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Purpose of this Lecture

 Give a background on dynamic optimization, particularly with
respect to applications in motion planning and control and the
main ideas of the methods used:

« motivation and challenges,
 fundamental concepts and methods,
* application examples.
« Demonstrate a case-study for optimization of motion primitives.

« Connected to Hand-in Exercise 2.
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Expected Take-Aways from this Lecture

« Be familiar with basic concepts in optimization and common
methods for numerical optimal control for systems described by
continuous-time dynamic models.

« Not expected to get insights into all details of the treated
methods, primarily on a general level for understanding of their
applicability.

« Have knowledge about different applications of dynamic
optimization for motion planning and control for autonomous
vehicles.
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Literature Reading

The following book and article sections are the main reading material for this lecture. References to
further reading are provided throughout the slides and at the end of the lecture slides.

« Limebeer, D. J., & A. V. Rao: "“Faster, higher, and greener: Vehicular optimal
control”. IEEE Control Systems Magazine, 35(2), 36-56, 2015.

« For a more mathematical treatment of the topic of numerical optimal control
and further reading on the methods presented in this lecture: Chapter 8 in
Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory,
Computation, and Design. 2nd Edition. Nob Hill Publishing, 2017.
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Outline of the Lecture

* Introduction to dynamic optimization and application examples.

« Methods and concepts for solving continuous-time optimal
control problems using numerical methods.

 Case study: computation of optimal motion primitives.

II LINKOPING
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techniques for self-driving urban vehicles”. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55, 2016.



Introduction to Dynamic Optimization ana
Application Examples
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Recall Motion-Planning Problem from Lecture 4

« Compute a strategy for transferring a vehicle from an initial state
to another desired state.

« Constraints on control inputs and states, as well as a
performance criterion to be fulfilled.

—
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Dynamic Optimization — Examples (1/3)

 Vehicle maneuvers at-the-limit of
tire friction for development ot
future safety systems for
autonomous vehicles.

* Traverse the hairpin turn in as
short time as possible.

» The plot shows results for different
vehicle models.
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Dynamic Optimization — Examples (2/3)

« Perform an avoidance
maneuver, while spending as

) e
short time as possible in the Q&ar %

opposite driving lane.

 Single-track vehicle model m(0y — vyh) = Fy s cos(6) + Fy,, — F, fsin(0)

combined with tire-road by + v30) = F 1 cos(8) + F, » + Fy. g sin(6)
f”Ctlon mOdeI' Izlﬁ = lny,f COS(5) — lrFy,T + lfo,f SiIl((S)
28m :>: 1m
22m : _________ :’ ﬁ \*‘*.— -------- >j3m

| 12m I 13.5m { 11m } 125 m I 12m I

I LINKOPING P. Anistratov, B. Olofsson, & L. Nielsen: “Lane-deviation penalty formulation and analysis for autonomous vehicle avoidance maneuvers”,
I. UNIVERSITY Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(12), 2021.



Dynamic Optimization — Examples (3/3) "

« Perform an avoidance maneuver, while spending as short time as
possible in the opposite driving lane.

 Vary the initial velocity and the geometry of the obstacle and study
the resulting optimal vehicle maneuvers.

.......... vy = 50 Vo = 60

vg = 70 vg = 80 ===—==— vg = 85 v = 90

0 10 20 30 40 50 60 70 80 90 100
X [m]
I LINKOPING P. Anistratov, B. Olofsson, & L. Nielsen: “Lane-deviation penalty formulation and analysis for autonomous vehicle avoidance maneuvers”,
I. UNIVERSITY Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(12), 2021.



Dynamic Optimization — Background (1/2)

 Finding solutions to optimization problems involving system dynamics
(e.g., the motion equations of an autonomous vehicle).

« Optimal control for finding input signals and state trajectories for
optimizing a performance criterion, while fulfilling model dynamics and
often also other requirements.

e Sometimes also unknown parameters to be found.

« The methods in this lecture are important for model predictive control
(MPC) (see Lecture 7).

« Moving-horizon estimation (MHE) (dual problem to MPC).

12
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Dynamic Optimization — Background (2/2)

* In this lecture the focus is on numerical methods for dynamic optimization,
since many real-world problems are intractable with analytical methods.

 Independent variable considered in this lecture is time ¢, but also other
variables like distance possible.

« Examples:

« Motion planning for autonomous vehicles and robots,
 Optimal battery-charging planning for autonomous electric vehicles,
o Efficient electric motor and engine control,

« Traffic-flow optimization in city environments.

II LINKOPING
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System Dynamics (1/2)

« The motion equations to be considered are described by
differential equations for the states in continuous time (or
difference equations in discrete time), see Lecture 3.

« Possibly also algebraic variables and associated algebraic
equations.

II LINKOPING
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System Dynamics (2/2)
 Explicit ordinary differential equation (ODE) system:

t — time
= f(t,z,u) T — states
' w — Inputs

« Differential-algebraic equation (DAE) system, fully implicit to
the left and semi-explicit form to the right:

t — time
F(t,ib,ZC,Z,”UJ) :Oa Z.E:F(t,$,Z,UJ), Tr — states
G(t,z,z,u) =0 0=G(t,x,z,u) 2 — algebraic variables
u — Inputs

II LINKOPING
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Objective Function

« The function to be optimized (i.e., minimized or maximized) is
referred to as the objective function.

e Also known as cost function, if to be minimized.

* It objective function independent of optimization variables: feasibility
problem.

« Can involve optimization variables at any time point in the considered

interval |0, 7, e.g., integral of quadratic function and penalty on
terminal states (at time 7').

II LINKOPING
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Constraints

« In addition to the motion equations, there are often several other
limitations or requirements to consider.

« Mathematically described by equalities or inequalities.

« Examples:
 Limits on control signals, such as maximum acceleration.

« Geometric constraints for vehicle obstacle avoidance.

« Physical constraints on internal states and other variables, such
as maximum power from motor.

17
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A First Optimization Example (1/3)

« Assume an autonomous car that should move from point A to
point B, driving along a straight road.

Perform this task in as short time as possible.
« The quantity that we can control on the car is the acceleration.

 Limitations on maximum acceleration and maximum velocity
of the car.

II LINKOPING
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A First Optimization Example (2/3)
« Mathematical formulation of the motion-planning problem for the

autonomous car over time horizon [0, 7] : Obijective function

e ' :
minimize 1’ System dynamics

subject to p=wv, v = a, p — position

20 =0, 20 = 0. o - velocity

= 100, o( a — acceleration

— terminal time
Input and state Amin S a < Qmax
constraints Venin < U < Umax Term|na| constraints

« |dentification of variables leads to the expressions:
T T
= v) ,u=aqa, f=(v u

19
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A First Optimization Example (3/3)

Position

100 f ! | ‘ ‘ ‘
. : : e Eg |
* Resulting trajectories for the position, = /
velocity, and acceleration of the car. R
| | Velgcity | | |
p(0) = 0, p(T) = 100 m, oS N
v(0) =0, v(T) =5 m/s, =
Umin — —10 Hl/S, oo > 4 6 8 10 1l_2
Umax = 10 m/s, (e
2 < 27
Amin = —3 m/s”, 2o
2 “ .2
Umax = 3 M/S E-- - - — -1
0 2 4 6 8 10 12
Time (s)
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Mathematical Formulation

Lagrange integrand
« Optimization problem over time horizon

|

T, where T
possibly is a free optimization variable:

minimize /O L(z(t), u(t)) dt + T(z(T))

Initial conditions

subject 16" 2(0) = zo, #(t) = £t 2(t), u(t))
r(t) € X, u(t) e U, (T) € Xp, t € [0,T]

Terminal

e Minimization of tefminal time can be formulated: EEERE
T
State and control
T :/ 1dt
0

constraints
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Challenges and Solution Strategies for
Dynamic Optimization
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Challenges (1/2)

23

* Objective function with equality and inequality
constraints.  Convex |

« Optimization algorithm often finds loopholes in
model.

Non-
Convex

|

 Continuous-time dynamics (infinite dimensional).

» Often non-linear and non-convex problems in

d ppl |Cat| ons. "In constrained as well as in unconstrained minimization, convexity is a watershed
concept. The distinction between problems of ‘convex’ and ‘nonconvex’ type is
much more significant in optimization than that between problems of ‘linear” and

‘nonlinear’ type.” — R. T. Rockafellar, Fundamentals of Optimization, Univ. of
Washington, Seattle.

* Local and global optima of the optimization problem.

II LINKOPING Boyd, S. & L. Vandenberghe: Convex Optimization. Cambridge University Press, 2004.
[

UNIVERSITY
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Challenges (2/2)

« Convex optimization problem (convex feasible set and convex objective function):
a local minimum is also a global minimum.

« Non-convex optimization problem: can be challenging to even find one local
optimum, and no information about objective value at possible other local optima.
« How to find local minima?

* Recall from previous courses in calculus that local optima of a function can be
found using the derivative.

« Here we mainly consider iterations based on Newton’s method and optimality
conditions.

« How to numerically compute required derivatives of involved functions with
sufficient accuracy?

II “ LINKOPING Boyd, S. & L. Vandenberghe: Convex Optimization. Cambridge University Press, 2004.
[ UNIVERSITY
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Solution Strategies — Overview

Continuous-Time Dynamic Optimization Problem

- ~.

Dynamic Programming based Indirect Methods based on
on HJB Equation Pontryagin’s Maximum Principle

— = - — m— = t — — -

| Direct Methods for
! transformation to a large NLP

Single Shooting Multiple Shooting }ollocation

Ee— S _

II LINKOPING Diehl, M: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.
o UNIVERSITY
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Numerical Solution of an Optimal Control Problem

« Two major approaches to discretization related to optimization
problems:

» Discretize the control inputs and reformulate optimization
oroblem in initial state and control inputs (sequential).

* Discretize both control inputs and states and keep all
variables in the optimization (simultaneous).

II LINKOPING Diehl, M: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.
o UNIVERSITY



Direct Methods tor Dynamic
Optimization




Direct Methods — The Overall Idea

M
|
|

minimize /0 L(xz(t),u(t))dt + I'(x(T)) I

subject to  x(0) = xq, x(t) = f(t,z(t),u(t)),

r(t) e X, u(t) e U, z(T) e Xp, t€[0,T]

l Discretization

minimize f(z)

subject to g(x) =0,
h(x) <0

=
VAN

28

Infinite-
dimensional
optimal control
problem

Optimization
problem with a

finite set of variables,
a non-linear program

II. LINKOPING Diehl, M: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.
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Direct Methods

« First discretize the optimization problem, then optimize to find an
approximate solution to the original continuos-time optimization
problem.

 Transform the infinite-dimensional optimization problem to a finite-
dimensional non-linear program (NLP) by discretization of the control
inputs and possibly states.

« Then solve the (typically large) NLP, utilizing sparsity.

« Focus on direct simultaneous methods in this lecture (well-proven track
record in many applications).

II LINKOPING Diehl, M: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.
o UNIVERSITY
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Direct Single Shooting (1/2)

« Basic idea of single shooting:

* Discretize control inputs (piecewise ¢ L (t)
constant in the figure to the right).

« Start with an initial guess of control wOm
inputs and integrate dynamics Uy S
forward in time with these inputs. | : L

* [teratively update control inputs 0 T

and re-simulate dynamics forward.

II LINKOPING Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. 2nd Edition. Nob Hill Publishing, 2017.
o UNIVERSITY



Direct Single Shooting (2/2)

« Sequential approach that optimizes over the control parameters
(typically assuming piecewise constant control).

« One of the most straightforward methods to implement, though
challenging with unstable system dynamics and handling of state

constraints. Updated control

Initial guess parameters

Optlmal States

solution

31

II " LINKOPING Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. 2nd Edition. Nob Hill Publishing, 2017.
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Direct Multiple Shooting (1/2)

« Extension of single shooting:

 Divide the time horizon into N , (t)
elements and apply single —
shooting in eachpEIZmer?t. 7 - N

0~ 2

. Add continuity constraints (0 N — V.
(equality) at the element junctions UP
for the states. T S T

0 1

A hybrid between sequential and
simultaneous approach.

II LINKOPING Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. 2nd Edition. Nob Hill Publishing, 2017.
[ UNIVERSITY
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Direct Multiple Shooting (2/2)

 Explicit Runge-Kutta (RK) methods common for the integration of the
states in each element.

« The division into elements implies better numerical accuracy (especially
for unstable system dynamics).

 Allows initialization of state trajectories and easier handling of path
constraints.

« Sparsity in the Jacobian and Hessian matrices corresponding to the
resulting NLP.

II LINKOPING Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. 2nd Edition. Nob Hill Publishing, 2017.
o UNIVERSITY
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Direct Simultaneous Collocation (1/4)

« Consider an explicit ODE: Tot1 = Tn +hY biki,
_ i=1 Explicit
r = f(t,x) By = f(tn ),

. . . . ko = f(tn + c2h, zp, + h(ag k1)),
* Numerical integration with

explicit or implicit Runge- k. _ Ftn + sy n + Bas ks + -+ s s 1ks 1))
Kutta methods (with step -

, Tnt1 = Tp +h Y bik;, Implicit
size h and parameters a, b, ¢). ; P

.. . ki = f(tn + Clh,xn + h(al,lkl 4+ ...+ CL178]C3)),
* Implicit methods imply by = F(by + cohy @ + hlasaks + ..+ as.oks)),

(nonlinear) equation solving.
ks = f(tn + csh,xn + h(as 1k + ... + as sks))

II LINKOPING
[ UNIVERSITY
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Direct Simultaneous Collocation (2/4)

 As in multiple shooting, divide the time horizon into elements.

 Discretize both state and input trajectories and include
numerical integration conditions as equality constraints in the
optimization (collocation equations), often using implicit
integration methods.

* Define a number of collocation points within each element.

II. HNK/OEFI;IQI'?Y Magnusson, F: Numerical and Symbolic Methods for Dynamic Optimization, Ph.D. Thesis TFRT-1115, Dept. Automatic Control, Lund University, 2016.
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Direct Simultaneous Collocation (3/4)

« Represent state variables within each element using Lagrange
interpolation polynomials (piecewise polynomials over the
time horizon) of order V...

 Collocation polynomials for state derivatives obtained by
differentiating Lagrange polynomials for the state variables.

« Add state-boundary constraints at the element junctions for
continuity.

II. HNK/OEFI;IQI'?Y Magnusson, F: Numerical and Symbolic Methods for Dynamic Optimization, Ph.D. Thesis TFRT-1115, Dept. Automatic Control, Lund University, 2016.
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Direct Simultaneous Collocation (4/4)

« Choice of collocation points within each element leads to different versions of implicit
Runge-Kutta methods (nonlinear equation system):

« Gauss-Legendre — collocation points chosen as zeros of orthogonal Legendre
polynomials, strictly in interior of element and symmetric around midpoint of
element.

« Radau - always includes the end point of the element, provides so called stiff
decay and exhibits good numerical stability in many applications.

« Lobatto — always includes the initial point and the end point of the element as
collocation points.

« Variant of direct collocation: pseudo-spectral methods where only one element over
the entire time horizon [0, 1], but high-order polynomials for the interpolation
polynomials (i.e., many collocations points).

II. HNK/OEFI;IQI'?Y Magnusson, F: Numerical and Symbolic Methods for Dynamic Optimization, Ph.D. Thesis TFRT-1115, Dept. Automatic Control, Lund University, 2016.



Collocation — Example (1/2)

« Approximate the state trajectories with piecewise third-order
polynomials and collocation points using Radau scheme.

« Points distributed in the normalized interval [0, 1]:

7= (0 0.1551 0.6449 1)
¢ Introduce a uniform width of each element
t, =kh, k=0,...,N
* Collocation points illustrated graphically (hon-unitorm!)

Lk41.0
— | —

tko Tk.1 Uk,2 tk.3

38
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Collocation — Example (2/2)

« Within each element, Lagrange polynomials basis are used to
interpolate the values at the collocation points

« The state trajectory is then approxmated as

t—1
ZL ( k) Tki, tE€ [thytrt1]

« Differentiation with respec:t to time gives

39
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Solution of the Resulting Non-Linear
Program
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Non-Linear Program (NLP)

 The direct methods for discretization result in a (typically large)
non-linear program (NLP) on the format:

minimize f(x)

subject to g(x)

0,
h(z) <0

AN

« This NLP can be solved using various methods, e.g., interior point
(IP) and sequential quadratic programming (SQP).

II LINKOPING Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.
o UNIVERSITY



Background: Newton’s Method (1/2)

A

* Iterative method for finding the
roots of a function F, i.e., an x such
that F'(x) = 0, based on a starting
point xo.

42

* |teratively linearize the function

around the current value x; and
subsequently update value to Tg41 .

II LINKOPING
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Background: Newton’s Method (2/2) )

* Iteratively linearize the function F'"around the current x using
the Jacobian J and take a step in the computed direction (here

assuming a square Jacobian matrix):

F(xg) + J(xk)(x — xg) = 0, where J(zg) = g—i(xk) =

Thy1 = T — J () F(xp)
« New step computed by solving the linear equation system:
J(xi)Ax = —F(xg), where Az = x11 — ok
 Can be used for finding local optimum for optimization problem
— initialization strategies for variables important.

II LINKOPING
[ UNIVERSITY
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Newton’s Method — Example

» An example for finding the roots F'(x) = 0. Note the
dependence on the starting value of .

F(z) = 10sin(z) — 2°, F'(x) = 10cos(z) — 327

.Cl’)o—— . ZEO:OS ZEQ:14

LINKOPING
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Automatic Differentiation — AD

Structured way of computing derivatives with machine precision.

Chain rule for differentiation used to decompose the problem into smaller
elementary operations.

Provides Jacobians (first-order derivatives) and Hessians (second-order
derivatives) for solution of the NLP using Newton-based methods.

Forward or backward mode can give very different performance.
« Forward mode when #inputs < #outputs.

« Backward mode when #inputs > #outputs.

Example: backpropagation in training of neural networks.

LINKOPING Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.
UNIVERSITY



Automatic Difterentiation — Example
« Compute gradient of F' using AD in forward mode:

F(il’)l, 513'2) — COS(ZEl) + T1T2
« Decompose into elementary operations:

X3 = T1T2, T3 = T1T2 + T1X2,
T4 = cos(xy), 4 = —sin(zq) 1,
Ty = XT3 + X4 Ts = T3 + T4

« The final row in the right column is the desired derivative. Performing
these computations twice for the so called seeds

I.lzl, SiZQZOI'eSp. Ci?lz(), :U2:1

gives the desired gradient. Only one sweep using backward mode AD.

46
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Optimality Conditions

* Introduce the Lagrangian function: ]
L(z,\v) = f(x)+ X g(x) + v h(x)

| minimize f(x)
subject to g(x)

47

 First-order optimality conditions, given certain technical

conditions on the constraints (constraint qualification), by Karush,

Kuhn, and Tucker (KKT):

Feasibility
Complementarity

izl,...,nh

LINKOPING
II." UNIVERSITY

Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.



. minimize f(z)

Solution of NLP (1/2) | subject tog(x)

ﬂ _
» For equality-constrained NLPs (i.e., h(z) = 0), the KKT
conditions give a nonlinear system of equations to be solved:

(vm,») .

g(x)

* Apply Newton’s method with variables and function:

II LINKOPING Diehl, M: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.
o UNIVERSITY



 minimize f(x)
|

 subject to  g(z)

49

Solution of NLP (2/2)

ﬂ ,

Application of Newton’s method for the case h(x) = 0 gives the
iterations as the solution of the linear equation system:

(™) (e ™) (35) -

« Requires the Hessian of the Lagrangian function.

« Partial Newton step with line-search or trust-region strategies to
ensure intended decrease of specified measure.

 Quasi-Newton methods with approximate Hessian exist (of which BFGS
is one of the most common).

II LINKOPING Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.
o UNIVERSITY
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Example: Logarithmic Barrier Function

Consider the following
approximation of a barrier
function:

—p log(—u)
The approximation of the barrier
improves for decreasing values
of the parameter p.

-0.15 J J J J
-10 -8 -6 -4 -2 0

0.2

0.15 ¢

0.1

0.05r

-0.05 ©

-0.1 1

Decreasing 9!

LINKOPING
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 minimize f(x) 3

Interior-Point Methods (1/2) subject to  g(x) =0,
h(x) <0

IA

 Consider equality and inequality-constrained NLP problems.

e Interior-point methods with barrier functions for inequalities — move
inequality constraints to objective function with barrier function and positive
parameter L

minimize f(x) ]P 1 Z log(—h;i(x))
i=1

subject to g(x) =0
« Could then be solved as an equality-constrained problem, but often

Lagrange variables for inequalities kept for numerical stability as shown on
next slide.

II LINKOPING Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.
o UNIVERSITY



minimize f(z) — p Z log(—hi(x)) | 52
i=1
subject to g(x) =0

Interior-Point Methods (2/2) |

 Log-barrier approach corresponds to a smooth approximation of the
KKT system:

Vo L(x™, X5, v™) =0,
- 9(@7) =0,
| V*h-( )— —l, 1= 1 nh

* Primal-dual variant of IP method solves the above KKT system for
decreasing values of barrier parameter 1, while ensuring that the
inequalities v > 0, h(x) < 0 hold during the iterations.

« IPOPT is a state-of-the-art implementation of such kind of NLP solver.

II LINKOPING Wachter, A. & L. T. Biegler: “On the implementation of a primal-dual interior point filter line search algorithm for
o UNIVERSITY large-scale nonlinear programming”, Mathematical Programming, 106(1):22-57, 2006.



 minimize f(x)

Sequential Quadratic Programming | subject to g(a)

ﬁ

—0,
h(x) <0

 Alternative to IP methods: Sequential quadratic programming (SQP).

« lteratively applies a linearization to the inequality constraints and the

equality constraints around the current solution to obtain the quadratic
program (QP):

minimize Vf(xp)" (z — x1) + = (z — z1) VZL(Tk, i, Vi) (T — T3,)

subject to  g(xy) + Vg(xr)' (z — zx) = 0,
h(zi) + Vh(zp) (x — 1) <0

DO | —

e QP can be solved using IP methods or active set methods.

53

I LINKOPING Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.
I. Diehl, M.: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.
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Case Study on Dynamic Optimization
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Case Study: Optimization of Motion Primitives (1/5)

+ Optimization can be used to compute  motion Primitives for Pre-Defined State Lattice
the motion primitives from Lecture 4
(see also Hand-in Exercise 2).

« Example code in Matlab using the tool

CasADi on the following slides. £,
 Vehicle motion equations given by:
& = v cos(f),
y = vsin(f), A
) = v/L tan(u) R

II LINKOPING
[ UNIVERSITY



Case Study: Optimization of Motion Primitives (2/5)

oo

Compute the motion primitive using optimization with the tool CasADi

oo

using direct collocation for discretization of the continuous-time
motion equations.

oo

oo

Parameters for collocation

N = 75; % Number of elements

nx = 3; % Degree of state vector

Nc = 3; % Degree of interpolation polynomials
x_vec = lattice(l,

2);
)

y_vec lattice(2,

th vec = lattice(3, :;;
% Formulate the optimization problem for minimum path length using CasADi

import casadi.* ﬂ
‘ for i = 1l:length(x vec)

Q

% Use the opti interface in CasADi

opti = casadi.Opti(); I

= = N — R—
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Case Study: Optimization ot Motion Primitives (3/5) .

E— — —

state f = [x vec(i) y vec(i) th vec(i)]';

oo

Define optimization variables and motion equations
X = MX.sym('x',nx); ‘
I \ u = MX.sym('u'); ‘H

f = Function('f',{x, u}, {v*cos(x(3)), v*sin(x(3)), v*tan(u)/L});

X = opti.variable(nx,N+1); ! |

pos x = X(1, :);

pos y = X(2, :); \

ang _th = X(3, :); ‘}
\

U = opti.variable(N, 1);

oo

T = opti.variable(1l); }
Set the element length (with final time T unknown, and thus an ]

oo

optimization variable)

dt = T/N; “,

|
\ | % Set initial guess values of variables
\ opti.set initial(T, 0.1);

‘ opti.set initial(U, 0.0*ones(N, 1)); }
opti.set initial(pos_x, linspace(state i(1l), state f(1l), N+1)); ]

opti.set initial(pos_y, linspace(state i(2), state f(2), N+1)); k

e ———— e —————— = e — e

—— R

I
|
!
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Case Study: Optimization ot Motion Primitives (4/5) .

[o)

| i % Define collocation parameters
| * tau = collocation points(Nc, 'radau');
‘ | [C,~] = collocation interpolators(tau);

| .

| % Formulate collocation constraints

\ 1 3
for k = 1:N $ Loop over elements aw(tkd)::'ﬁ Li(75) ki
_ . . T N——
Xc = opti.variable(nx, Nc); =0 7
X kc = [X(:, k) Xc]; / >
for j = 1:Nc
% Make sure that the motion equations are satisfied at
% all collocation points
[£1, £2, £3] = £(Xe(:, J), U(k));
opti.subject to(X kc*C{j+1}' == dt*[f 1; £ 2; £ 31);
end
% Continuity constraints for states between elements {
opti.subject to(X kc(:, Nc+l) == X(:, k+1));
i end
| % Input constraints
| ﬂ for k = 1:N
| j opti.subject to(-u max <= U(k) <= u max);
” end
| _
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Case Study Optimization of Motion Primitive

%

opti.subject to(T >=
opti.subject to(X(:,

Inltlal and terminal constraints

0.001);
1) state 1);

end

opti.subject to(X(:, end) == state f);
‘% Formulate the cost'function

alpha

opti.minimize(T + alpha*sumsqgr(U));

N Choose solver ipopt and solve the problem

%

opti.solver( 'ipopt',

sol = opti.solve();

% Extract solution trajectories and store them in the mprim variable
pos_x opt = sol.value(pos_ Xx); ‘
pos y opt = sol.value(pos y);

ang_th opt = sol.value(ang th);

u_opt = sol.value(U);

T opt = sol.value(T);

mprim{i}.x = pos_x opt;

mprim{i}.y = pos_y opt;

mprim{i}.th = ang th opt;

mprim{i}.u = u_opt;

mprim{i}.T = T opt;

mprim{i}.ds = T opt*v;

le-2;

= = = = = — ——
- ——

struct('expand', true), struct('tol', le-8));

=
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Reterences and Further Reading (1/2)

All the following books and articles are not part of the reading assignments for the course, but cover
the topics studied during this lecture in more detsail.

« Andersson, J., J. Gillis, G. Horn, and J. B. Rawlings, & M. Diehl: "CasADi-A software framework for
nonlinear optimization and optimal control”, Mathematical Programming Computation, 2018.

« Bergman, K: "Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments “,
Ph.D. Thesis No. 2133, Div. Automatic Control, Linképing Univ., 2021.

« Berntorp, K., B. Olofsson, K. Lundahl, & L. Nielsen: "Models and methodology for optimal trajectory
generation in safety-critical road-vehicle manoeuvres”, Vehicle System Dynamics, 52(10):1304-1332,
2014.

« Boyd, S. & L. Vandenberghe: Convex Optimization. Cambridge University Press, 2004.
« Diehl, M: Numerical Optimal Control, Optec, K.U. Leuven, Belgium, 2011.

« Limebeer, D. J., & A. V. Rao: "Faster, higher, and greener: Vehicular optimal control”. IEEE Control
Systems Magazine, 35(2), 36-56, 2015.
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Reterences and Further Reading (2/2)

Magnusson, F: “Numerical and Symbolic Methods for Dynamic Optimization”, Ph.D.
Thesis TFRT-1115, Dept. Automatic Control, Lund University, 2016.

Nocedal, J., & S. Wright: Numerical Optimization. Springer, 2006.

Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation,
and Design. 2nd Edition. Nob Hill Publishing, 2017.

Wachter, A. & L. T. Biegler: "On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming”, Mathematical

Programming, 106(1):22-57, 2006.

Akesson, J, K.-E. Arzén, M. Gafvert, T. Bergdahl, & H. Tummescheit: “Modeling and
Optimization with Optimica and JModelica.org—Languages and Tools for Solving Large-

Scale Dynamic Optimization Problems”, Computers and Chemical Engineering, vol. 34,
no. 11, pp. 1737-1749, 2010.
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