From ad62774e82bdf100a6856439177afafa7a57eb78 Mon Sep 17 00:00:00 2001 From: Simon Bjurek <simbj106@student.liu.se> Date: Tue, 18 Mar 2025 15:45:56 +0100 Subject: [PATCH] added the numpy-rule for ruff and fixed issues --- pyproject.toml | 2 +- test/unit/test_list_schedulers.py | 4 ++-- test/unit/test_sfg_generators.py | 14 +++++++------- 3 files changed, 10 insertions(+), 10 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index c1ab97e2..3cfd42e4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -100,7 +100,7 @@ precision = 2 exclude = ["examples"] [tool.ruff.lint] -select = ["E4", "E7", "E9", "F", "SIM", "B"] +select = ["E4", "E7", "E9", "F", "SIM", "B", "NPY"] ignore = ["F403", "B008", "B021", "B006"] [tool.typos] diff --git a/test/unit/test_list_schedulers.py b/test/unit/test_list_schedulers.py index 52d29a13..b67147d9 100644 --- a/test/unit/test_list_schedulers.py +++ b/test/unit/test_list_schedulers.py @@ -882,7 +882,7 @@ class TestHybridScheduler: assert schedule.schedule_time == 16 # validate regenerated sfg with random 2x2 real s.p.d. matrix - A = np.random.rand(2, 2) + A = np.random.default_rng().random((2, 2)) A = np.dot(A, A.T) A_inv = np.linalg.inv(A) input_signals = [] @@ -1985,7 +1985,7 @@ def _validate_recreated_sfg_ldlt_matrix_inverse( delays = [0 for i in range(num_of_outputs)] # random real s.p.d matrix - A = np.random.rand(N, N) + A = np.random.default_rng().random((N, N)) A = np.dot(A, A.T) # iterate through the upper diagonal and construct the input to the SFG diff --git a/test/unit/test_sfg_generators.py b/test/unit/test_sfg_generators.py index a51224bd..f427259e 100644 --- a/test/unit/test_sfg_generators.py +++ b/test/unit/test_sfg_generators.py @@ -310,7 +310,7 @@ class TestDirectFormIIRType1: b, a = signal.butter(N, Wc, btype="lowpass", output="ba") - input_signal = np.random.randn(100) + input_signal = np.random.default_rng().standard_normal(100) reference_filter_output = signal.lfilter(b, a, input_signal) sfg = direct_form_1_iir(b, a, name="test iir direct form 1") @@ -326,7 +326,7 @@ class TestDirectFormIIRType1: b, a = signal.butter(N, Wc, btype="lowpass", output="ba") - input_signal = np.random.randn(100) + input_signal = np.random.default_rng().standard_normal(100) reference_filter_output = signal.lfilter(b, a, input_signal) sfg = direct_form_1_iir(b, a, name="test iir direct form 1") @@ -343,7 +343,7 @@ class TestDirectFormIIRType1: b, a = signal.ellip(N, 0.1, 60, Wc, btype="low", analog=False) b, a = signal.butter(N, Wc, btype="lowpass", output="ba") - input_signal = np.random.randn(100) + input_signal = np.random.default_rng().standard_normal(100) reference_filter_output = signal.lfilter(b, a, input_signal) sfg = direct_form_1_iir(b, a, name="test iir direct form 1") @@ -430,7 +430,7 @@ class TestDirectFormIIRType2: b, a = signal.butter(N, Wc, btype="lowpass", output="ba") - input_signal = np.random.randn(100) + input_signal = np.random.default_rng().standard_normal(100) reference_filter_output = signal.lfilter(b, a, input_signal) sfg = direct_form_2_iir(b, a, name="test iir direct form 1") @@ -446,7 +446,7 @@ class TestDirectFormIIRType2: b, a = signal.butter(N, Wc, btype="lowpass", output="ba") - input_signal = np.random.randn(100) + input_signal = np.random.default_rng().standard_normal(100) reference_filter_output = signal.lfilter(b, a, input_signal) sfg = direct_form_2_iir(b, a, name="test iir direct form 1") @@ -463,7 +463,7 @@ class TestDirectFormIIRType2: b, a = signal.ellip(N, 0.1, 60, Wc, btype="low", analog=False) b, a = signal.butter(N, Wc, btype="lowpass", output="ba") - input_signal = np.random.randn(100) + input_signal = np.random.default_rng().standard_normal(100) reference_filter_output = signal.lfilter(b, a, input_signal) sfg = direct_form_2_iir(b, a, name="test iir direct form 1") @@ -804,7 +804,7 @@ class TestLdltMatrixInverse: # assert np.isclose(actual_values[i], expected_values[i]) def _generate_random_spd_matrix(self, N: int) -> np.ndarray: - A = np.random.rand(N, N) + A = np.random.default_rng().random((N, N)) A = (A + A.T) / 2 # ensure symmetric min_eig = np.min(np.linalg.eigvals(A)) A += (np.abs(min_eig) + 0.1) * np.eye(N) # ensure positive definiteness -- GitLab