Modelling of Ground Vehicles

TSFS12: Autonomous Vehicles —planning, control, and learning
systems

Lecture 3: Jan Aslund <jan.aslund@liu.se>
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Modelling of Ground Vehicles 2

Today I will consider different types of ground vehicles

One important question: In which directions can the different vehicles move?
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Mathematical Modelling




Mathematical Modelling of Systems

In the basic automatic control course linear state-space models in the form

{ q(t) = Aq(?) + Bu(?)
y(t) = Cq(t) + Du(?)

were considered. The state-vector is denoted q, u is the control vector, and
y is the output vector.

In this course, we will consider more general non-linear models

{Q(t) = f(q(1), u(r))
y(#) = h(q(?), u(z))

where f and h are non-linear functions.
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Non-linear state space models

I will derive models in the form ¢ = f(q, u) for different kinds ground
vehicles, where ( is the state vector and u is the input vector.

First, I will describe how a system of the type q = f(q, u) can be
interpreted geometrically, and I will use the model

X Yy COS X
y/) \uysinx
for illustration.
X Yy COS X

The state vector is q = (y) and f(q,u) = (uy “in x) in this example
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For every point (x, y) and control signal u, the right-hand side is a vector

f(q. u) = (ycosx)

Uy sin x
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The vector fields for the two values u = £ 1
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The left-hand side of q = f(q, u), can be interpreted as the velocity vector of a
particle and the solution is the trajectory of the particle moving in the vector field.
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A particle moving first in the vector field corresponding to u = + 1 and then the
control signal switchestou = — 1
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Double integrators

Another type models often considered in control theory are double integrators

{ii(t) = f(q(1), u(?))
y(#) = h(q(?), u(z))

A typical application is dynamic systems where the left-hand side q is the acceleration and the right-
hand side f(q, u) is representing the force acting on the system.

Note that the double integrator can be written in state-space form with states X;, = qand x, = Qq:
X =X,

y — h(Xla u)
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y-axis

1.5
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The same left-hand side as before is considered.
In this case u = + 1 and u = — 5 respectively:
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In this case the left-hand side is equal to the acceleration:
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The Omnidirectional robot




The Omnidirectional Robot
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The Differentially-Driven Mobile Robot




The Differentially-Driven Mobile Robot

Has two separately driven wheels placed on either side of the body of the robot.

If the wheels rotate in the same direction, then the robot moves
forward, and if they rotate in opposite direction, then the robot rotates.
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Underactuated Systems

For the differentially driven mobile robot, we shall use kinematic model with

three states (position (x, y) and orientation @ with respect to x-axis), and
linear combinations of the two wheel speeds as control signals. The system
is called underactuated since the number of actuators is less than the

dimension of the state space.

Y

How can we accomplish a movement in the direction perpendicular
the orientation of the vehicle?
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Solution inspired by parallel parking

The Robot

y-axis
o

Conclusion: The robot moves one step upwards
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y-axis

by

Repeating the procedure:

The Robot
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By taking smaller and smaller steps, the procedure can
approximate a motion straight in the y-direction:

The Robot

X-axis
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Add the trajectory in the state space: 9

The robot
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Repeat the procedure:

The robot
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#-axis
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Model of the robot

X

U
With the state vector q = (y ) and control vector u = ( 1

Uy

) , a model
0

of the differential driven mobile robot can be written in the form

= q = f(q,u) = i f,(q) + u,t,(q)

0 cos 0
where f;(q) =0 Jand f,(q) = sin@
1 0

The speed of the driven wheels are v. = u, + bu, and v, = u, — bu, where
b is half of the distance between the right and left wheels.

. < o=
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In the maneuvers described above, the robot moved in the directions

0 cos @
i (q) = (O) and f,(q) = (sin9>
| 0

I

Y-axis

5
L.
_ _f,
£ 0-axis

This is the trajectory of q = uf,(q)
(uy, u,) = (—1,0), (0, —1),(1,0), (0,1)

T-axis

u,f,(q) with the control sequence:
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Now we shall investigate what happens if we repeat the procedure for a system 23

q = u /{(q) + u /(q)
with more general vector fields f,(q) and f,(q) and arbitrary small time steps A7 = ¢.

y-axis

0-axis

T-axis

Question: How can we compute an approximation of f3?

of, of. of,

Answer: f; = 82((f2)qf1 — (f)qh) + O(e”) where (f)q = (

% ae) is the Jacobian matrix.
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The expression (t,)t; — (f))t; is called the Lie bracket and is denoted [f, 1]

O cos 6
For example, with f,(q) = and f,(q) = | sin@ | theresultis
0
af2 of, of, of, of, of,
£, 6] = |l = (H)glr = ( ox dy 00 ) £y - ( ox dy 00 ) E,
0 0 —sinf 0 0 0 O cos 6 —sin 6
=0 0 cosf 0 0 0 O sinf | = | cosf
0 O 0 1 0O 0 O 0 0
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y-axis

Sketch of proof

y-axis

0-axis

T-axis T-axis

Instead of moving as in the figure to the left, we start at position q, and first move as in

the figure to the right to the two positions (q;, and q,; and then compute f; = q;, — q»;
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Y-axis

X
f-axis H

T-axXIsS

First move from (, to q along f; (A7 = ¢):
2
: & ..
q; = go + £4(0) +—-4(0) + O(e”)

2
= qq + ef,(qo) + %(foq(qo)fl(q()) + O(e3)

£ — "of, of, of, ] . | | ¢
where (1), = oy 9 is the Jacobian matrix. We used that q = f;(q) and
i = L4 = 21,0) = Zo@yi+ 2@y + 2@ = (1), (@f (@

— — 4 — — —_ X E— — —
q dtq dth dxq 3y qQ)y 06,(1 )\ 11q
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y-axiIs

f-axis

T-axis

By repeating the process we get  Substitute , into (-
2

E
2 4, = q, + ety (qy) + =), (qpf;(qp)
Q1 = Qo + ef1(@g) + 5-(F),(a0f (o) + OCe?) TR R
, +ef,(q, + €f;(qy))
E 2
q12 — ql + 8f2(q1) + 7(f2)q(q1)f2(q1) + @(83) +%(f2)q(q0)f2(q0) + @(83)

The Taylor eXpanSion £,(qy + et)(qy) = £y(qp) + 8(f2)q(%)f1(%) + O(&?) gives

4, = qo + e(f;(qp) +15(q))
2

+%((f1)q((lo)f1(%) + (1)4(q0)t2(qp)

+é z(fz)q(qO)f1(qO) + O(e”)
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28
The corresponding expression for q,, is obtained by letting f; and f, switch places:

4, = qo + e(f;(q) + 15(qp)) 4> = qq + e(fr(qp) + 11(qp))
2 2
+%<<f1>q<qo>f1<qo> + (£,),(q)f>(a0) +%((f2)q(qO)f2(qO) + (), (@), (qp))
+&°(f,)q(apf (qp) + O(e”) +e°(f))g(ap)fx(qy) + O(e”)

Y-axis

0-axis

T-axis

Finally: f3 = q, — qy; = €°((£) £, — (F)f) + O(e”)
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Holonomic and Non-holonomic Systems
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A non-holonomic example

The differentially driven robot is an example a non-holonomic systems

The directions which the robot can move are given by the condition

—xsinf@+ ycosf =0

30
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A non-holonomic example

Non-holonomic means that the condition
—xsimnf+ ycosf =0

can not be written in the form

dG(x,y,0) 0
d

for any function G(x, y, 0).

31
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An example of a holonomic system

Consider a robot moving in three dimensions and the kinematic
constraint 1s

xx+yy+zz=0
This constraint is holonomic since it can be rewritten as

1 d
EE(xz +y*+29) =0

which is equivalent to
24242 =12

for some constant r, i.e., the equation of a sphere where the
radius 1s given by the the initial state of the system.
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A holonomic example

Two vector field that span the possible direction to move with the restriction
xx+ yy+zz=0are

Y Z
f,=| —x|andf, = 0
0 —X

Can we use a the trick describe above to move in a third direction?

The answer 1s no.

0
The Lie bracket [f;,1,] = ( Z ) also fulfils the restriction and does not add an

—Y
extra direction.

Conclusion: We can move in any direction as long as we do not leave the sphere.
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The Omnidirectional Robot
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Car with Front Wheel Steering




The Kinematic Single Track Model

A simple kinematic two wheel model of a car with front
wheel steering. The model will have at least three states,

position (x, y) of the center of the rear wheel, and
orientation @ with respect to x-axis.

In the the figure, o0 is the steering angle and [ is the wheel base. Note that
the steering angle is negative in the figure

It 1s assumed that wheels are rolling without slipping, 1.e.,
The velocity vector 1s parallel to the direction of the wheels.

36
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Assume that the car is moving and the speed at the rear wheels is v

X =vcosbf

y =vsiné
tan o

0=v l

The relation @ = vtan &/ follows by eliminating the turning radius R

from the equations —tan 6 = [/R (the triangle) and —RO = (circular
motion).

37
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In addition to the three differential equations on the previous slide,

we need to specify some control inputs.

X=vcosd

y=vsiné

. tan o
S~ @ =v l

One example is to choose the acceleration and tangent of the steering angle

X=vcosb

y=vsin6

0 = vu,/l

V=1U,

u, € [-tano,, ., tano, , |

Note that we have added and restriction on the steering angle.

38
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The model

X =vcosd
y =vsiné
0 = vu,/l
\./=I/l2

can be written in the form q = f(q, u) with

X v Ccos @
Y ~ | vsind
q o 9 ) f(qa u) - Vl/ll/l
\% uz
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One drawback with the model is that allows discontinuities in the steering
angle. One way to get a smoother solution is to use the ditferentiated steering

angle as input 0 and use the steering angle o0 as an additional state.

X=vcosl

y =vsin@

0 = vtan 6/1

§=u,

V= 1u,

0 € [=0pqp> Oay]
1) € [= 0,40 O]
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The model

X=vcosf
y =vsinf
0 = vtan /1
§=u,
V=1U,

can be written in the form q = f(q, u) with

X v Ccos @

y v sin &
q=1|60| f(q,u)=[vtané/I

%) Uy

% Uy
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Motion Planning: Two Classical Problems
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Dubins path

One classic motion planning problem: Determine the shortest
path between two points with the orientation specified at the
initial and final point, and the turning radius limited from below

Vi
(epy)

L1 Yf

(Cli‘z', yz)
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This problem can be formulated as an optimal control problem with the model

X =vcosd

y =vsing

0 = vull

v =1

u € |—-tano,  ,tano, .|

where the objective function is travelling time and tano,, ., = [/R .

This problem was studied in the classical paper

Dubins, L.E. (July 1957). "On Curves of Minimal Length with a Constraint on Average
Curvature, and with Prescribed Initial and Terminal Positions and Tangents". American
Journal of Mathematics. 79 (3): 497—-516 doi:10.2307/2372560.

In the paper it was shown that any optimal solution will consist of
segments with minimal radius R, ;. and straight lines.

44
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https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2307/2372560

The solution of the example before is
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Three examples of solutions: RSL (right-straight-left), RSR, and LRL

It was shown that there exist three more types of solutions: LSR, LSL, and RLR.
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Reeds-Shepp Paths

The results were extended to the case where the car is allowed
to move backward and forwards in the paper:

Reeds, J.A. and L.A. Shepp, "Optimal paths for a car that goes both
forwards and backwards", Pacific J. Math., 145 (1990), pp. 367—-393.

Can be formulated as an optimal control problem with the model

X =vcosf@

y =vsin@

0 = vu/l

ve {—1,0,+1}

u € |—-tano, ., tano, |

and time as objective function.
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https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf
https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf

Some examples of optimal Reeds-Shepp paths:

p
LSL|R
q

LSRIL 1

LRIL
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A dynamic vehicle model (used in Lecture 7)
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50

Dynamic Venhicle Model (1/4)

« Consider the single-track y
vehicle model (lumped [ %}ar -
wheels on each axle). v

* Front steering and front-
wheel driven. m(vy — vyh) = Fy ¢ cos(8) + Fy, — F, ¢ sin(6),
m (0, + vp)) = F, 5 cos(8) + F, . + Fy ¢sin(d),

[0 = 1¢F, ¢ cos(8) — 1, F, . + 1 F, ;sin(d)
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Dynamic Venhicle Model (2/4)

« The slip angles (angle between the velocity vector and the
direction of the wheel) are given by:

U Uy
«f = — arctan S,y , o, = — arctan J
Uf r Ur r

» A simple tire-road interaction model for normal driving
with linear tire stiffnesses is adopted:

Fyp=Cogap,  Fyr=Carar
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Dynamic Vehicle Model (3/4)

« A path parameter is introduced to describe the traversal

along the reference path (traversal computed in the MPC):

. ds
T Tt
« The vehicle position in the global coordinate frame is
obtained by integration of the quantities:

(2) = (Gotey o t) (22)
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Dynamic Venhicle Model (4/4)

« Collect the states and the control inputs in the vectors:
- T
f(t) — (pX py Y vy Uy (0 5)
u(t) — (5 Fa;,f Faz,r S)

« With these variables, the vehicle dynamics can be written
as an explicit ordinary differential equation system as:

$(i) — fcar ($<t)7 u(t»
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