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Swarm Robots 2

Most swarm approaches obtain inspiration from biological societies – particularly 
ants, bees, and birds – to develop similar behaviours in multirobot teams.  

Swarm robotics systems are often called collective robotics, indicating that 
individual robots are often un-aware of the actions of other robots in the system, 
other than information on proximity.  
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The objective of formation control is for a set of  agents, reach a desired formation 
 given by a set of positions  .

N
p* p*1 , …, p*N

What we mean by “reach” will be different in different cases and depends on 
limitations of the sensing capability of the agents. For example it can mean: 
• Reach the formation  
• Reach the formation  modulo a translation 
• Reach the formation  modulo a translation and a rotation

p*
p*
p*

p⇤1

p⇤3 p⇤4

p⇤2

The formation :p =

p*1
p*2
p*3
p*4



Multi-agent Formation Control Problems
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The control strategy depends of  the sensing capability 
of the agents. Today I will consider 
• Position-based formation control 
• Displacement-based formation control  
• Distance-based formation control 
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There will be three models associated with each agent : 

• Dynamic model:    
We shall consider single- and double-integrator models, 
introduced in Lecture 3. 

• Measurement equations:  
The function  depends on the sensing capability of the 
agent. 

• Control law:  
The control objective and design depends on available 
sensing capability.

i
·xi = fi(t, xi, ui)

yi = hi(x)
hi(x)

ui = gi(yi)



Hand-in assignment four
7

The objective of the fourth hand-in assignment is to 
define and implement the functions , , and  in 

      where  

such that the complete formation fulfils different tasks 
specified in the assignment. 
   

fi hi gi
·xi = fi(t, xi, ui)
yi = hi(x)
ui = gi(yi)

i = 1,…, N
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Position-based formation control
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Sensing capability: The agents are required to commonly have 
a global coordinate system. They need to sense their absolute 
positions with respect to the global coordinate system.  
Interaction topology: The desired formation is specified by the 
desired absolute positions for the agents.  In this case, 
interactions are not necessarily required because the desired 
formation can be achieved by position control of individual 
agents.  



Position-based formation control 10

The objective is to achieve , where  is the position of agent , and  is 

a known reference position. 
Consider a single-integrator modelled agent 
  

where  the control signal. If the proportional control law  

     , 

is used, where  is the proportional gain.  

The error  satisfies the error dynamics 

 

which shows that  converges exponentially to  . 

pi → p*i pi i p*i

·pi = ui

ui

ui = kp(p*i − pi)

kp > 0

ep = p − p*
·ep = − kpep

p p*



Position-based formation control 11

The desired formation  can be achieved by position control of individual 
agents, but interactions among the agents can be introduced to enhance 
control performance or addressing additional  objectives such as formation 
shape keeping.  
This can be achieved by introducing additional control inputs: 

 

where  is a set of neighbours of node , and  are positive constants. It 
can be shown that this modification always improves the exponential 
convergence. 

p*

ui = kp(p*i − pi) + ∑
j∈𝒩i

wij(pj − pi − p*j + p*i )

𝒩i i wij



Double-integrator modelled agent 12

Now we shall consider the double integrator model 
   

where  is the acceleration and  is the control input of 
agent . The model can be rewritten in state space form: 

 

where  is the velocity vector. 

In this case, the control law 
 

can be used.

··pi = ui
··pi ui

i
·pi = vi
·vi = ui

vi

ui = kv(v*i − vi) + kp(p*i − pi)



Double-integrator modelled agent 13

In the two-dimensional case, the state space form 

 

has four states,   and  for position, and  and  for velocity. It 

can be written in the form  which you are familiar with 
from the basic course in automatic control: 

 

 

·pi = vi
·vi = ui

px,i py,i vx,i vy,i
·x = Ax + Bu

·px,i
·py,i
·vx,i
·vy,i

=

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

px,i
py,i
vx,i
vy,i

+

0 0
0 0
1 0
0 1

(ux,i
uy,i)



Displacement-Based Formation Control



Displacement-based formation control 
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Sensing capability: The agents are required to have their own 
local coordinate systems, orientations of which are aligned to 
that of a global coordinate system. With respect to the local 
coordinate systems, the agents are required to sense relative 
positions of their neighbours with respect to the global 
coordinate system. 
Interaction topology: The desired formation for the agents is 
specified by the desired displacements from any agents to the 
others.  



Displacement-based formation control 16
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(a) Displacement-based setup. (b) Distance-based setup.

Fig. 3. Formation control problem setups.

following identical, linear time-invariant agents over a graph G:
8
>><

>>:

ẋi = APxi + BPui,
yi = CPaxi,

zi =

X

j2Ni

CPr (xi � xj),
i = 1, . . . ,N, (7)

where xi 2 Rn, ui 2 Rp, yi 2 Rqa , and zi 2 Rqr are the state, control
input, absolutemeasurement, and relativemeasurement of agent i.
Further AP , BP , CPa , and CPr are constant matrices with appropriate
dimensions. Fax and Murray (2002, 2004) have proposed the
following dynamic control law:
⇢
⇠̇i = AK ⇠i + BKayi + BKr zi,
ui = CK ⇠i + DKayi + DKr zi,

i = 1, . . . ,N, (8)

where ⇠i 2 Rr and the matrices AK , BKa , BKr , CK , DKa , and DKr
are constant matrices with appropriate dimensions. When the
control law (8) uses the absolute measurements yi, they can be
considered position-based. If (8) does not depend on the absolute
measurements, it can be considered displacement-based. It might
be difficult to check stability of the multi-agent system described
by (7) and (8) if N is very large. Fax and Murray (2002, 2004) have
shown that the multi-agent system is asymptotically stable if and
only if the following systems are asymptotically stable:
(ẋi = APxi + BPui,
yi = CP,axi,
zi = �iCPr xi,

i = 1, . . . ,N,

where �i are the eigenvalues of L. Further they have provided a
Nyquist criterion that is useful for checking stability.

5. Displacement-based formation control

We review displacement-based formation control in this
section. A typical displacement-based formation control scheme
imposes the following requirement on agents:

• Sensing capability: The agents are required to have their own
local coordinate systems, orientations of which are aligned to
that of a global coordinate system. However, they do not nec-
essarily know the origin of the global coordinate system. With
respect to the local coordinate systems, the agents are required
to sense relative positions (displacements) of their neighbors
with respect to the global coordinate system, which implies ex-
istence of interactions. Note that relative positions with respect
to the local coordinate systems are the same as those with re-
spect to the global coordinate system due to the alignment of
the coordinate systems.

• Interaction topology: The desired formation for the agents is
specified by the desired displacements from any agents to the
others. To achieve the desired formation, the agents actively
control the displacements of their neighbors. Thus the interac-
tion graph needs to ensure achievement of the desired forma-
tion by controlling only the displacements of their neighbors,
which can be characterized by either connectedness or exis-
tence of a spanning tree. In the case that edges of the interaction
graph are time-varying, uniform connectedness characterizes
the graph condition.

In the following, we review displacement-based formation
control for single- and double-integrator modeled agents, general
linear agents, and nonholonomic agents. Further we discuss
practical issues such as realizability of desired formations and
connectivity preservation.

5.1. Single-integrator modeled agent case

Consider the following single-integrator modeled agents in n-
dimensional space over a graph G:

ṗi = ui, i = 1, . . . ,N, (9)

where pi 2 Rn and ui 2 Rn denote the position and control input of
agent iwith respect to a global coordinate system.We assume that
the agents sense relative positions of their neighbors with respect
to the global coordinate system. Specifically, we assume that the
following relative positions are available to agent i:

pji := pj � pi, j 2 Ni. (10)

In this problem setup, each agent has its own local coordinate
system. Further the orientation of the coordinate system needs
to be aligned to that of the global coordinate system, which can
be achieved by using magnetic sensors (Caruso, 2000). Fig. 3(a)
illustrates the coordinate systems under this problem setup.

Let p⇤ 2 RnN be given. The objective of the agents is to satisfy
the following constraints:

pi � pj = p⇤

i � p⇤

j , i, j 2 V.

In general, p⇤

i are not the absolute desired positions for the agents.
They only specify thedesireddisplacements. Thedesired formation
for the agents is defined as

Ep⇤ := {p : pj � pi = p⇤

j � p⇤

i , i, j 2 V}. (11)

That is, the objective of the formation control is to drive p to p⇤ up
to translation.

Local coordinate systems  with orientations that are aligned with the orientation of 
global coordinate system:

Σi

In this case it is assumed that the relative positions  are available to agent  for some 
subset of the other agents, and a directed graph can be used to represent which these agent are.

pj − pi i



Directed graphs: An example 17

Nodes  

Edges   

Neighbours , , , and  

𝒱 = {1,2,3,4}

ℰ = {(1,2), (1,3), (2,4), (3,1), (4,2), (4,3)} ⊂ 𝒱 × 𝒱

𝒩1 = {2,3} 𝒩2 = {4} 𝒩3 = {1} 𝒩4 = {2,3}

4

1

3

2



Displacement-based formation control 
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It is assumed that the relative positions

are available to agent .
The objective of the formation control is to achieve 

,

i.e., to drive  to  up to a translation. 

pj − pi, j ∈ 𝒩i

i

pi − pj → p*i − p*j , i, j ∈ 𝒱

p p*



Displacement-based formation control 19

Example:  

Single-integrator modelled agents 
 

with the control law 

 

where .  

·pi = ui, i = 1,…, N

ui = kp ∑
j∈𝒩i

wij(pj − pi − p*j + p*i )

wij > 0



20Directed graphs, spanning tree

Child of j

j i

Parent of i

A tree is a directed graph where a node, called the 
root, has no parent and the other nodes have exactly 
one parent. 

A spanning tree of a directed graph is a directed tree 
containing every node of the graph.

4

1

3

2

A spanning tree consists the red 
edges, and node 2 is the root.



Displacement-based formation control 
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If the single-integrator model 
 

is used with the control law 

 

then the desired formation 
 

is exponentially stable if and only if the 
directed graph  has a spanning tree. 

·pi = ui, i = 1,…, N

ui = kp ∑
j∈𝒩i

wij(pj − pi − p*j + p*i )

{p : pj − pi = p*j − p*i , i, j𝒱}

𝒢



Displacement-based formation control 
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With double-integrator modelled agents 

 

the objective is to achieve the desired formation 

 

The control law  

 

can be used to achieve this goal. 

·pi = vi
·vi = ui

{[pTvT]T : pj − pi = p*j − p*i , vj − vi = v*j − v*i }

ui = − kp ∑
j∈𝒩i

wij(pi − pj − p*i + p*j ) − kv ∑
j∈𝒩i

wij(vi − vj − v*i + v*j )



Displacement-based formation control 23

It is often the case that the formation needs to move to a prescribed absolute 
position. Assume that only a small number of agents are able to sense their absolute 
positions  

For a single-integrator model the control law can be modified as  

 

where  if agent  senses , and  otherwise. 

It can be shown that the error tends to zero exponentially if the graph has a spanning 
tree where the agent corresponding to the root node senses its absolute position  

ui = kp ∑
j∈𝒩i

wij(pj − pi − p*j + p*i ) + gii(p*i − pi)

gii > 0 i pi 0
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Distance-Based Formation Control



Distance-based formation control 
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Sensing capability: The agents are required to carry their own 
local coordinate systems. The orientations of the coordinate 
systems need not to be aligned to each other. The agents are 
required to sense relative positions of their neighbours. 
Interaction topology: The desired formation is specified by 
the desired distances between any pair of agents.  



Distance-based formation control 27
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p

(a) Displacement-based setup. (b) Distance-based setup.

Fig. 3. Formation control problem setups.

following identical, linear time-invariant agents over a graph G:
8
>><

>>:

ẋi = APxi + BPui,
yi = CPaxi,

zi =

X

j2Ni

CPr (xi � xj),
i = 1, . . . ,N, (7)

where xi 2 Rn, ui 2 Rp, yi 2 Rqa , and zi 2 Rqr are the state, control
input, absolutemeasurement, and relativemeasurement of agent i.
Further AP , BP , CPa , and CPr are constant matrices with appropriate
dimensions. Fax and Murray (2002, 2004) have proposed the
following dynamic control law:
⇢
⇠̇i = AK ⇠i + BKayi + BKr zi,
ui = CK ⇠i + DKayi + DKr zi,

i = 1, . . . ,N, (8)

where ⇠i 2 Rr and the matrices AK , BKa , BKr , CK , DKa , and DKr
are constant matrices with appropriate dimensions. When the
control law (8) uses the absolute measurements yi, they can be
considered position-based. If (8) does not depend on the absolute
measurements, it can be considered displacement-based. It might
be difficult to check stability of the multi-agent system described
by (7) and (8) if N is very large. Fax and Murray (2002, 2004) have
shown that the multi-agent system is asymptotically stable if and
only if the following systems are asymptotically stable:
(ẋi = APxi + BPui,
yi = CP,axi,
zi = �iCPr xi,

i = 1, . . . ,N,

where �i are the eigenvalues of L. Further they have provided a
Nyquist criterion that is useful for checking stability.

5. Displacement-based formation control

We review displacement-based formation control in this
section. A typical displacement-based formation control scheme
imposes the following requirement on agents:

• Sensing capability: The agents are required to have their own
local coordinate systems, orientations of which are aligned to
that of a global coordinate system. However, they do not nec-
essarily know the origin of the global coordinate system. With
respect to the local coordinate systems, the agents are required
to sense relative positions (displacements) of their neighbors
with respect to the global coordinate system, which implies ex-
istence of interactions. Note that relative positions with respect
to the local coordinate systems are the same as those with re-
spect to the global coordinate system due to the alignment of
the coordinate systems.

• Interaction topology: The desired formation for the agents is
specified by the desired displacements from any agents to the
others. To achieve the desired formation, the agents actively
control the displacements of their neighbors. Thus the interac-
tion graph needs to ensure achievement of the desired forma-
tion by controlling only the displacements of their neighbors,
which can be characterized by either connectedness or exis-
tence of a spanning tree. In the case that edges of the interaction
graph are time-varying, uniform connectedness characterizes
the graph condition.

In the following, we review displacement-based formation
control for single- and double-integrator modeled agents, general
linear agents, and nonholonomic agents. Further we discuss
practical issues such as realizability of desired formations and
connectivity preservation.

5.1. Single-integrator modeled agent case

Consider the following single-integrator modeled agents in n-
dimensional space over a graph G:

ṗi = ui, i = 1, . . . ,N, (9)

where pi 2 Rn and ui 2 Rn denote the position and control input of
agent iwith respect to a global coordinate system.We assume that
the agents sense relative positions of their neighbors with respect
to the global coordinate system. Specifically, we assume that the
following relative positions are available to agent i:

pji := pj � pi, j 2 Ni. (10)

In this problem setup, each agent has its own local coordinate
system. Further the orientation of the coordinate system needs
to be aligned to that of the global coordinate system, which can
be achieved by using magnetic sensors (Caruso, 2000). Fig. 3(a)
illustrates the coordinate systems under this problem setup.

Let p⇤ 2 RnN be given. The objective of the agents is to satisfy
the following constraints:

pi � pj = p⇤

i � p⇤

j , i, j 2 V.

In general, p⇤

i are not the absolute desired positions for the agents.
They only specify thedesireddisplacements. Thedesired formation
for the agents is defined as

Ep⇤ := {p : pj � pi = p⇤

j � p⇤

i , i, j 2 V}. (11)

That is, the objective of the formation control is to drive p to p⇤ up
to translation.

Local coordinate systems that are not aligned to each other:

It is assumed that the relative position  are available to 

agent  for its neighbours .

pj − pi

i j



Undirected graphs: An example
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1

3

2

4

Nodes  

Edges  

Neighbours , , , and  

𝒱 = {1,2,3,4}
ℰ = {(1,2), (1,3), (1,4), (3,4), (2,4)} ⊂ 𝒱 × 𝒱

𝒩1 = {2,3,4} 𝒩2 = {1,4} 𝒩3 = {1,4} 𝒩4 = {1,2,3}



Distance-based formation control 
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It is assumed that the relative positions

in the local coordinate system are available to agent .
The objective of the formation control is now to achieve 

But this condition alone does not imply that you get the formation 
of the agents that you were looking for.

pj − pi, j ∈ 𝒩i

i

∥pi − pj∥ → ∥p*i − p*j ∥, i, j ∈ 𝒱



Distance-based formation control 30

The red formation  is obtained by translating and rotating the blue 
formation and it satisfies the condition ∥pi − pj∥ = ∥p*i − p*j ∥

Observation: It is not possible to distinguish between the red and blue 
formations with the limited sensing capability of the agents in this 
case.

p3

p⇤4

p⇤2

p4

p1

p2

p⇤3

p⇤1



Graph rigidity 31

Consider the following undirected graph:

Question: Is this graph suitable for the task?



Graph rigidity: Not rigid frameworks 32

Answer: No!
The red nodes satisfies the condition ∥pi − pj∥ = ∥p*i − p*j ∥

The red formation is usually not acceptable in the formation 
control problem. The framework above is called not rigid.



Graph rigidity: Rigid framework 33

The drawback with this graph is shown to the right. The nodes satisfy
, but this is not the formation we wanted. This 

can happen if the initial conditions are unfavourable. 

∥pi − pj∥ = ∥p*i − p*j ∥

The framework to the left is called rigid. The diagonal edge prevents the 
nodes to deviate from the desired formation



Click to edit Master title style
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Graph rigidity: Global rigidity 35

The framework to the left is called globally rigid. The second 
diagonal edge prevents a node to flip to the other side of the 
diagonal.

The red framework to the right is obtained by a translation and a 
rotation, and the nodes satisfy the condition . 

As pointed out before, this can not be avoided with the sensing 
capability in this case.

∥pi − pj∥ = ∥p*i − p*j ∥



Graph rigidity 36

The rigid graph below is minimally rigid, which means that if any 
edge is removed, then the graph is no longer rigid.

It can be shown that any minimally rigid graph in the plane with  
nodes has  edges. I will not give a formal definition of 
minimally rigid. Instead I will illustrate how to construct a minimally 
rigid graph. 

N
2N − 3



How to build a minimally rigid graph 37

Start with a triangle (black):

Attach one node and two edges (blue) to the structure as in the 
figure. Continue two add one node and two edges at a time (green, 
red, brown magenta). The resulting framework will alway be 
minimally rigid.
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This is actually how you build rigid structures:

In three dimensions you start with 4 nodes and 6 edges, and then 
add one node and three edges at a time to construct a minimally 
rigid structure.



Distance-based formation control 
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Assume that we have a rigid graph. We shall study 
single-integrator modelled agents 

 

where  and  denote the position and control 
input of agent  with respect to the local coordinate 
system. 

Gradient control laws are popular to use in distance 
based formation control. 

·pi
i = ui

i , i = 1,…, N

pi
i ui

i
i



Gradient based control 40

For each agent , a local potential function is defined as 

 

and one example of a function that can be used in the definition is 

 

If the the condition  is fulfilled for 

all neighbours , i.e., all neighbours are at the desired distance, then .  
If this is not the case, then . 

i

ϕi = kp ∑
j∈𝒩i

γij(∥pi
j − pi

i∥)

γij(∥pj − pi∥) = (∥pj − pi∥2 − ∥p*j − p*i ∥2)2

∥pj − pi∥ = ∥p*j − p*i ∥

j ∈ 𝒩i ϕi = 0
ϕi > 0



Gradient based control 41

Hence, the objective to fulfil the desired formation can be reformulated as trying 
to find a formation that fulfils  for all agents, or equivalently minimise . 

A control law that strive to fulfil the latter formulation is 

 

In order to calculate the gradient , note that  is a 
compound function, where  is a scalar valued function 
that depends on the scalar , and , for a fixed , is a scalar 
valued function that depends on the vector .

ϕi = 0 ϕi

ui
i = − ∇pi

i
ϕi = − kp ∑

j∈𝒩i

∇pi
i
γij(∥pi

j − pi
i∥)

∇pi
i
γij(∥pi

j − pi
i∥) γij(∥pi

j − pi
i∥)

γij(s) = (s2 − ∥p*j − p*i ∥2)2

s s(pi
i) = ∥pi

j − pi
i∥ pi

j
pi

i



Gradient based control 42

By using the chain rule of differentiation we obtain 

 

where  denotes the derivative of . By substituting this 
into the sum above, the following control law is obtained: 

 

 
By transforming this expression into global coordinates, by a 
rotation and a translation, we obtain the control law: 

 

∇pi
i
γij = γ′ ij(∥pi

j − pi
i∥)∇pi

i
∥pi

j − pi
i∥ = − γ′ ij(∥pi

j − pi
i∥)

pi
j − pi

i

∥pi
j − pi

i∥

γ′ ij γij

ui
i = − ∇pi

i
ϕi = kp ∑

j∈𝒩i

γ′ ij(∥pi
j − pi

i∥)
pi

j − pi
i

∥pi
j − pi

i∥

ui = kp ∑
j∈𝒩i

γ′ ij(∥pj − pi∥)
pj − pi

∥pj − pi∥


