TSFS12 HAND-IN EXERCISE 1

Discrete Planning in a Structured Road
Network

August 25, 2022

1 OBJECTIVE

The objective of this hand-in exercise is to gain fundamental understanding of
the basic search algorithms for finding plans in finite search spaces using graph
search algorithms. These graph search algorithms are fundamental tools in more
advanced planning problems where, e.g., there are motion models of autonomous
vehicles or planning under uncertainty. In this case, there is no uncertainty and
the objective is to find routes in a map of central Linkoping similar to a GPS plan-
ning tool or the map application on a mobile phone as illustrated in the figure
below.
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It is allowed to discuss the exercises on a general level with other course participants.
However, code sharing outside groups is not allowed. Moreover, both students
in the group should be fully involved in performing all exercises, and thereby be
prepared to answer questions on all subtasks.

See Appendix B for the extra assignment needed for higher grades. The extra as-
signment is done individually and is submitted by a document answering the ques-
tions, including suitable figures, plots, and tables. The document is to be submitted
in PDF format. The code should also be submitted as a zip-archive. There is only
pass/fail on the extra exercise and the document can not be revised or extended
after first submission. It is not required to get everything correct to pass the assign-
ment, we assess the whole submission. You are of course welcome to ask us if you
have questions or want us to clarify the exercise.
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Since these exercises examines this course, we would like to ask
you not to distribute or make your solutions publicly available, e.g.,
by putting them on GitHub. (A private repository on gitlab@liu is
of course fine).

Thanks for your assistance!

2 PREPARATIONS BEFORE THE EXERCISE

Before doing this exercise, make sure you have read and understood the material
covered in

e Chapter 2 in the book [2].
e Course lectures covering discrete search methods

To get the background code for the exercise, get the latest files from https://gitlab.
liu.se/vehsys/tsfs12 and familiarize yourself with the provided code. Start by
running the code in the lab template file main{.m, .ipynb, .py}.

You are free to choose in which language to implement your planners, there is
skeleton code available in Matlab and Python'. The Python skeleton files are avail-
able in Notebook format (.ipynb) (https://jupyterlab.readthedocs.io/) and as
python script files (.py) and you can choose to work with the format you pre-
fer.

3 BASIC VERSION

To pass the basic version of this exercise you should implement, in a forward search
mode, the following planners:

e Breadth First search
o Best First
e Dijkstra
o A*
The exercise is examined by submitting the following on the Lisam course page.
1. Runnable code. If your code consist of several files, submit a zip-archive.

2. A short document, that does not have to be formatted as a self-contained
report:

e answers to the questions, including relevant plots, in Section 3.2, and
other questions that you have encountered during solving this exercise.

e a concluding discussion.

Submit the document in PDF format. If you are using notebooks in Python, it
is possible to submit your report in the form of a runnable notebook.

1 If you choose Python, see Appendix A.3 for installation details or how to run the code in the student
labs.
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3.1 Planner Implementation Requirements

This section describes the specific requirements on your planner implementations.
For this purpose, a depth_first planner is already implemented and all planners
are required to have the same API defined as

planner(number_of_nodes, mission, f_next, heuristic, number_of_controls)

where the input arguments are

e number_of_nodes
The number of nodes in the planning graph. Useful for pre-allocating space
in planners.

e mission
A struct (Matlab)/dictionary (Python) with the keys start and goal to repre-
sent positions for start and goal of the plan. Each point is represented also as a
struct/dictionary with the keys id, pos (optional) where id is a node identifier
and pos is longitude and latitude.

e f_next
State transition function. For a given node x, the call

Matlab Python
| [xi, u, d] = f_next(x); | xi, u, d =f_next(x)

returns possible next states xi (neighbors), the corresponding control that
takes them there, and their corresponding distances 4. This function is al-
ready implemented, see the skeleton file for details. Note, in this hand-in you
do not need to consider the controls and here the controls are set to NaN. In
later hand-in exercises, these will be extended to trajectories.

e heuristic (only used in best_first and astar)
Planners best_first and astar needs a heuristic function. To define heuris-
tics, you will find osm_map.nodeposition useful where again osm_map is an
OpenStreetMap object and the function latlong_distance. See more in the
code skeleton how to implement this.

e number_of_controls (not used in this exercise)
Number of control signals. If there are no control signals, like in this exercise,
set to 0. In the depth first implementation, this argument defaults to 0.

The planner should return a struct (Matlab)/dictionary (Python) with the proper-
ties

e plan: List/array of nodes in the plan

e length: Length of the plan

e num_expanded_nodes: Number of nodes expanded during planning

e expanded_nodes: List of nodes expanded during search

e name: Name of planner

e time: Time it took to find plan

e control: The controls for each step in the plan (not used in this exercise)

When implementing the planners, start with the code for the depth_first planner,
only small changes are required for the other planners. If you are starting to make
major changes, take a step back and think. For further details on available support
code, see Appendix A.
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3.2 Discussion topics, questions

This section summarizes a number of discussion topics and questions you should
implement, investigate, and reflect upon to pass this exercise. Feel free to include
other investigations and experiments you find interesting in the report.

Exercise 3.1. A discrete planning problem is defined by
1. A state-space X
2. For each state x € X, a finite action space U(x)

3. A state transition function f(x,u) that produces a state x’ = f(x,u) € X for
every x € X and u € U(x)

4. Initial state x; and goal state xg
Determine for this route planning problem what &’ is and describe how f(x,u) and

U(x) above relates to the provided Matlab function f_next.

Exercise 3.2. Implement the four required planners; breadth_first, dijkstra,
best_first, and astar. Experiment with different types of missions, easy and
more complex missions, and plot the resulting plans.

o Reflect upon the results with respect to length of plans and time to compute
the plan. To illustrate, for 1 suitable mission,

- plot plan lengths vs. planning times for the different planners
- plot planning time vs. number of expanded nodes during search

e Explore a few different missions of different length and discuss the difference
between A* and Dijkstra planners. Plot plan time against mission length.
You can define your own missions or use the pre-defined missions given in
pre_mission.

Exercise 3.3.  After experimenting with different missions, reflect on your results
and discuss

e properties of the different planners; what are the pros and cons?

e when are the different planners a good option, when are they not?
Exercise 3.4. The performance of A* relies heavily on the performance of

the heuristic (x) and there are two main conditions; admissibility and consis-
tency:

h(x)
h(x)

h*(x) (admissible)

<
<d(x,y)+h(y) (consistent)

where h*(x) is the optimal (and unknown) cost-to-go function, and d(x,y) is the
distance between nodes x and y. Describe consequences if each of these two as-
sumptions are not fulfilled:

e what would happen if the admissibility assumption is not fulfilled?
e what happens if the consistency assumption is not fulfilled?
Exercise 3.5. Consider a labyrinth like mission/environment; explain why Eu-

clidean distance is not a good heuristic for A* search. Illustrate using a small exam-
ple/figure.
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4 ALTERNATIVE EXERCISE REQUIREMENTS

One problem with graph search algorithms, like A* explored in this hand-in, is
that there is no way of predicting just how long a particular planning problem will
take to solve. Therefore, it can be difficult to use in a real-time application. For
this purpose there are extensions, e.g., just-in-time planners that quickly can obtain
a suboptimal solution and then iteratively improve this solution until the user is
satisfied with the solution quality or available time is up.

In this alternative exercise, you are expected to implement the algorithm described
in the paper [3] (link in course git-repository)

Likhachev, M., Geoffrey J. G., and Thrun S., “ARA*: Anytime A* with
provable bounds on sub-optimality”, Advances in neural information pro-
cessing systems. 2004.

and explore its properties. Before starting this exercise, read the paper and read the
instructions in Section 3.

To pass the basic version of this exercise you should implement, in a forward search
mode

o A*
o ARA®

The exercise is examined by submitting the following on the Lisam course page.
1. Runnable code. If your code consist of several files, submit a zip-archive.

2. A short document, that does not have to be formatted as a self-contained
report:

e answers to the questions, including relevant plots, in Section 4.1, and
other questions that you have encountered during solving this exercise.

e a concluding discussion.

Submit the document in PDF format. If you are using notebooks in Python, it
is possible to submit your report in the form of a runnable notebook.

4.1 Discussion topics, questions

This section summarizes a number of discussion topics and questions you should
implement, investigate, and reflect upon to pass this exercise. Feel free to include
other investigations and experiments you find interesting in the report.

Exercise 4.1. Start by implementing an A* algorithm as in the basic exercise.

Exercise 4.2. A search with A* and an admissible and consistent heuristic /(x)
ensures optimal plans. Explore what happens in A* if you inflate the heuristic, i.e.,
multiply h(x) with a factor ¢ > 1 as

W(x) = ch(x).

5
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and instead use /’(x) as heuristic. Run experiments on the map routing problem
with different values of ¢ and plot plan lengths and planning times. Comment on
your findings.

Exercise 4.3. Which plans do the A* search converge to when the inflation factor
¢ — 0 and ¢ — oo respectively?

What can be said about the heuristic, or the planning problem, if the A* solution
when ¢ — oo is close to the solution when ¢ = 1.

Exercise 4.4. Describe the basic principles with the ARA* algorithm and how it
can be used in a real-time application.

Exercise 4.5. Implement the ARA* algorithm from the paper and explore proper-
ties on sample missions.

Exercise 4.6. Quantify, in time, what is the gain when reusing previous computa-
tions when updating the inflation factor. Compare with A* and no computational
reuse.

6
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A SUPPLEMENTARY CODE AND SOFTWARE INSTALLATION

A.1  Queues

To implement the planning algorithms, three different queues have been imple-
mented in both Matlab and Python

e LIFO
e FIFO
e Priority queue

A LIFO, Last In First Out, queue is a queue where the last element inserted into
the queue is also the first to leave the queue. Similarly, a FIFO, First In First Out,
is a queue where the first element inserted into the queue is the first to leave the
queue. A priority queue has the property that there is a priority associated with
each element and when extracting an element from the queue, the element with the
lowest priority is taken from the queue.

Each queue has the following methods implemented
e insert
¢ pop
e peek
o size
e isempty
and to get help for the methods, write for example

Matlab Python

-

help PriorityQueue.peek help(PriorityQueue.peek)

"

Below is a small example how to create a FIFO queue and insert/extract values.

Matlab Python

n

[

IS

>> q = FIFO();
>> g.insert (10);
>> q.insert (20);
>> q.peek()
ans =

10
>>x = q.pop()
X =

10
>>x = q.pop()
X =

20

N kW

©

"
o

-
I

In [1]: q = FIFO()
In [2]: q.insert(10)
In [3]: q.insert(20)
In [4]: q.peek()
Out[4]: 10

In [5]: x = q.pop()
In [18]: x

Out[18]: 10

In [19]: x =q.pop()
In [20]: x

Out[20]: 20

=}

Below is a small example in Matlab how to create a PriorityQueue and insert/ex-
tract values. First, create the queue and insert values into the queue with some
priorities



W

w

>
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Matlab Python
% Create empty queue .| # Create empty queue
>> q = PriorityQueue(); 2| In [1]: q = PriorityQueue()
% Insert value 1 with priority 10 5| # Insert value 1 with priority 10
>> q.insert (1, 10); +/In [2]: q.insert (1, 10)

>> q.insert (2, 20); s/In [3]: q.insert (2, 20)

[
. ’ o/ In [4]: q.insert (3, 5)
>> q.insert (3, 5) T [5]: qinsert (3, 7)
>> q.insert (4, 7);

To check the size, write

Matlab Python

>> q.size () | In [6]: q.size()
ans = 2| Out[6]: 4
4

To peek and see which is the next value to leave the queue, and then get the element
form the queue

Matlab Python

>> [value, prio] = q.peek() | In [7]: q.peek()
value = 2| Out7]: (3, 5)

3 3| In [8]: value, prio = q.pop()
prio = 4/ In [9]: value

5 5| Out[g]: 3
>> [value, prio] = q.pop() j IOnut[[lfo]]:: I; ro
value = s/ In [11]: q.size()

. 3 o Out[11]: 3

prio =

5
>> q.size ()
ans =

3

A.2  OpenStreetMap

In the exercise code there is a class OpenStreetMap that represents maps. You don’t
have to use extensive functionality, mainly for defining missions, plotting plans, and
for defining the search heuristics. Code for loading maps, defining missions, and
plotting plans are included in the provided skeleton files. Some main properties
and methods are described briefly below, for more details see class documenta-
tion.

The main information used for planning is a distance matrix. If the map has 7 nodes,
the distance matrix D is an n x n matrix with path distances between neighbors as
entries. Entry at row i and column j corresponds to the distance between node i
and j. If the nodes are not neighbors, the entry is zero. The distance matrix can be
accessed using the distanceMatrix property of the map object. In code, the (i, )
distance is accessed as

Matlab Python

osm_map.distancematrix(i, j) 1| osm_map.distancematrix][i, j]

8
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The distance matrix, due to its size, is represented as a sparse matrix.

In A* and Best-First search, there is a need to compute distances between nodes. For
that purpose, there is a dictionary property nodeposition with latitude and longi-
tude of a node. In Python and Matlab, the position is obtained by

Matlab Python

osm_map.nodeposition(idx) osm_map.nodeposition[idx]

where map is the OpenStreetMap object and idx is the node index. There is also a
function latlong_distance that computes the distance in meters between to points
given by latitude and longitude.

The function load_osm_map can be used to load the map. If there is a binary mat
(Matlab)/pickle(Python) it will read that. If that file is not available, the Open-
StreetMap XML-file is parsed and this will takes some time (could be a couple
of minutes). It is recommended to read the binary files distributed with the ex-
ercise to ensure consistent numbering of nodes over different versions of Mat-
lab/Python.

The main class methods, there are others that you can explore, that are useful
are:

e infol()
Print basic information about the map.

e getmapposition()
Take input from a map object by clicking in the map, and return the closest
node index. This is useful for specifying start and goal nodes for the planning
task.

e plotmap()
Plot the map.

e plotplan(plan)
Plot a plan, given as a list of node indices. If you have an array of nodes
visited during search, node_1list, and want to visualize those nodes, you can
use plotplan(node_list, '.’").

To illustrate the use of some of the functions, the following commands loads the
map defined in the exercise and displays some basic information.

%% Read map information
>> mapfile = 'linkoping.osm’;
>> figurefile = 'linkoping.png’;
>> osm_map = load_osm_map(mapfile, figurefile);
>> osm_map.info()
OSMFile: ../Maps/linkoping.osm
Number of nodes: 12112
Number of roads: 2977
Map bounds
Lon: 15.572100 — 15.650100
Lat: 58.391000 — 58.420200
Size: 3246.9 X 4545.8 (m)
Figure file : ../Maps/linkoping.png
Size: 2296 x 1637 (px)

To use a planner, in this case the astar, and then plot the map with the corre-
sponding plan, the following commands can be used which produces Figure 1-
a.

9
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>> astar_plan = astar(num_nodes, mission, f_next, cost_to_go);
>> osm_map.plotmap()

>> hold on

>> osm_map.plotplan(astar_plan.plan, 'b', 'linewidth', 2);

>> hold off

>> xlabel (' Longitude ("o0)')

>> ylabel (' Latitude ("0)")

The corresponding commands in python are similar. The plotplan class method can

Linképing Linksping
58.42 B 58.42 & = N

58415 g . 58.415

58.41 N 58.41

58.405

Latitude (°)
Latitude (°)

58.405

58.395 58.395

= .
15.58 15.59 156 15.61 15.62 15.63 15.64 15.65 15.58 15.59 156 15.61 15.62 15.63 15.64 15.65
Longitude (°) Longitude (°)

(a) (b)

Figure 1: Figure (a) shows a sample plan and figure (b) visited nodes during the search.

also be used to illustrate nodes visited during the search. Figure 1-b is produced
using the command

:| >> osm_map.plotplan(bf_plan.visited_nodes, '0', 'markerfacecolor', 'b")

-

A.3 Python installation

To run the python code you need Pythons, (optionally) jupyter, and some addi-
tional packages installed. If you don’t have Python installed, you can get it from
http://www.python.org. Packages are typically installed using either a package
manager like Conda (https://www.continuum.io/downloads) or using virtual envi-
ronments (https://docs.python.org/3/tutorial/venv.html). Here, virtual envi-
ronments will be described.

A.3.1 In the student labs

In the student labs, to activate a python interpreter with a correct version and all
needed packages installed, start a terminal and activate the virtual environment by
(% is the prompt and should not be typed)

% source /courses/tsfsi2/env/bin/activate

Note that you have to do this every time you want to work in the virtual environ-
ment and in each terminal (or add the command to your startup scripts).

10
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A.3.2 Private computer

If you want to work on your private computer, full installation instructions for
virtual environments are shown below.

Open a terminal and create a virtual environment called env (you can name it
whatever you want)

% python3 -m venv env

This will create a directory env and you only have to do this once. Then, activate
the virtual environment by

% source env/bin/activate

For Windows you instead run

% env\Scripts\activate

Again, this you have to do every time you want to work in the virtual environment
(or add the command to your startup scripts). The first time, you also want to install
the required packages using the pip command by

(env) % pip install ipython numpy jupyter jupyterlab matplotlib scipy

If you choose to work with python scripts, open main.py in your favorite editor or
IDE and start solving the exercises. Good choices for IDE include Visual Studio

Code (https://code.visualstudio.com) and PyCharm (https://www.jetbrains.

com/pycharm/).

If you choose to work in Jupyter Notebooks, start JupyterLab by

(env) % jupyter lab

and the development environment should appear in your web browser. Locate the
file main.ipynb in the code/python directory and start exploring.

1"
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B EXTRA ASSIGNMENT

It is typically not feasible to pre-compute plans for any possible mission, since that
would mean pre-computing n? plans where 7 is the number of nodes in the graph.
However, consider the case where the goal of the mission is predetermined, say
a central location in a distribution network or a train terminal, and we want to
efficiently plan paths to that determined goal.

This extra assignment explores how methods from the basic assignment can be used
for this purpose and also connect the results to more general optimization theory,
and dynamic programming in particular. Therefore, before starting to solve the
exercise, read pages 1-12 in the book [1]*

Bertsekas, Dimitri “Reinforcement learning and optimal control”. Belmont,
MA: Athena Scientific, 2019.

You can find skeleton material, including pre-defined missions you can start ex-
perimenting with, in the files extra.{m, ipynb, py} for Matlab and Python respec-
tively.

Exercise B.1. Show, in detail, how the path planning problem in this hand-
in corresponds to the deterministic dynamic programming problem introduced in
Section 1.1.1 in [1].

Exercise B.2. Modify the basic Dijkstra algorithm to compute the cost-to-go func-
tion for a given goal node x¢. Thus, make a function that determines the optimal
cost to go from node x to goal node xg,

cost-to-go(x), x € X,

where & is the set of all nodes. Note that this should be achieved in a single search,
restarting a search from all nodes is not an acceptable solution.

As a goal node, you can for example use the goal node in the pre-defined mis-
sions.

Time how long it takes to pre-compute this function. This should not take more
than a couple of seconds.

Exercise B.3. Write a function that computes a plan from a given start node using
the pre-computed cost-to-go function and the state-transition function (f_next) in
Section 3.1. Also include timing functionality.

Exercise B.4. Ensure that the plans computed by Dijkstra, A*, and the new plans
based on pre-computed cost-to-go function are equivalent, both in terms of node
visits and length of plan.

Nlustrate/plot how the planning times compare for the three planning approaches.
You can use the pre-defined missions, but feel free to experiment with other mis-

2 An electronic version of the text can be found at https://web.mit.edu/dimitrib/www/RL_
1- SHORT- INTERNET - POSTED . pdf and further information about the book is available at the authors’ page
https://web.mit.edu/dimitrib/www/RLbook.html.
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sions. Planning using the pre-computed cost-to-go should be orders of magnitude
faster than using, e.g., A*.

Exercise B.5. Describe how your function in Exercise B.3 relates to the construction
of the optimal sequence described on p. 12 in [1].

Exercise B.6. Comment on your solution and how it relates to the dynamic
programming algorithm for deterministic finite horizon problems on p. 11 in [1].
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