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Today I will present the method Closed Loop Rapidly-Exploring Random 
Tree. The presentation will be based on the following material from 
previous lectures:  
• Kinematic Model (lecture 3) 
• Dubins Car (lecture 3) 
• Rapidly-exploring random tree (lecture 4) 
•Pure-Pursuit Control (lecture 6) 

The main reference is the paper:  
Real-Time Motion Planning With Applications to Autonomous Urban Driving, 
Kuwata et.al.,IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 
17, NO. 5, SEPTEMBER 2009  

https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/TCST.2008.2012116
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Kinematic Model (Lecture 3) 
Example of a kinematic model:

·x = v cos θ
·y = v sin θ
·θ = v tan δ/l
·δ = u1
·v = a
·a = u2
δ ∈ [−δmax, δmax]

u1 ∈ [− ·δmax,
·δmax]

Note that the steering angle and acceleration are states. 
This gives a smoother trajectory.
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Dubins Car (Lecture 3)
Problem: Find the shortest path between two points with the 
orientation specified at the initial and final point, and the turning 
radius limited from below

Solution: The optimal solution consists of segments with minimal 
radius  and straight lines.Rmin



Pure-pursuit control (Lecture 6)

• A simple control technique to compute the arc 
needed for a robot to get back on path 
• With a look-ahead horizon, , find point 

 on the path to aim for 
• Compute the turning radius  to get  there 
• For a single-track robot, this corresponds to a 

steering angle 
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Basic Version of RRT (Lecture 4) 8

xI xG u(t) A x(t) (16)

x(t) 2 Xfree, x(0) = xI, x(T ) = xG (17)

Cfree Xfree SO(3) (18)

Algorithm 1: RRT w/o. Di↵erential Constraints

1 V  {qI} , E  ; ;
2 for i = 1, . . . , N do :

3 qrand  Sample ;

4 qnearest  Nearest(G = (V, E), qrand) ;
5 qnew  Steer(qnearest, qrand) ;
6 i f ObstacleFree(qnearest, qnew) then
7 V  V [ {qnew} ;

8 E  E [ {(qnearest, qnew)} ;

9 return G = (V, E) ;

G(V, E) qrand qnearest qnew (19)

Algorithm 2: RRT w. Di↵erential Constraints

1 V  {xI} , E  ; ;
2 for i = 1, . . . , N do :

3 xrand  Sample ;

4 xnearest  Nearest(G = (V, E), xrand) ;

5 (xnew, ũp
) Steer(xnearest, xrand) ;

6 i f ObstacleFree(xnearest, xnew) then
7 V  V [ {xnew} ;

8 E  E [ {(xnearest, xnew, ũp
)} ;

9 return G = (V, E) ;

2

LaValle, S. M., & J. J. Kuffner Jr.: "Randomized kinodynamic planning”. The 
International Journal of Robotics Research, 20(5), 378-400, 2001.



Basic Version of RRT (Lecture 4)

• Sample: Gives a sample in the free state space. 
• Nearest: Provides the vertex in the tree that is closest to the 

sampled state. 
• Steer: In general this is a so called two-point boundary value 

problem (TPBV). Construct a path from the nearest vertex 
towards the sampled state, often with a maximum path length 
(alternative strategies exist). 
• ObstacleFree: Checks whether the path from the closest 

vertex in the graph to the new state is collision free.

9
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online implementation, while retaining certain completeness
guarantees; and 3) sampling-based methods do not require the
explicit enumeration of constraints, but allow trajectory-wise
checking of possibly very complex constraints.

In spite of their generality, the application of incremental
sampling-based motion planning methods to robotic vehicles
with complex and unstable dynamics, such as the full-size
Landrover LR3 used for the race, is far from straightforward.
For example, the unstable nature of the vehicle dynamics
requires the addition of a path-tracking control loop whose
performance is generally hard to characterize. Moreover,
the momentum of the vehicle at speed must be taken into
account, making it impossible to ensure collision avoidance
by point-wise constraint checks. In fact, to the best of our
knowledge, RRTs have been restricted either to simulation, or
to kinematic (essentially driftless) robots (i.e., it can be stopped
instantaneously by setting the control input to zero), and never
been used in online planning systems for robotic vehicles with
the previous characteristics.

This paper reports on the design and implementation of an
efficient and reliable general-purpose motion planning system,
based on RRTs, for our team’s entry to the DUC. In particular,
we present an approach that enables the online use of RRTs
on robotic vehicles with complex, unstable dynamics and sig-
nificant drift, while preserving safety in the face of uncertainty
and limited sensing. The effectiveness of our motion planning
system is discussed, based on the analysis of actual data col-
lected during the DUC race.

II. PROBLEM FORMULATION

This section defines the motion planning problem. The ve-
hicle has nonlinear dynamics

(1)

where and are the states and inputs of
the system, and is the initial states at . The input

is designed over some (unspecified) finite horizon .
Bounds on the control input, and requirements of various driving
conditions, such as static and dynamic obstacles avoidance and
the rules of the road, can be captured with a set of constraints
imposed on the states and the inputs

(2)

The time dependence of expresses the avoidance con-
straints for moving obstacles. The goal region of
the motion planning problem is assumed to be given by a higher
level route planner. The primary objective is to reach this goal
with the minimum time

(3)

with the convention that the infimum of an empty set is .
A vehicle driving too close to constraints such as lane bound-
aries incurs some penalty, which is modeled with a function

. The motion planning problem is now defined
as follows.

1) Problem II.1 (Near Minimum-Time Motion Planning):
Given the initial states and the constraint sets and ,

Fig. 1. Closed-loop prediction. Given a reference command , the controller
generates high rate vehicle commands to close the loop with the vehicle
dynamics.

compute the control input sequence , ,
that minimizes

while satisfying (1)–(3).

III. PLANNING OVER CLOSED-LOOP DYNAMICS

The existing randomized planning algorithms solve for the
input to the vehicle either by sampling an input itself or by
sampling a configuration and reverse calculating , typically
with a lookup table [9], [10], [12]–[14]. This paper presents the
closed-loop RRT (CL-RRT) algorithm, which extends the RRT
by making use of a low-level controller and planning over the
closed-loop dynamics. In contrast to the existing work, CL-RRT
samples an input to the stable closed-loop system consisting of
the vehicle and the controller [15].

Fig. 1 shows the forward simulation of the closed-loop dy-
namics. The low-level controller takes a reference command

. For vehicles with complex dynamics, the dimen-
sion of the vehicle states can be quite large, but the reference
command typically has a lower dimension (i.e., ).
For example, in our application, the reference command is a 2D
path for the steering controller and a speed command profile for
the speed controller. The vehicle model in this case included
seven states, and the reference command consists of a series of
triples , where and are the position of the refer-
ence path, and is the associated desired speed. For urban
driving, the direction of the vehicle motion (forward or reverse)
is also part of the reference command, although this direction
needs to be defined only once per reference path.

Given the reference command, CL-RRT runs a forward sim-
ulation using a vehicle model and the controller to compute the
predicted state trajectory . The feasibility of this output is
checked against vehicle and environmental constraints, such as
rollover and obstacle avoidance constraints.

This closed-loop approach has several advantages when com-
pared to the standard approach that samples the input to the
vehicle [7], [13]. First, CL-RRT works for vehicles with un-
stable dynamics, such as cars and helicopters, by using a sta-
bilizing controller. Second, the use of a stabilizing controller
provides smaller prediction error because it reduces the effect of
any modeling errors in the vehicle dynamics on the prediction
accuracy, and also rejects disturbances/noises that act on the ac-
tual vehicle. Third, the forward simulation can handle any non-
linear vehicle model and/or controller, and the resulting trajec-
tory satisfies (1) by construction. Finally, a single input to
the closed-loop system can create a long trajectory (on the order
of several seconds) while the controller provides a high-rate sta-
bilizing feedback to the vehicle. This requires far fewer samples

CL-RRT samples an input to the stable closed-loop system consisting 
of the vehicle and the controller.

•CL-RRT works for vehicles with unstable dynamics, such as 
cars and helicopters, by using a stabilizing controller. 

•A single input to the closed-loop system can create a long 
trajectory (on the order of several seconds) while the 
controller provides a high-rate stabilizing feedback 
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to build a tree, improving the efficiency (e.g., number of sam-
ples per trajectory length) of randomized planning approaches.

IV. TREE EXPANSION

Summarizing the previous section, the CL-RRT algorithm
grows a tree of feasible trajectories originating from the cur-
rent vehicle state that attempts to reach a specified goal set. At
the end of the tree growing phase, the best trajectory is chosen
for execution, and the cycle repeats. This section discusses how
a tree of vehicle trajectories is grown, using the forward simu-
lation presented in Section III, and identifies several extensions
made to the existing work. Algorithm 1 shows the main steps in
the tree expansion (called function). Similar to
the original RRT algorithm, CL-RRT takes a sample (line 1), se-
lects the best node to connect from (line 2), connects the sample
to the selected node (line 4), and evaluates its feasibility (line 7).
Line 6 splits the trajectory between the newly added node and
its parent into (but typically ) segments so that
future samples can be connected to such nodes to create new
branches in the tree.

The CL-RRT algorithm differs from the original RRT in sev-
eral ways, including: samples are drawn in the controller’s input
space (line 1); nonlinear closed-loop simulation is performed to
compute dynamically feasible trajectories (line 5); the propaga-
tion ensures that the vehicle is stopped and safe at the end of
the trajectory (line 5); and the cost-to-go estimate is obtained
by another forward simulation towards the goal (line 15).

Algorithm 1

1: Take a sample for input to controller.
2: Sort the nodes in the tree using heuristics.
3: for each node in the tree, in the sorted order do
4: Form a reference command to the controller, by

connecting the controller input at and the sample .
5: Use the reference command and propagate from until

vehicle stops. Obtain a trajectory .
6: Add intermediate nodes on the propagated trajectory.
7: if then
8: Add sample and intermediate nodes to tree. Break.
9: else if all intermediate nodes are feasible then

10: Add intermediate nodes to tree and mark them
unsafe. Break.

11: end if
12: end for
13: for each newly added node do
14: Form a reference command to the controller, by

connecting the controller input at and the goal
location.

15: Use the reference command and propagate to obtain
trajectory .

16: if then
17: Add the goal node to tree.
18: Set cost of the propagated trajectory as an upper

bound of cost-to-go at .
19: end if
20: end for

Fig. 2. Vehicle trajectories are generated using a model of the vehicle
dynamics. The generated trajectories are then evaluated for feasibility and
performance.

Fig. 2 shows an example of a tree generated by the
function of the CL-RRT algorithm. The

tree consists of reference paths that constitute the input to the
controller (orange) and the predicted vehicle trajectories (green
and red). The trajectories found to be infeasible are marked in
red. The large dots ( ) at the leaves of the tree indicate that the
vehicle is stopped and is in a safe state (discussed in detail in
Section IV-E). Given this basic outline, the following subsec-
tions discuss the additional extensions to the RRT approach in
[13] in more detail.

A. Sampling Strategies

In a structured environment such as urban driving, sampling
the space in a purely random manner could result in large
numbers of wasted samples due to the numerous constraints.
Several methods have been proposed to improve the efficiency
[16]–[20]. This subsection discusses a simple strategy that uses
the physical and/or logical environment to bias the Gaussian
sampling clouds to enable real-time generation of complex
maneuvers.

The reference command for the controller is specified by an
ordered list of triples , for ,
together with a driving direction (forward/reverse). The 2-D po-
sition points are generated by random sampling, and
the associated speed command for each point, , is designed
deterministically to result in a stopped state at the end of the
reference command [15]. Each sample point is
generated with respect to some reference position and heading

by

with

where and are random variables with standard Gaussian
distributions, is the standard deviation in the radial direction,

is the standard deviation in the circumferential direction, and
is an offset with respect to . Various maneuvers are

Given a reference position and heading  a sample point  
is generated by:

(x0, y0, θ0) (sx, sy)

where  and  are random variables with standard Gaussian distribution,   
is the standard deviation in the radial direction  is the standard deviation in 
the circumferential directions, and  is an offset with respect to . 

nr nθ σr
σθ

r0 (x0, y0)



Example: Sampling at a right hand turn at an intersection
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Fig. 3. Various sampling clouds (dots show samples generated in one planning cycle; lines show predicted trajectories).

generated simply by changing these parameters according to the
vehicle location and the rules of the road.

1) Physical Environment as a Bias: On a lane, the sampling
starts with randomly shifting the estimated lane center points
in the lateral direction, to fully exploit the lane shape. After a
few hundred samples, it switches to a long and narrow Gaussian
cloud whose longitudinal axis follows the car heading.

At an intersection, a wide and relatively short Gaussian distri-
bution is used that covers the open space inside the intersection
boundary [see Fig. 3(a)]. The value of in intersections is set
to the distance to the goal and is set at . Note that the
samples do not necessarily lie inside the lane. This is because
they are used only to construct the reference path, while the re-
sultant vehicle trajectory may not track it exactly.

The sample can consist of an ordered set of points ,
, called batch sampling. The input to the con-

troller is generated by connecting these ordered points, and the
first point in the sample is connected to a node in the tree (line
4). Batch sampling is useful when the intended trajectory has
some specific shape, such as arriving at a goal with a certain
heading. By placing the last two points of a batch sample along
the direction of the goal heading, the planner can align the ve-
hicle heading towards the goal heading.

In parking lots, sampling is taken both around the vehicle and
around the parking spot. Around the vehicle, a wide and long
Gaussian distribution in the direction of vehicle heading is used,
while around the parking spot, the sampling is performed along
the center line of the intended parking spot. Fig. 3(b) shows an
example of the parking samples. The values of 50 m and

are used in the parking zones.
2) Logical Environment as a Bias: When passing a stopped

vehicle or obstacles in the lane, a wider Gaussian distribution
is used ( ) compared to the normal lane following
( , or if no trajectory to the goal is found).

For a U-turn, the sampling is biased for a three-point turn,
as shown in Fig. 3(c). The location of the different regions cor-
respond to the different phases of a three-point turn. During a
three-point turn, the vehicle first travels forward left; then re-
verses right, moving into the original lane of travel; and finally

moves forward into the targeted lane with the correct heading.
The parameter values used for each of the three sample sets are

The units are meters for and radians for . Here, the origin
is the car location before initiating the U-turn, and ’s

are measured from the car heading there. Sometimes the car
stops very close to the road blockage, requiring a short reverse
maneuver before initiating a U-turn, so an additional cloud of
reverse samples is also generated behind the vehicle.

B. Feasibility Check and Risk Evaluation

After the forward propagation, the resulting predicted trajec-
tory is tested with obstacles and rules of the road, as shown in
Fig. 2. All the physical and logical constraints, such as static and
moving obstacles, lane boundaries, and standoff distance are en-
coded in a drivability map [3], which is updated at 10 Hz. This
drivability map is a 2-D grid in whose resolution is 20 cm,
which gave enough accuracy with a manageable table size. Each
grid cell stores a drivable/non-drivable flag and the associated
penalty if drivable. This implementation has the advantage of
performing the penalty evaluation at the same time as the binary
collision check without additional computation. When evalu-
ating the feasibility of a rectangular car with a specific heading,
line searches are performed over the 2-D grid along the longi-
tudinal direction of the car.

Fig. 4 shows the three different regions encoded in the driv-
ability map. These are infeasible (red), restricted (blue), and
drivable with penalty (white or gray or black). Infeasible re-
gions represent obstacles and lane boundaries. Restricted re-
gions may be driven through but only if the vehicle can then
drive out of them. They are used to prevent the vehicle from
stopping too close to obstacles, and also to maintain sufficient
standoff distance before a passing maneuver. The risky regions
such as those near obstacles or lane boundaries are marked as
drivable with penalty. By adding the path integral of the penalty

A wide and relatively short Gaussian distribution is used that covers the 
open space inside the intersection boundary. The value of  is set to the 
distance to the goal and  is set at . 

σr
σθ 0.4π



Example: Sampling at a parking lot
13

Sampling is taken both around 
the vehicle and around the 
parking spot. 

Around the vehicle a wide and 
long distribution is used 
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Fig. 3. Various sampling clouds (dots show samples generated in one planning cycle; lines show predicted trajectories).

generated simply by changing these parameters according to the
vehicle location and the rules of the road.

1) Physical Environment as a Bias: On a lane, the sampling
starts with randomly shifting the estimated lane center points
in the lateral direction, to fully exploit the lane shape. After a
few hundred samples, it switches to a long and narrow Gaussian
cloud whose longitudinal axis follows the car heading.

At an intersection, a wide and relatively short Gaussian distri-
bution is used that covers the open space inside the intersection
boundary [see Fig. 3(a)]. The value of in intersections is set
to the distance to the goal and is set at . Note that the
samples do not necessarily lie inside the lane. This is because
they are used only to construct the reference path, while the re-
sultant vehicle trajectory may not track it exactly.

The sample can consist of an ordered set of points ,
, called batch sampling. The input to the con-

troller is generated by connecting these ordered points, and the
first point in the sample is connected to a node in the tree (line
4). Batch sampling is useful when the intended trajectory has
some specific shape, such as arriving at a goal with a certain
heading. By placing the last two points of a batch sample along
the direction of the goal heading, the planner can align the ve-
hicle heading towards the goal heading.

In parking lots, sampling is taken both around the vehicle and
around the parking spot. Around the vehicle, a wide and long
Gaussian distribution in the direction of vehicle heading is used,
while around the parking spot, the sampling is performed along
the center line of the intended parking spot. Fig. 3(b) shows an
example of the parking samples. The values of 50 m and

are used in the parking zones.
2) Logical Environment as a Bias: When passing a stopped

vehicle or obstacles in the lane, a wider Gaussian distribution
is used ( ) compared to the normal lane following
( , or if no trajectory to the goal is found).

For a U-turn, the sampling is biased for a three-point turn,
as shown in Fig. 3(c). The location of the different regions cor-
respond to the different phases of a three-point turn. During a
three-point turn, the vehicle first travels forward left; then re-
verses right, moving into the original lane of travel; and finally

moves forward into the targeted lane with the correct heading.
The parameter values used for each of the three sample sets are

The units are meters for and radians for . Here, the origin
is the car location before initiating the U-turn, and ’s

are measured from the car heading there. Sometimes the car
stops very close to the road blockage, requiring a short reverse
maneuver before initiating a U-turn, so an additional cloud of
reverse samples is also generated behind the vehicle.

B. Feasibility Check and Risk Evaluation

After the forward propagation, the resulting predicted trajec-
tory is tested with obstacles and rules of the road, as shown in
Fig. 2. All the physical and logical constraints, such as static and
moving obstacles, lane boundaries, and standoff distance are en-
coded in a drivability map [3], which is updated at 10 Hz. This
drivability map is a 2-D grid in whose resolution is 20 cm,
which gave enough accuracy with a manageable table size. Each
grid cell stores a drivable/non-drivable flag and the associated
penalty if drivable. This implementation has the advantage of
performing the penalty evaluation at the same time as the binary
collision check without additional computation. When evalu-
ating the feasibility of a rectangular car with a specific heading,
line searches are performed over the 2-D grid along the longi-
tudinal direction of the car.

Fig. 4 shows the three different regions encoded in the driv-
ability map. These are infeasible (red), restricted (blue), and
drivable with penalty (white or gray or black). Infeasible re-
gions represent obstacles and lane boundaries. Restricted re-
gions may be driven through but only if the vehicle can then
drive out of them. They are used to prevent the vehicle from
stopping too close to obstacles, and also to maintain sufficient
standoff distance before a passing maneuver. The risky regions
such as those near obstacles or lane boundaries are marked as
drivable with penalty. By adding the path integral of the penalty
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Fig. 3. Various sampling clouds (dots show samples generated in one planning cycle; lines show predicted trajectories).

generated simply by changing these parameters according to the
vehicle location and the rules of the road.

1) Physical Environment as a Bias: On a lane, the sampling
starts with randomly shifting the estimated lane center points
in the lateral direction, to fully exploit the lane shape. After a
few hundred samples, it switches to a long and narrow Gaussian
cloud whose longitudinal axis follows the car heading.

At an intersection, a wide and relatively short Gaussian distri-
bution is used that covers the open space inside the intersection
boundary [see Fig. 3(a)]. The value of in intersections is set
to the distance to the goal and is set at . Note that the
samples do not necessarily lie inside the lane. This is because
they are used only to construct the reference path, while the re-
sultant vehicle trajectory may not track it exactly.

The sample can consist of an ordered set of points ,
, called batch sampling. The input to the con-

troller is generated by connecting these ordered points, and the
first point in the sample is connected to a node in the tree (line
4). Batch sampling is useful when the intended trajectory has
some specific shape, such as arriving at a goal with a certain
heading. By placing the last two points of a batch sample along
the direction of the goal heading, the planner can align the ve-
hicle heading towards the goal heading.

In parking lots, sampling is taken both around the vehicle and
around the parking spot. Around the vehicle, a wide and long
Gaussian distribution in the direction of vehicle heading is used,
while around the parking spot, the sampling is performed along
the center line of the intended parking spot. Fig. 3(b) shows an
example of the parking samples. The values of 50 m and

are used in the parking zones.
2) Logical Environment as a Bias: When passing a stopped

vehicle or obstacles in the lane, a wider Gaussian distribution
is used ( ) compared to the normal lane following
( , or if no trajectory to the goal is found).

For a U-turn, the sampling is biased for a three-point turn,
as shown in Fig. 3(c). The location of the different regions cor-
respond to the different phases of a three-point turn. During a
three-point turn, the vehicle first travels forward left; then re-
verses right, moving into the original lane of travel; and finally

moves forward into the targeted lane with the correct heading.
The parameter values used for each of the three sample sets are

The units are meters for and radians for . Here, the origin
is the car location before initiating the U-turn, and ’s

are measured from the car heading there. Sometimes the car
stops very close to the road blockage, requiring a short reverse
maneuver before initiating a U-turn, so an additional cloud of
reverse samples is also generated behind the vehicle.

B. Feasibility Check and Risk Evaluation

After the forward propagation, the resulting predicted trajec-
tory is tested with obstacles and rules of the road, as shown in
Fig. 2. All the physical and logical constraints, such as static and
moving obstacles, lane boundaries, and standoff distance are en-
coded in a drivability map [3], which is updated at 10 Hz. This
drivability map is a 2-D grid in whose resolution is 20 cm,
which gave enough accuracy with a manageable table size. Each
grid cell stores a drivable/non-drivable flag and the associated
penalty if drivable. This implementation has the advantage of
performing the penalty evaluation at the same time as the binary
collision check without additional computation. When evalu-
ating the feasibility of a rectangular car with a specific heading,
line searches are performed over the 2-D grid along the longi-
tudinal direction of the car.

Fig. 4 shows the three different regions encoded in the driv-
ability map. These are infeasible (red), restricted (blue), and
drivable with penalty (white or gray or black). Infeasible re-
gions represent obstacles and lane boundaries. Restricted re-
gions may be driven through but only if the vehicle can then
drive out of them. They are used to prevent the vehicle from
stopping too close to obstacles, and also to maintain sufficient
standoff distance before a passing maneuver. The risky regions
such as those near obstacles or lane boundaries are marked as
drivable with penalty. By adding the path integral of the penalty

Example: Sampling strategy for an U-turn
The vehicle is facing the road 
blockage (red). 

Blue and white dots are 
reverse and forward 
manoeuvres, respectively. 



CL-RRT: Heuristic 15

Which node (blue) is “closest” to the sample state (red)?

In RRT the distance was used, and the answer in this case the nearest node 
would be the one to the right. 
In CL-RRT the Dubins distance is used, defined as the shortest path a with a 
minimal turning radius . The nearest node would be the one to the left if 

 is sufficiently large. This is called the exploration heuristic.
Rmin

Rmin
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online implementation, while retaining certain completeness
guarantees; and 3) sampling-based methods do not require the
explicit enumeration of constraints, but allow trajectory-wise
checking of possibly very complex constraints.

In spite of their generality, the application of incremental
sampling-based motion planning methods to robotic vehicles
with complex and unstable dynamics, such as the full-size
Landrover LR3 used for the race, is far from straightforward.
For example, the unstable nature of the vehicle dynamics
requires the addition of a path-tracking control loop whose
performance is generally hard to characterize. Moreover,
the momentum of the vehicle at speed must be taken into
account, making it impossible to ensure collision avoidance
by point-wise constraint checks. In fact, to the best of our
knowledge, RRTs have been restricted either to simulation, or
to kinematic (essentially driftless) robots (i.e., it can be stopped
instantaneously by setting the control input to zero), and never
been used in online planning systems for robotic vehicles with
the previous characteristics.

This paper reports on the design and implementation of an
efficient and reliable general-purpose motion planning system,
based on RRTs, for our team’s entry to the DUC. In particular,
we present an approach that enables the online use of RRTs
on robotic vehicles with complex, unstable dynamics and sig-
nificant drift, while preserving safety in the face of uncertainty
and limited sensing. The effectiveness of our motion planning
system is discussed, based on the analysis of actual data col-
lected during the DUC race.

II. PROBLEM FORMULATION

This section defines the motion planning problem. The ve-
hicle has nonlinear dynamics

(1)

where and are the states and inputs of
the system, and is the initial states at . The input

is designed over some (unspecified) finite horizon .
Bounds on the control input, and requirements of various driving
conditions, such as static and dynamic obstacles avoidance and
the rules of the road, can be captured with a set of constraints
imposed on the states and the inputs

(2)

The time dependence of expresses the avoidance con-
straints for moving obstacles. The goal region of
the motion planning problem is assumed to be given by a higher
level route planner. The primary objective is to reach this goal
with the minimum time

(3)

with the convention that the infimum of an empty set is .
A vehicle driving too close to constraints such as lane bound-
aries incurs some penalty, which is modeled with a function

. The motion planning problem is now defined
as follows.

1) Problem II.1 (Near Minimum-Time Motion Planning):
Given the initial states and the constraint sets and ,

Fig. 1. Closed-loop prediction. Given a reference command , the controller
generates high rate vehicle commands to close the loop with the vehicle
dynamics.

compute the control input sequence , ,
that minimizes

while satisfying (1)–(3).

III. PLANNING OVER CLOSED-LOOP DYNAMICS

The existing randomized planning algorithms solve for the
input to the vehicle either by sampling an input itself or by
sampling a configuration and reverse calculating , typically
with a lookup table [9], [10], [12]–[14]. This paper presents the
closed-loop RRT (CL-RRT) algorithm, which extends the RRT
by making use of a low-level controller and planning over the
closed-loop dynamics. In contrast to the existing work, CL-RRT
samples an input to the stable closed-loop system consisting of
the vehicle and the controller [15].

Fig. 1 shows the forward simulation of the closed-loop dy-
namics. The low-level controller takes a reference command

. For vehicles with complex dynamics, the dimen-
sion of the vehicle states can be quite large, but the reference
command typically has a lower dimension (i.e., ).
For example, in our application, the reference command is a 2D
path for the steering controller and a speed command profile for
the speed controller. The vehicle model in this case included
seven states, and the reference command consists of a series of
triples , where and are the position of the refer-
ence path, and is the associated desired speed. For urban
driving, the direction of the vehicle motion (forward or reverse)
is also part of the reference command, although this direction
needs to be defined only once per reference path.

Given the reference command, CL-RRT runs a forward sim-
ulation using a vehicle model and the controller to compute the
predicted state trajectory . The feasibility of this output is
checked against vehicle and environmental constraints, such as
rollover and obstacle avoidance constraints.

This closed-loop approach has several advantages when com-
pared to the standard approach that samples the input to the
vehicle [7], [13]. First, CL-RRT works for vehicles with un-
stable dynamics, such as cars and helicopters, by using a sta-
bilizing controller. Second, the use of a stabilizing controller
provides smaller prediction error because it reduces the effect of
any modeling errors in the vehicle dynamics on the prediction
accuracy, and also rejects disturbances/noises that act on the ac-
tual vehicle. Third, the forward simulation can handle any non-
linear vehicle model and/or controller, and the resulting trajec-
tory satisfies (1) by construction. Finally, a single input to
the closed-loop system can create a long trajectory (on the order
of several seconds) while the controller provides a high-rate sta-
bilizing feedback to the vehicle. This requires far fewer samples

l

p = (x, y)

A pure-pursuit controller is used in the CL-RRT

The next step is to describe how to construct reference paths for this controller.
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Procedure to expand the (orange) tree 
•Generate a sample position . 
•For each node  in the tree, in the order 

sorted by the Dubins distance , use the 

line segment between node  and sample  to 
extend the orange tree. 

•Use the new reference path in the orange tree 
as input to the controller to generate a 
trajectory ,  until it stops (red 

and green curves).
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to build a tree, improving the efficiency (e.g., number of sam-
ples per trajectory length) of randomized planning approaches.

IV. TREE EXPANSION

Summarizing the previous section, the CL-RRT algorithm
grows a tree of feasible trajectories originating from the cur-
rent vehicle state that attempts to reach a specified goal set. At
the end of the tree growing phase, the best trajectory is chosen
for execution, and the cycle repeats. This section discusses how
a tree of vehicle trajectories is grown, using the forward simu-
lation presented in Section III, and identifies several extensions
made to the existing work. Algorithm 1 shows the main steps in
the tree expansion (called function). Similar to
the original RRT algorithm, CL-RRT takes a sample (line 1), se-
lects the best node to connect from (line 2), connects the sample
to the selected node (line 4), and evaluates its feasibility (line 7).
Line 6 splits the trajectory between the newly added node and
its parent into (but typically ) segments so that
future samples can be connected to such nodes to create new
branches in the tree.

The CL-RRT algorithm differs from the original RRT in sev-
eral ways, including: samples are drawn in the controller’s input
space (line 1); nonlinear closed-loop simulation is performed to
compute dynamically feasible trajectories (line 5); the propaga-
tion ensures that the vehicle is stopped and safe at the end of
the trajectory (line 5); and the cost-to-go estimate is obtained
by another forward simulation towards the goal (line 15).

Algorithm 1

1: Take a sample for input to controller.
2: Sort the nodes in the tree using heuristics.
3: for each node in the tree, in the sorted order do
4: Form a reference command to the controller, by

connecting the controller input at and the sample .
5: Use the reference command and propagate from until

vehicle stops. Obtain a trajectory .
6: Add intermediate nodes on the propagated trajectory.
7: if then
8: Add sample and intermediate nodes to tree. Break.
9: else if all intermediate nodes are feasible then

10: Add intermediate nodes to tree and mark them
unsafe. Break.

11: end if
12: end for
13: for each newly added node do
14: Form a reference command to the controller, by

connecting the controller input at and the goal
location.

15: Use the reference command and propagate to obtain
trajectory .

16: if then
17: Add the goal node to tree.
18: Set cost of the propagated trajectory as an upper

bound of cost-to-go at .
19: end if
20: end for

Fig. 2. Vehicle trajectories are generated using a model of the vehicle
dynamics. The generated trajectories are then evaluated for feasibility and
performance.

Fig. 2 shows an example of a tree generated by the
function of the CL-RRT algorithm. The

tree consists of reference paths that constitute the input to the
controller (orange) and the predicted vehicle trajectories (green
and red). The trajectories found to be infeasible are marked in
red. The large dots ( ) at the leaves of the tree indicate that the
vehicle is stopped and is in a safe state (discussed in detail in
Section IV-E). Given this basic outline, the following subsec-
tions discuss the additional extensions to the RRT approach in
[13] in more detail.

A. Sampling Strategies

In a structured environment such as urban driving, sampling
the space in a purely random manner could result in large
numbers of wasted samples due to the numerous constraints.
Several methods have been proposed to improve the efficiency
[16]–[20]. This subsection discusses a simple strategy that uses
the physical and/or logical environment to bias the Gaussian
sampling clouds to enable real-time generation of complex
maneuvers.

The reference command for the controller is specified by an
ordered list of triples , for ,
together with a driving direction (forward/reverse). The 2-D po-
sition points are generated by random sampling, and
the associated speed command for each point, , is designed
deterministically to result in a stopped state at the end of the
reference command [15]. Each sample point is
generated with respect to some reference position and heading

by

with

where and are random variables with standard Gaussian
distributions, is the standard deviation in the radial direction,

is the standard deviation in the circumferential direction, and
is an offset with respect to . Various maneuvers are
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•If  for all , then add the sample 

 to the tree and also some intermediate nodes.  
•Else if the intermediate nodes are feasible, add them to 

the tree. 
If no nodes were added above, then repeat the process 
with a new node . 

x(t) ∈ 𝒳free(t) t ∈ [t1, t2]

s

q

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1107

to build a tree, improving the efficiency (e.g., number of sam-
ples per trajectory length) of randomized planning approaches.

IV. TREE EXPANSION

Summarizing the previous section, the CL-RRT algorithm
grows a tree of feasible trajectories originating from the cur-
rent vehicle state that attempts to reach a specified goal set. At
the end of the tree growing phase, the best trajectory is chosen
for execution, and the cycle repeats. This section discusses how
a tree of vehicle trajectories is grown, using the forward simu-
lation presented in Section III, and identifies several extensions
made to the existing work. Algorithm 1 shows the main steps in
the tree expansion (called function). Similar to
the original RRT algorithm, CL-RRT takes a sample (line 1), se-
lects the best node to connect from (line 2), connects the sample
to the selected node (line 4), and evaluates its feasibility (line 7).
Line 6 splits the trajectory between the newly added node and
its parent into (but typically ) segments so that
future samples can be connected to such nodes to create new
branches in the tree.

The CL-RRT algorithm differs from the original RRT in sev-
eral ways, including: samples are drawn in the controller’s input
space (line 1); nonlinear closed-loop simulation is performed to
compute dynamically feasible trajectories (line 5); the propaga-
tion ensures that the vehicle is stopped and safe at the end of
the trajectory (line 5); and the cost-to-go estimate is obtained
by another forward simulation towards the goal (line 15).

Algorithm 1

1: Take a sample for input to controller.
2: Sort the nodes in the tree using heuristics.
3: for each node in the tree, in the sorted order do
4: Form a reference command to the controller, by

connecting the controller input at and the sample .
5: Use the reference command and propagate from until

vehicle stops. Obtain a trajectory .
6: Add intermediate nodes on the propagated trajectory.
7: if then
8: Add sample and intermediate nodes to tree. Break.
9: else if all intermediate nodes are feasible then

10: Add intermediate nodes to tree and mark them
unsafe. Break.

11: end if
12: end for
13: for each newly added node do
14: Form a reference command to the controller, by

connecting the controller input at and the goal
location.

15: Use the reference command and propagate to obtain
trajectory .

16: if then
17: Add the goal node to tree.
18: Set cost of the propagated trajectory as an upper

bound of cost-to-go at .
19: end if
20: end for

Fig. 2. Vehicle trajectories are generated using a model of the vehicle
dynamics. The generated trajectories are then evaluated for feasibility and
performance.

Fig. 2 shows an example of a tree generated by the
function of the CL-RRT algorithm. The

tree consists of reference paths that constitute the input to the
controller (orange) and the predicted vehicle trajectories (green
and red). The trajectories found to be infeasible are marked in
red. The large dots ( ) at the leaves of the tree indicate that the
vehicle is stopped and is in a safe state (discussed in detail in
Section IV-E). Given this basic outline, the following subsec-
tions discuss the additional extensions to the RRT approach in
[13] in more detail.

A. Sampling Strategies

In a structured environment such as urban driving, sampling
the space in a purely random manner could result in large
numbers of wasted samples due to the numerous constraints.
Several methods have been proposed to improve the efficiency
[16]–[20]. This subsection discusses a simple strategy that uses
the physical and/or logical environment to bias the Gaussian
sampling clouds to enable real-time generation of complex
maneuvers.

The reference command for the controller is specified by an
ordered list of triples , for ,
together with a driving direction (forward/reverse). The 2-D po-
sition points are generated by random sampling, and
the associated speed command for each point, , is designed
deterministically to result in a stopped state at the end of the
reference command [15]. Each sample point is
generated with respect to some reference position and heading

by

with

where and are random variables with standard Gaussian
distributions, is the standard deviation in the radial direction,

is the standard deviation in the circumferential direction, and
is an offset with respect to . Various maneuvers are
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to build a tree, improving the efficiency (e.g., number of sam-
ples per trajectory length) of randomized planning approaches.

IV. TREE EXPANSION

Summarizing the previous section, the CL-RRT algorithm
grows a tree of feasible trajectories originating from the cur-
rent vehicle state that attempts to reach a specified goal set. At
the end of the tree growing phase, the best trajectory is chosen
for execution, and the cycle repeats. This section discusses how
a tree of vehicle trajectories is grown, using the forward simu-
lation presented in Section III, and identifies several extensions
made to the existing work. Algorithm 1 shows the main steps in
the tree expansion (called function). Similar to
the original RRT algorithm, CL-RRT takes a sample (line 1), se-
lects the best node to connect from (line 2), connects the sample
to the selected node (line 4), and evaluates its feasibility (line 7).
Line 6 splits the trajectory between the newly added node and
its parent into (but typically ) segments so that
future samples can be connected to such nodes to create new
branches in the tree.

The CL-RRT algorithm differs from the original RRT in sev-
eral ways, including: samples are drawn in the controller’s input
space (line 1); nonlinear closed-loop simulation is performed to
compute dynamically feasible trajectories (line 5); the propaga-
tion ensures that the vehicle is stopped and safe at the end of
the trajectory (line 5); and the cost-to-go estimate is obtained
by another forward simulation towards the goal (line 15).

Algorithm 1

1: Take a sample for input to controller.
2: Sort the nodes in the tree using heuristics.
3: for each node in the tree, in the sorted order do
4: Form a reference command to the controller, by

connecting the controller input at and the sample .
5: Use the reference command and propagate from until

vehicle stops. Obtain a trajectory .
6: Add intermediate nodes on the propagated trajectory.
7: if then
8: Add sample and intermediate nodes to tree. Break.
9: else if all intermediate nodes are feasible then

10: Add intermediate nodes to tree and mark them
unsafe. Break.

11: end if
12: end for
13: for each newly added node do
14: Form a reference command to the controller, by

connecting the controller input at and the goal
location.

15: Use the reference command and propagate to obtain
trajectory .

16: if then
17: Add the goal node to tree.
18: Set cost of the propagated trajectory as an upper

bound of cost-to-go at .
19: end if
20: end for

Fig. 2. Vehicle trajectories are generated using a model of the vehicle
dynamics. The generated trajectories are then evaluated for feasibility and
performance.

Fig. 2 shows an example of a tree generated by the
function of the CL-RRT algorithm. The

tree consists of reference paths that constitute the input to the
controller (orange) and the predicted vehicle trajectories (green
and red). The trajectories found to be infeasible are marked in
red. The large dots ( ) at the leaves of the tree indicate that the
vehicle is stopped and is in a safe state (discussed in detail in
Section IV-E). Given this basic outline, the following subsec-
tions discuss the additional extensions to the RRT approach in
[13] in more detail.

A. Sampling Strategies

In a structured environment such as urban driving, sampling
the space in a purely random manner could result in large
numbers of wasted samples due to the numerous constraints.
Several methods have been proposed to improve the efficiency
[16]–[20]. This subsection discusses a simple strategy that uses
the physical and/or logical environment to bias the Gaussian
sampling clouds to enable real-time generation of complex
maneuvers.

The reference command for the controller is specified by an
ordered list of triples , for ,
together with a driving direction (forward/reverse). The 2-D po-
sition points are generated by random sampling, and
the associated speed command for each point, , is designed
deterministically to result in a stopped state at the end of the
reference command [15]. Each sample point is
generated with respect to some reference position and heading
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with

where and are random variables with standard Gaussian
distributions, is the standard deviation in the radial direction,

is the standard deviation in the circumferential direction, and
is an offset with respect to . Various maneuvers are
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The tree is expanded until the goal has been 
reached. After that the nodes are mainly sorted by 
ascending order of total cost to reach the sample: 

 

where  is the cumulative cost from the root 
of the tree to a node ,  is the Dubins 

distance, and  is the sampled speed. The objective 
is to make the new trajectories approach the 
shortest path. This is called the optimisation 
heuristic.

Ctotal = Ccum(q) + Lρ(s)/v

Ccum(q)
q Lρ(s)

v
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Note that when selecting the best trajectory on line 7, only the
node sequences that end in a safe state are considered. If none
is found, then the planner will command an emergency braking
maneuver to the controller in order to bring the car to a stop as
fast as possible.

A. Committed Part of the Tree

A naive way to implement an RRT-based planner is to build
a new tree (discarding the old) at every planning cycle, and se-
lect the plan for execution independent of the plan currently
being executed. If the tree from the previous planning cycle
is discarded, almost identical computations would have to be
repeated. In a real-time application with limited computing re-
sources, such an inefficiency could result in a relatively sparse
tree as compared to the case where available computation are
used to add new feasible trajectories to the existing tree. Fur-
thermore, if the tree is discarded every cycle and hence the plan
for execution is selected independently of the plan being exe-
cuted, the planner could switch between different trajectories of
marginally close cost/utility at every planning cycle, potentially
resulting in wavy trajectories.

To address these issues, the CL-RRT algorithm maintains a
“committed” trajectory, the end of which coincides with the
root node. After the first planning cycle, a feasible plan is sent
to the controller for execution. The portion from the root to
the next node is marked as committed. For the next planning
cycle, this node is initialized as the new root node, and all other
children branches from the old root are then deleted because
these branches will never be executed. The tree growing phase
will then proceed with all subsequent trajectories originating
from this new root node. When the propagated vehicle states

(line 3) reach the end of the committed trajectory,
the best child node of the root is initialized as the new root, and
all other children are deleted. Therefore, the vehicle is always
moving towards the root of the tree.

This approach ensures that the tree is maintained from the
previous planning cycle, and that the plan that the controller is
executing (corresponding to the committed part of the tree) is
always continuous. Because the planner does not change its de-
cision over the committed portion, it is important not to commit
a long trajectory especially in a dynamic and uncertain environ-
ment. The CL-RRT ensures that the committed trajectory is not
longer than 1 m, by adding branch points if the best child of the
root is farther than that distance.

B. Lazy Reevaluation

In a dynamic and uncertain environment, the feasibility of
each trajectory stored in the tree should be rechecked whenever
the perceived environment is updated. A large tree, however,
could require constant reevaluation of its thousands of edges,
reducing the time available for growing the tree.

The approach introduced in this paper to overcome this issue
was to reevaluate the feasibility of a certain edge only when it
is selected as the best trajectory sequence to be executed. If the
best trajectory is found infeasible, the infeasible portion of the
tree is deleted and the next best sequence is selected for reeval-
uation. This “lazy reevaluation” enables the algorithm to focus
mainly on growing the tree, while ensuring that the executed

Fig. 5. Repropagation from the current states.

trajectory is always feasible with respect to the latest perceived
environment. The primary difference from previous work [29],
[30] is that the lazy check in this paper is about rechecking of
the constraints for previously feasible edges, whereas the pre-
vious work is about delaying the first collision detection in the
static environment.

C. Repropagation

Although the feedback loop embedded in the closed-loop pre-
diction can reduce the prediction error, the state prediction could
still have nonzero errors due to inherent modeling errors or dis-
turbances. To address the prediction error, one can discard the
entire tree and rebuild it from the latest states. However, this is
undesirable as highlighted in Section V-A.

The CL-RRT algorithm reuses the controller inputs stored in
the tree and performs a repropagation from the latest vehicle
states, as shown in Fig. 5. With a stabilizing controller, the dif-
ference between the original prediction and the repropagation
would converge to zero if the reference path has a sufficiently
long straight line segment.

Instead of repropagating over the entire tree, the CL-RRT al-
gorithm repropagates from the latest states only along the best
sequence of nodes (line 11 of Algorithm 1). If the repropagated
trajectory is collision free, the corresponding controller input is
sent to the controller. Otherwise, the infeasible part of the tree is
deleted from the tree, and the next best node sequence is selected
and repropagated. This approach requires only a few reevalua-
tions of the edge feasibility, while ensuring the feasibility of the
plan being executed regardless of the prediction errors.

VI. IMPLEMENTATION OF THE CONTROLLER

CL-RRT uses the controller in two different ways. One is in
the closed-loop prediction together with the vehicle model, and
the other is in the execution of the motion plan in real time. In
our implementation, the controller ran at 25 Hz in the execution,
and the same time step size was used in the closed-loop simula-
tion. The same controller code was used for both execution and
prediction.

A. Steering Controller

The steering controller is based on the pure-pursuit controller,
which is a nonlinear path follower that has been widely used in
ground robots [31] and more recently in unmanned air vehicles

When the vehicle has moved forward a step, the expansion of 
the tree continues and obsolete parts are removed.

See the reference on the first slide for further details
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The example to the right will be used to illustrate the 
method. The objective for the agent (blue dot) is to reach 
the goal (green dot) avoiding the obstacle (red circle). 

The idea is to construct two vector fields. The first 
vector field  is called the attractive  force and will push the 
agent towards the goal. The second vector field  is 
called the repulsive force  and will push the agent away 
from the obstacle. The two vector fields are added and the 
sum  

 

is used to control the agent, e.g, by using a single integrator 
 or a double integrator  

Fa(x, y)

Fr(x, y)

F(x, y) = Fa(x, y) + Fr(x, y)

·q(x, y) = F(x, y) ··q(x, y) = F(x, y)

Goal

Current position

Obstacle

Fa(x, y) + Fr(x, y) Fa(x, y)

Fr(x, y)
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The first step is to define an attractive potential field, e.g., proportional to  
the distance to the goal point (0,3) 

 

where 

 

The attractive “force” is defined as the gradient of the 
potential with negative sign: 

Ua = Cadistg(x, y)

distg(x, y) = x2 + (y − 3)2

Fa = − ∇Ua = −
Ca

x2 + (y − 3)2 ( x
y − 3)
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A drawback with this potential, is that the gradient is not 
continuous at the goal point, and a quadratic potential 
could be preferable. 

A drawback with a quadratic potential is that becomes 
large when the agent is far away from the goal, which 
can be difficult for the available actuators to handle. 
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A solution is to combine the potentials and use a quadratic 
potential near the goal and a linear further away from the goal: 

 Ua(x, y) =
Ca

2 distg(x, y)2 if distg(x, y) ≤ d*

Cad*distg(x, y) −
Ca

2 (d*)2 if distg(x, y) > d*
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To define the repulsive force the follow potential field is often used: 

 

where  

 

is the distance from the point  to the closest point in the obstacle 
set . 

The repulsive force is defined by 

  

Ur(x, y) =
C2

2 ( 1
distr(x, y) − 1

q* )2
if distr(x, y) ≤ q*

0 if distr(x, y) > q*

distr(x, y) = min
(x′ ,y′ )∈O

(x − x′ )2 + (y − y′ )2

(x, y)
O

Fr(x, y) = − ∇Ur(x, y)
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The following figure shows the sum of the potential fields: Ua(x, y) + Ur(x, y)
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Pros: 
• Gradient can be calculated quickly 
• Can handle moving obstacles and new 

obstacles that appear 
Cons: 
• The agent can be stucked in a local minima 

(see the figure to the right) 
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where sign
⇣

@ A(e1,i)
@e1,i

⌘
= sign(e1,i) must hold for the domain of e1,i where platooning or

gap closing is of interest. Condition (3.12) ensures the potential is zero on the desired
platooning distance, and (3.13) ensures the platooning distance is the minimum of the
APF. When substituting  A for

 PD(e1,i) =
1

2
kpe

2
1,i, 2  i  m, (3.14)

the linear controller (3.10) can be obtained. A linear controller is very useful for
linear systems and/or systems with relatively small changes in magnitude of the error.
However, when combining platooning, gap closing and gap-making scenarios, one should
note that the position error e1,i can vary significantly in magnitude. Therefore, it is
desirable to consider the desired position-dependent behavior when following a preceding
vehicle, thereby designing an Artificial Potential Field Cooperative Cruise Adaptive Cruise
Control (APF-CACC). Herein, the distinction between a Repulsive Potential (RP) and
an Attractive Potential (AP) is made, resulting in a deceleration or acceleration term
respectively, such that the total platooning potential can be defined by:

 A(e1,i) =  RP (e1,i) + AP (e1,i), 2  i  m. (3.15)

For illustration, the desired repulsive and attractive potential fields ( RP , AP ) can be
sketched, with an equivalent linear control potential  PD as in (3.14) for comparison.

ii� 1

 

dr,i e1,i

e1,iO

vi�1 vi

 PD

 RP

 AP

Figure 3.2: The desired repulsive and attractive potential ( RP , AP ), in comparison with
a quadratic potential ( PD)

Figure 3.2 illustrates the shape of a desirable potential function. In case e1,i ⌧ 0, collision
has to be avoided, therefore the repulsive potential increases rapidly along the red line.
For a small magnitude of the error, damped and subtle behavior is desirable, therefore the
potential changes only slightly. In case the gap is very large, gap closing might be no longer
of interest. Therefore,  A(e1,i) should be approximately constant for e1,i � 0, creating a
fade-o↵ at large inter-vehicular distances. During gap closing however, a balance between
performance, comfort, safety, and fuel consumption will be desirable. A controller will
use the partial derivative of such a function to control the potential towards zero. In a
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From: Cooperative platoon maneuvering using Artificial Potential Fields,
K. Elferink, Master thesis, 2016, Eindhoven University of Technology

Example how artificial potential field can be used to control the 
distance to the vehicle in front of you: 


