Control of Autonomous Vehicles Il

TSFS12: Autonomous Vehicles —planning, control, and learning
systems

Lecture 9: Jan Aslund <jan.aslund@liu.se>
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Closed Loop Rapidly-Exploring Random Tree (CL-RRT)

LINKOPING
II." UNIVERSITY



Closed Loop Rapidly-Exploring Random Tree (CL-RRT)

Today I will present the method Closed Loop Rapidly-Exploring Random
Tree. The presentation will be based on the following material from
previous lectures:

» Kinematic Model (lecture 3)

» Dubins Car (lecture 3)

« Rapidly-exploring random tree (lecture 4)

* Pure-Pursuit Control (lecture 6)

The main reference is the paper:

Real-Time Motion Planning With Applications to Autonomous Urban Driving,
Kuwata et.al.,IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL.
17, NO. 5, SEPTEMBER 2009

LINKOPING
UNIVERSITY



https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/TCST.2008.2012116

Material from Previous Lectures

LINKOPING
II." UNIVERSITY



Kinematic Model (Lecture 3)

Example of a kinematic model:

X=vcosd
y =vsing

0 =vtano/l
§=u,
V=a
a=u,
0 € [0,
i, € [—0

ax? 517161)6 ]

max? 67}16{)6 ]

Note that the steering angle and acceleration are states.
This gives a smoother trajectory.
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Dubins Car (Lecture 3)

Problem: Find the shortest path between two points with the
orientation specified at the Initial and final point, and the turning
radius limited from below

Solution: The optimal solution consists of segments with minimal
radius R, and straight lines.
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Pure-pursuit control (Lecture 6)

A simple control technique to compute the arc
needed for a robot to get back on path

« With a look-ahead horizon, /, find point
p = (x,y) on the path to aim for

« Compute the turning radius r to get there

 For a single-track robot, this corresponds to a
steering angle

| |
—tan o = —
L r
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Basic Version of RRT (Lecture 4) 8

Algorithm 1: RRT w/o. Differential Constraints

V {q[} , E +— @;
for +=1,..., N do:
drand < Sample;
Qnearest < NeareSt(g — (Va g)a Qrand) ;

Qnew < Steer(QHearesta Qrand) ;
if ObstacleFree(gqnearest, qnew) then

V < VU {gnew};

E+— EU {(C]nearest7 Qnew)} ;
return G = (V,€);

© 00 N O Ot = W N+

LaValle, S. M., & J. J. Kuffner Jr.: "Randomized kinodynamic planning”. The
International Journal of Robotics Research, 20(5), 378-400, 2001.
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Basic Version of RRT (Lecture 4)

« Sample: Gives a sample in the free state space.

* Nearest: Provides the vertex in the tree that i1s closest to the
sampled state.

* Steer: In general this is a so called two-point boundary value
problem (TPBV). Construct a path from the nearest vertex
towards the sampled state, often with a maximum path length

(alternative strategies exist).

» ObstacleFree: Checks whether the path from the closest
vertex in the graph to the new state is collision free.
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Closed Loop Rapidly-Exploring Random Tree (CL-RRT]

CL-RRT samples an input to the stable closed-loop system consisting
of the vehicle and the controller.

r_, U Vehicle T

| Controller |— Model >

*CL-RRT works for vehicles with unstable dynamics, such as
cars and helicopters, by using a stabilizing controller.

* A single input to the closed-loop system can create a long
trajectory (on the order of several seconds) while the
controller provides a high-rate stabilizing feedback
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CL-RRT: Sampling strategies

Given a reference position and heading (X, vy, 6)) @ sample point (s, Sy)
IS generated by:

S T cos( 0 . r
="+ () with

Sy 0 sin(6) Y
where n,.and n, are random variables with standard Gaussian distribution, o,
is the standard deviation in the radial direction oy is the standard deviation in

the circumferential directions, and r;, is an offset with respect to (x,, ).

Orlnrl -+ T
oeng + O
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Example: Sampling at a right hand turn at an intersection

A wide and relatively short Gaussian distribution is used that covers the
open space inside the intersection boundary. The value of 6. 1s set to the

distance to the goal and o, is set at 0.4x.

LINKOPING
UNIVERSITY




13

Example: Sampling at a parking lot

Sampling is taken both around
the vehicle and around the
parking spot.

Around the vehicle a wide and
long distribution is used
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Example: Sampling strategy for an U-turn

The vehicle is facing the road
blockage (red).

Blue and white dots are
reverse and forward
manoeuvres, respectively.

14
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CL-RRT: Heuristic

Which node (blue) is “closest” to the sample state (red)?

o

In RRT the distance was used, and the answer in this case the nearest node
would be the one to the right.
In CL-RRT the Dubins distance is used, defined as the shortest path a with a

minimal turning radius R . . The nearest node would be the one to the left if
R, . is sufficiently large. This is called the exploration heuristic.

15
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CL-RRT: The controller

A pure-pursuit controller is used in the CL-RRT

r_, U Vehicle x

| Controller [—* Model >

The next step is to describe how to construct reference paths for this controller.
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CL-RRT: Expand the tree

Procedure to expand the (orange) tree

Goal

e Generate a sample position s.

Obstacle collision
=» Infeasible

e For each node ¢ in the tree, in the order

Road departure

sorted by the Dubins distance Lp(s), use the pivider crgssing
=>» Infeasible

=> Infeasiple
line segment between node g and sample s to

extend the orange tree.

e Use the new reference path in the orange tree

Input to the controller

== Predicted trajectory
® ® Stopping nodes

[ Obstacle

as input to the controller to generate a

trajectory X(7), t € [#,, 1,] until it stops (red

and green curves).
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CL-RRT: Expand the tree ’

oIt X(7) € X 4,.(¢) forall t € [1,1,], then add the sample Goal

s to the tree and also some intermediate nodes.

Obstacle collision

e Else if the intermediate nodes are feasible, add them to > Infeasible

the tree. . |
Divider crcIssmg

Road departure
=>» Infeasible

If no nodes were added above, then repeat the process > Infeasible

with a new node g.

Input to the controller

== Predicted trajectory
® ® Stopping nodes

[ Obstacle
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CL-RRT

The tree is expanded until the goal has been
reached. After that the nodes are mainly sorted by
ascending order of total cost to reach the sample:

Ctaml — Ccum(Q) T Lp(S)/ V

Divider crcIssing
=> Infeasiple
where C_, . (q) is the cumulative cost from the root

of the tree to a node g, Lp(s) is the Dubins

distance, and v is the sampled speed. The objective
is to make the new trajectories approach the
shortest path. This is called the optimisation
heuristic.

Goal

Obstacle collision
=» Infeasible

Road departure
=>» Infeasible

Input to tl
= Predictec
® ® Stopping
[ Obstacle

19
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Replanning

When the vehicle has moved forward a step, the expansion of
the tree continues and obsolete parts are removed.

Input to controller

mmmm Predicted path
=== Actual path

mmmm Repropagation

Current
states

Best path

Goal
Start Obstacle

See the reference on the first slide for further details

20
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Artificial Potential Fields
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Artificial Potential Field Method

The example to the right will be used to illustrate the
method. The objective for the agent (blue dot) is to reach
the goal (green dot) avoiding the obstacle (red circle).

The F (x, y)idea is to construct two vector fields. The first

vector field is called the attractive force and will push the
agent towards the goal. The second vector field F (x, y) is

called the repulsive force and will push the agent away
from the obstacle. The two vector fields are added and the
sum

F(x,y) =F (x,y) + F.(x,y)

IS used to control the agent, e.g, by using a single integrator
q(x,y) = F(x,y) or a double integrator q(x,y) = F(x,y)

@® Goal

Fo(z,y) + Fr(x,y)

Fo(x,y)

Current position

22
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Attractive potential >

The first step is to define an attractive potential field, e.g., proportional to
the distance to the goal point (0,3)

U, = C,dist,(x,y)

///)

// /
!/ !/ /
//,:'" / // s /
// // / / r/"" /
sy

Y,

)
//‘v, / /? // //// / /

where 6 -

dist (x, ) = \/ X2+ (y = 3)?

/ g // p

The attractive “force” is defined as the gradient of the
potential with negative sign:

F o=—-VU,= S (,23)
‘ -y e SR
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Attractive potential

A drawback with this potential, is that the gradient is not
continuous at the goal point, and a quadratic potential
could be preferable.

A drawback with a quadratic potential is that becomes
large when the agent is far away from the goal, which
can be difficult for the available actuators to handle.

24
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Attractive Force, Composite Definition

A solution is to combine the potentials and use a quadratic
potential near the goal and a linear further away from the goal:

%distg(x, y)? if distg(x, y) < d*
Uy x,y) = c
C d*dist,(x,y) — —~(d*)* if dist,(x,y) > d*
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Repulsive Force

To define the repulsive force the follow potential field is often used:

G, 1 1\2 .. ;.
< %

U(x,y) = { 2 (Goey ~ ) distey) <q

0 if dist (x,y) > g*
where
dist (x,y) = min \/ (x —x) + (y — y')?

x',y)eo
is the distance from the point (x, y) to the closest point in the obstacle
set 0.

The repulsive force is defined by

Fr(xvy) — = VU,,(X,y)
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Artificial Potential Fields

The following figure shows the sum of the potential fields: U (x,y) + U (x, y)

27
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Artificial Potential Fields *

Pros:
e Gradient can be calculated quickly

e Can handle moving obstacles and new

obstacles that appear

Cons:

e The agent can be stucked in a local minima
(see the figure to the right)
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Artificial Potential Fields

Example how artificial potential field can be used to control the
distance to the vehicle in front of you:

Figure 3.2: The desired repulsive and attractive potential (Vgp, W 4p), in comparison with
a quadratic potential (Vpp)

From: Cooperative platoon maneuvering using Artificial Potential Fields,
K. Elferink, Master thesis, 2016, Eindhoven University of Technology
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