""" B-ASIC Core Operations Module. Contains some of the most commonly used mathematical operations. """ from typing import Dict, Optional from numpy import abs as np_abs from numpy import conjugate, sqrt from b_asic.graph_component import Name, TypeName from b_asic.operation import AbstractOperation from b_asic.port import SignalSourceProvider from b_asic.types import Num class Constant(AbstractOperation): r""" Constant value operation. Gives a specified value that remains constant for every iteration. .. math:: y = \text{value} Parameters ========== value : Number, default: 0 The constant value. name : Name, optional Operation name. """ _execution_time = 0 def __init__(self, value: Num = 0, name: Name = ""): """Construct a Constant operation with the given value.""" super().__init__( input_count=0, output_count=1, name=name, latency_offsets={"out0": 0}, ) self.set_param("value", value) @classmethod def type_name(cls) -> TypeName: return TypeName("c") def evaluate(self): return self.param("value") @property def value(self) -> Num: """Get the constant value of this operation.""" return self.param("value") @value.setter def value(self, value: Num) -> None: """Set the constant value of this operation.""" self.set_param("value", value) class Addition(AbstractOperation): """ Binary addition operation. Gives the result of adding two inputs. .. math:: y = x_0 + x_1 Parameters ========== src0, src1 : SignalSourceProvider, optional The two signals to add. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== AddSub """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """ Construct an Addition operation. """ super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("add") def evaluate(self, a, b): return a + b class Subtraction(AbstractOperation): """ Binary subtraction operation. Gives the result of subtracting the second input from the first one. .. math:: y = x_0 - x_1 Parameters ========== src0, src1 : SignalSourceProvider, optional The two signals to subtract. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== AddSub """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Subtraction operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("sub") def evaluate(self, a, b): return a - b class AddSub(AbstractOperation): r""" Two-input addition or subtraction operation. Gives the result of adding or subtracting two inputs. .. math:: y = \begin{cases} x_0 + x_1,& \text{is_add} = \text{True}\\ x_0 - x_1,& \text{is_add} = \text{False} \end{cases} This is used to later map additions and subtractions to the same operator. Parameters ========== is_add : bool, default: True If True, the operation is an addition, if False, a subtraction. src0, src1 : SignalSourceProvider, optional The two signals to add or subtract. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== Addition, Subtraction """ def __init__( self, is_add: bool = True, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct an Addition/Subtraction operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) self.set_param("is_add", is_add) @classmethod def type_name(cls) -> TypeName: return TypeName("addsub") def evaluate(self, a, b): return a + b if self.is_add else a - b @property def is_add(self) -> Num: """Get if operation is an addition.""" return self.param("is_add") @is_add.setter def is_add(self, is_add: bool) -> None: """Set if operation is an addition.""" self.set_param("is_add", is_add) class Multiplication(AbstractOperation): r""" Binary multiplication operation. Gives the result of multiplying two inputs. .. math:: y = x_0 \times x_1 Parameters ========== src0, src1 : SignalSourceProvider, optional The two signals to multiply. name : Name, optional Operation name. latency : int, optional Operation latency (delay from input to output in time units). latency_offsets : dict[str, int], optional Used if inputs have different arrival times, e.g., ``{"in0": 0, "in1": 1}`` which corresponds to *src1* arriving one time unit later than *src0*. If not provided and *latency* is provided, set to zero if not explicitly provided. So the previous example can be written as ``{"in1": 1}`` only. execution_time : int, optional Operation execution time (time units before operator can be reused). See also ======== ConstantMultiplication """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Multiplication operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("mul") def evaluate(self, a, b): return a * b class Division(AbstractOperation): r""" Binary division operation. Gives the result of dividing the first input by the second one. .. math:: y = \frac{x_0}{x_1} See also ======== Reciprocal """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Division operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("div") def evaluate(self, a, b): return a / b class Min(AbstractOperation): r""" Binary min operation. Gives the minimum value of two inputs. .. math:: y = \min\{x_0 , x_1\} .. note:: Only real-valued numbers are supported. See also ======== Max """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Min operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("min") def evaluate(self, a, b): if isinstance(a, complex) or isinstance(b, complex): raise ValueError( "core_operations.Min does not support complex numbers." ) return a if a < b else b class Max(AbstractOperation): r""" Binary max operation. Gives the maximum value of two inputs. .. math:: y = \max\{x_0 , x_1\} .. note:: Only real-valued numbers are supported. See also ======== Min """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Max operation.""" super().__init__( input_count=2, output_count=1, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("max") def evaluate(self, a, b): if isinstance(a, complex) or isinstance(b, complex): raise ValueError( "core_operations.Max does not support complex numbers." ) return a if a > b else b class SquareRoot(AbstractOperation): r""" Square root operation. Gives the square root of its input. .. math:: y = \sqrt{x} """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a SquareRoot operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("sqrt") def evaluate(self, a): return sqrt(complex(a)) class ComplexConjugate(AbstractOperation): """ Complex conjugate operation. Gives the complex conjugate of its input. .. math:: y = x^* """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a ComplexConjugate operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("conj") def evaluate(self, a): return conjugate(a) class Absolute(AbstractOperation): """ Absolute value operation. Gives the absolute value of its input. .. math:: y = |x| """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct an Absolute operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("abs") def evaluate(self, a): return np_abs(a) class ConstantMultiplication(AbstractOperation): r""" Constant multiplication operation. Gives the result of multiplying its input by a specified value. .. math:: y = x_0 \times \text{value} """ def __init__( self, value: Num = 0, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a ConstantMultiplication operation with the given value. """ super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) self.set_param("value", value) @classmethod def type_name(cls) -> TypeName: return TypeName("cmul") def evaluate(self, a): return a * self.param("value") @property def value(self) -> Num: """Get the constant value of this operation.""" return self.param("value") @value.setter def value(self, value: Num) -> None: """Set the constant value of this operation.""" self.set_param("value", value) class Butterfly(AbstractOperation): r""" Radix-2 Butterfly operation. Gives the result of adding its two inputs, as well as the result of subtracting the second input from the first one. .. math:: \begin{eqnarray} y_0 & = & x_0 + x_1\\ y_1 & = & x_0 - x_1 \end{eqnarray} """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Butterfly operation.""" super().__init__( input_count=2, output_count=2, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("bfly") def evaluate(self, a, b): return a + b, a - b class MAD(AbstractOperation): r""" Multiply-add operation. Gives the result of multiplying the first input by the second input and then adding the third input. .. math:: y = x_0 \times x_1 + x_2 """ def __init__( self, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, src2: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a MAD operation.""" super().__init__( input_count=3, output_count=1, name=Name(name), input_sources=[src0, src1, src2], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("mad") def evaluate(self, a, b, c): return a * b + c class SymmetricTwoportAdaptor(AbstractOperation): r""" Symmetric twoport-adaptor operation. .. math:: \begin{eqnarray} y_0 & = & x_1 + \text{value}\times\left(x_1 - x_0\right)\\ y_1 & = & x_0 + \text{value}\times\left(x_1 - x_0\right) \end{eqnarray} """ def __init__( self, value: Num = 0, src0: Optional[SignalSourceProvider] = None, src1: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a SymmetricTwoportAdaptor operation.""" super().__init__( input_count=2, output_count=2, name=Name(name), input_sources=[src0, src1], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) self.set_param("value", value) @classmethod def type_name(cls) -> TypeName: return TypeName("sym2p") def evaluate(self, a, b): tmp = self.value * (b - a) return b + tmp, a + tmp @property def value(self) -> Num: """Get the constant value of this operation.""" return self.param("value") @value.setter def value(self, value: Num) -> None: """Set the constant value of this operation.""" self.set_param("value", value) class Reciprocal(AbstractOperation): r""" Reciprocal operation. Gives the reciprocal of its input. .. math:: y = \frac{1}{x} See also ======== Division """ def __init__( self, src0: Optional[SignalSourceProvider] = None, name: Name = Name(""), latency: Optional[int] = None, latency_offsets: Optional[Dict[str, int]] = None, execution_time: Optional[int] = None, ): """Construct a Reciprocal operation.""" super().__init__( input_count=1, output_count=1, name=Name(name), input_sources=[src0], latency=latency, latency_offsets=latency_offsets, execution_time=execution_time, ) @classmethod def type_name(cls) -> TypeName: return TypeName("rec") def evaluate(self, a): return 1 / a