T(Tpa|2x) = N(2pi1; Frp,, GQGT), (34)
where
17T 0 T°/2 0 )
dcv 0
F=10 1 ol G= T 0| Q= 0 )
q
00 1 0 T dBSNR

Here T is the time between instant & and k + 1. Further, g2, and qjzq\g are the process noise

variances for the constant velocity model and the random walk model, respectively.

B. Birth Model

_ T
The birth model by, () describes the probability distribution of the state = [¢ 0 n(dB)}
of a new target given the latest measurement z;_;. Since z;_; contains information about the
bearing 1) and the SNR 7(4B) they are assumed to be distributed proportionally to the likelihood

ratio of the measurement. That is, their joint PDF is modeled as

p(v, U(dB) |zk-1) o< L(z11 ’m)p(?/f)P(W(dB))? (35)

where p(1)) and p(n@®)) denote uniform prior distributions assigned to the bearing 1) and SNR
n'B), respectively. Recall that the likelihood L(zj_|) in (27) is a function of the target bearing
1 and the SNR 1 = 107"”/10 which are part of the target state . The prior p(n®)) should
reflect the expected SNR of yet-to-be-detected targets, that is, newly sampled targets have a

low SNR. This ensures the tracker is less prone to lock onto a noisy source that momentarily
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Fig. 3. CFAR detections and BTRs after the data whitening step in the different trackers. All BTRs are normalized by a factor
b so that maxy, x bB(1, zx) = 1. The BTR of the raw samples is shown in the top left. The top right plot shows the BTR of
the whitened data in the TVARO tracker, which uses a VAR model of order ¢ = 0. The bottom left plot shows the BTR after the
whitening in the GVARI4 and TVARI4 trackers, which uses a VAR model of order o = 14. The bottom right plot shows the
CFAR detections for the CFARVARI4 tracker, obtained by running the detector on the whitened BTR from the GVAR14 and
TVAR14 models.

produces much sound energy. Moreover, the prior p(1/) ensures that the newborn targets are born
within the considered field of view of the array, and not in the end-fire directions.

The measurement z;_, contains no information about the bearing change rate w Consequently,
¢ is assumed to be normal distributed as A (w, 0, P¢). Bringing it all together, the probability

distribution of the state x of a new target is modeled as

bijie—r () = (v, 0™z )N (10, Py). (36)

V. EVALUATION

The proposed tracking method is evaluated through experiments on both real and simulated
datasets. The objective of the evaluation is to examine the impact of the ambient noise modeling
and the associated data whitening, as well as the use of the t-distribution for modeling the
raw acoustic data. These factors are analyzed in isolation by comparing the proposed tracker

with variants that either do not include the ambient noise modeling and data whitening step or
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assume the data to be Gaussian distributed. All trackers use the same underlying particle filter
implementation from [23], where the only difference is the used likelihood ratio L(z|z) and the
used VAR model. To that end, the following five trackers will be evaluated.
o The TVARI4 tracker, which uses a VAR model of order o = 14 and a t-distributed signal
model.
o The TVARO tracker, which uses a VAR model of order o = 0 (equivalent to only modeling
the spatial correlations in the noise) and a t-distributed signal model.
o The GVARI4 tracker, which uses a VAR model of order o = 14 and a Gaussian distributed
signal model.
o The CFAR tracker, which uses detections from a CFAR detector as its input.
o The CFARVARI4 tracker, which uses detections from a CFAR detector as its input where
the data fed to the detector has been whitened using a VAR model of order o = 14.
The CFAR detection-based trackers are included for reference. Comparison between the CFAR
and CFARVAR14 tracker highlights the potential effects of the whitening filter on detection-based

trackers.

A. Performance Metrics

The performance of each tracker is assessed by analyzing the estimated probability that a target
exists and the optimal subpattern assignment (OSPA) metric [32]. In the case of single-target

tracking, the OSPA metric is given by

A Vi, Yi) = Y d9 (@, 2) + p (1 — Vi), 37)

-@GYI@U@
where x;, is the ground truth target state, f is the norm order, and d*) is the distance measure

with cut-off p. Here, targets are compared based on their bearing differences, i.e.,
d) (&, ) = min(|[v) = villz, p). (38)
Furthermore, Yy, is the set of confirmed targets
Yie = {o |2 € Xy and g > 7}, (39)

where v = 90 %. The cut-off is set to be p = 30° and the norm order f = 1 is used.
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TABLE 1
PARAMETER VALUES USED IN THE EVALUATION. VALUES IN PARENTHESES ARE VALUES USED IN THE SIMULATION IF THEY

DIFFER FROM THE PARAMETER VALUES USED IN THE REAL-WORLD DATA EVALUATION.

(a) TRACKER AND FILTER PARAMETERS.

Sym. Value  Description
Ds 1—107°%(0.99347) Prob. of survival.
Db 21071 (4.56 - 107%)  Prob. of target birth.
gcv 0.13°/s>  Motion process noise.
gdBSNR 0.05dB/s  SNR process noise.
Initial uncertainty in target bearin
P, 0.001°2 /52 v e £

change rate
3 (12) Deg. of freedom in mv-t dist.
64  Number of samples per batch.
0.17s  Time between batches.

14 Model order of the VAR model.

ST BN

(b) CFAR PARAMETERS. “COLUMNS” AND “ROWS” REFER TO
FIG. 2.

Value  Description

25%  CFAR false alarm rate.
Width of CFAR guard band in bearing cells.

% Number of white columns.
20 Length CFAR guard band in time steps.
Number of rows.
1 Total width of CFAR training cells in bearing cells.

Number of yellow columns.

B. Parameter Settings

The uniform prior p(n(9®)) on the SNR for newborn states = in (35) is calibrated individually
for each tracker. The lower and upper bounds of the prior are increased simultaneously until
false tracks start to appear in a target-free dataset. This ensures that each tracker is as sensitive
as possible without generating false detections when applied to the target-free dataset. For the
CFAR-based tracker, the false detection intensity A in (13) is adjusted similarly. The support of
the uniform prior p(1) is —60° to 60°. All other parameters are kept the same to the greatest

extent possible to ensure a fair comparison of the trackers. The parameter values used are listed
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(a) Simulated scenario (not to scale). The target begins its (b) Real-world scenario. The array is located at (0, 0), and
journey in the upper part of the figure, traveling in the the target begins its journey in the lower part of the figure,
negative y direction. The eight dots indicate the array. traveling in the positive y direction.

Fig. 4. Tllustration of the target trajectories and array locations in the simulation and real-world scenarios.

in Tab. L

C. Simulated Scenario

The simulated scenario consists of a target that moves towards an 8-element array tuned for
800 Hz signals. The frequency content of the considered signals is between 750 Hz and 937.5 Hz,

demodulated using a 750 Hz cosine signal and sampled at a sampling frequency of 375 Hz. The
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Algorithm 1: Generating a simulated dataset.
input : Target bearing v, and SNR 7, VAR parameters A,,..., A,, ¥,, and degrees of

freedom v of the t-distribution.

output: Sample yy

/* Sample ambient signal */
1 Sample W, ~ N (0, )
2 Compute €, using (29) and 1w,
3 Estimate 02 = |E[¢,e]]|"/M
4 Batch ¢, into e; as in (8a)

/* Sample target signal */
5 Calculate 02 = 02
6 Sample sy ~ N(0,02H(¢)H (¢))

/* Construct the full multivariate-t distributed signal */
7 Sample ¢ ~ x?(v)

8 Compute y, = \/v/ck - (Sk + ex)

!, starting at a bearing of —50° at a distance of

target moves at a constant velocity of 2.5ms™
2000m away from the array and ending at bearing 50° at a distance of 300 m away from the
array. The trajectory is shown in Fig. 4a. The range to the target is mapped to an SNR according
to

1.8
7 = 101ogy (55) (40)

where 7 is measured in meters. This mimics a propagation loss between cylindrical and spherical
spreading [33, p. 39]. As the likelihood ratio functions of the trackers are independent of the
absolute noise level o2, the covariance of the innovation noise wj, can be set arbitrarily as long
as it is a scaled identity matrix. For simplicity, cov(wy) = I); is used. Generating the simulated
dataset is a multistep process, as detailed in Alg. 1. Notably, the target signal is added to the
correlated noise, which means that the inaccuracies of the approximation in (23) should affect
the trackers similarly as it will in the later analyzed real data scenario. The same VAR model
parameters are used both in the data generation and the data whitening in the tracker.

The true bearing, true SNR, B(,y), and the estimated tracks can be seen in Fig. 5. The results

show that the CFAR tracker detects the target at approximately 700 s when the target is around
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Fig. 5. Results of 100 Monte Carlo runs of the simulated scenario. The top plot shows the BTR of the generated signal for a
single run, together with the ground truth bearing in dashed blue. Below the BTR, the OSPA, estimated SNR, and estimated
target existence probability are shown. The transparent regions in the estimated target existence probability correspond to the

top 90 and bottom 10 quantiles.

a1 300m from the array. This corresponds to an SNR of —5dB. Prewhitening the measurements
a2 before constructing the detections does not contribute to any significant performance gain, as
sss evident when one compares the CFAR tracker to the CFARVAR14 tracker. The TVARO tracker
s« shows similar performance. Modeling the ambient noise using VAR model of order 14 improves

a5 the detection performance, as demonstrated by the GVARI4 tracker. The GVAR14 tracker detects
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Fig. 6. Results from the real-world scenario. The top plot shows the BTR, along with the truth and estimated bearings. Below

the BTR, the OSPA, estimated SNR, and estimated target existence probability are shown.

the target at a distance of 550 m, which corresponds to an SNR of —8 dB. However, the estimated
target existence probability fluctuates rapidly above and below the detection threshold, causing
the OSPA metric to vary correspondingly. Further improvement is observed when the Gaussian
distribution is replaced by the proposed multivariate-t distribution, as seen from the performance
of the TVARI4 tracker. The multivariate-t distribution stabilizes the estimates of target existence

probability and leads to a smoother OSPA measure. It also enhances the tracker’s detection
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capability, enabling even earlier target detection. The target is detected at a distance of 560 m,
which corresponds to an SNR of —9dB. It is noted that the SNR is systematically underestimated
by the trackers. There are two likely causes behind this. First, it may be due to the approximations
made in the derivation of the measurement model. Secondly, newborn targets are assumed to

have a low SNR to increase the robustness of the tracker against false tracks, resulting in a bias.

D. Real-world Scenario

The real-world dataset was collected during a sea trial in the Stockholm archipelago using
an 8-element horizontal hydrophone array and a SAAB AUV62 autonomous underwater vehicle
acting as the target. The array’s shape, orientation, and location were calibrated using the method
described in [34]. The distance between the hydrophone elements was approximately 0.93 m.
Given that the speed of sound in the baltic sea is approximately 1500 ms~!, this corresponds to
a design frequency of 800 Hz. The SAAB AUV62 followed the trajectory shown in Fig. 4 (b),
starting at a distance of 675 m and ending at 220 m from the array. Throughout the trajectory, the
AUV maintained a speed of 6.2ms™! (approximately 12knots) and a constant depth of 25m.
The depth ranges from 30m to 45m at the test site, with a few islands located to the left of
the array in the plot. Due to the shallow water at the site, the hydroacoustic environment is
expected to be complex, with many reflections and other unmodeled properties. As a result, the
t-distribution model in the TVARI4 and TVARO trackers were set to have a degree-of-freedom
v = 3, the lowest value for which the covariance matrix of the t-distribution remains defined.

Before the trackers processed the recorded hydrophone, the data was preprocessed as follows.
Similarly to the simulated scenario, the data were bandpass-filtered with cut-off frequencies
750 Hz and 937.5 Hz, then demodulated using a 750 Hz cosine signal and finally downsampled to
a sampling frequency of 375 Hz. In the frequency band 750 Hz and 937.5 Hz, the received signal
can be considered approximately white. This is because the spectrum of the sound generated by
the AUV62 is approximately flat, and the differences in propagation loss across the frequency
band are negligible.

1) Effects of Ambient Noise Modeling: In Fig. 3, the effect of whitening the hydrophone data
in Fig. 1b with a VAR model learned on the data in Fig. la, is shown in terms of BTR after
the whitening process. Also shown are the detections found by applying the CFAR detector
to the same dataset. Note that the CFARVARI4, TVARI4 and GVARI4 trackers use the same
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VAR model of order o = 14 for the ambient noise modeling and data whitening, whereas the
TVARO tracker uses a o = 0 order model. The effects of the whitening processes are apparent
by comparing the BTR after the data whitening in the TVARI4 and TVARO trackers to the BTR
calculated on the raw data. The energy distribution across the bearings is more uniform after
the whitening. Specifically, bearings within 20° to 60° exhibit lower signal energy in the BTR
of the raw data and in TVARO, compared to TVARI4 and GVARI4. Conversely, the energy in
bearings —60° to —20° during the timespan 90s to 110s is higher in TVARO

2) Detection and Tracking Performance: In Fig. 6, the estimated target track, SNR, target
existence probability, and the calculated OSPA for the five trackers are shown. The detections
and tracks are slightly offset compared to the true bearing, which may be due to errors in the
calibration of the array geometry and orientation. The CFAR tracker detects and starts to track
the target at a distance of 250 m. By prewhitening the data before constructing the detections,
the the CFARVARI4 tracker is able to detect the target at a distance of 325m and maintains
the track for 20s before it is dropped. The TVARO tracker detects the target at a distance of
325 m, but the estimated bearing is too far from the ground truth to be considered a valid track.
This is in line with the observations in Fig. 3, where the negative bearings exhibited higher
beamforming energy due to the absence of temporal whitening. The GVARI4 tracker detects the
target at approximately 325 m and maintains the track for approximately 125s until the SNR
temporarily decreases. However, the method quickly recovers the track.

A common issue across the CFAR, CFARVARI4, GVARI4, and TVARO trackers is that they
either lose track or initiate false tracks. In contrast, the TVARI4 tracker detects the target the

earliest, when the target is 390 m from the array, and maintains a stable track thereafter.

VI. DISCUSSION AND CONCLUSIONS

The challenge of reliable broadband passive sonar target detection and tracking in complex
acoustic environments has been addressed. A solution has been proposed based on a vector-
autoregressive model for the ambient noise and a heavy-tailed statistical model for the distri-
bution of the raw hydrophone data. These models have been integrated into a Bernoulli track-
before-detect (TkBD) filter to realize a bearing-only tracker. To facilitate a computationally less
expensive evaluation of the proposed statistical model, approximations have been introduced to
compensate for the effects of the ambient noise via a recursive preprocessing step where the

data is whitened. The whitening of the data facilitates the statistical model to be expressed as
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a function of the conventional beamformer, significanly reducing the computational complexity
of the statistical model.

The proposed solution has been evaluated on both simulated and real-world data. Results
showed that the proposed vector-autoregressive model can learn and compensate for a lot of
the spatiotemporal correlations in ambient noise, which was also seen to be useful for con-
ventional detection-based trackers. Moreover, the results showed that the proposed heavy-tailed
multivariate-t distribution model made the trackers more robust than the case when the data
was modeled as Gaussian distributed. The simulations show that the SNR at which the target
can be detected is reduced by 4 dB compared to when using the standard constant false alarm
rate detector based tracker. Further, the test with real-world data shows that using the vector-
autoregressive model improves the detection distance of the conventional CFAR tracker from
250 m to 325 m. The proposed solution increases the target detection distance further to 390 m.

The presented results illustrate that the TkBD technology, in combination with data-driven
ambient noise modeling and heavy-tailed statistical signal models, can enable reliable broadband
passive sonar target detection and tracking in complex acoustic environments and lower the
SNR required to detect and track targets. Hence, the technology can contribute to more effective
monitoring of critical underwater infrastructure and potentially increase the safety of maritime
activities. Additionally, the technology’s capability to whiten stochastic disturbances makes it
well-suited for use in the archipelago or other shallow water environments with complex acoustic
interference.

While the proposed solution shows promise, it has limitations. If the motion model does not
align with the true target motion, tracking effectiveness might be compromised. Additionally,
assuming that the target is stationary during each batch could lead to “smearing” of energy if
the target moves quickly. Although this has not been investigated, the proposed solution might
already be able to adapt to this by using a more spread-out particle cloud.

Future research should explore the possibility to integrate the proposed ambient noise model
and heavy-tailed signal model in multi-target tracking. While multiple target TkBD is still in
development, methods such as the information exchange filter [35] and belief propagation for
multi-Bernoulli filters [36] have shown promising results. Multi-target TkBD tracking using
superpositional maritime radar measurements has been explored in [37]. The reason behind the

observed bias in the SNR estimates should also be investigated.
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436 Given the PDF in (19), it holds that
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