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Purpose of this Lecture

« Give a background on receding-horizon control and model
predictive control (MPC).

» Discuss different types of MPC problems for autonomous
vehicles and how they can be solved.

o lllustrate use ot MPC for trajectory-tracking and path-
following applications.
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Expected Take-Aways from this Lecture

« Basic knowledge about model predictive control.

« Be familiar with applications of MPC for autonomous
vehicles.

 Trajectory tracking.

 Path following.

« Familiarity with solution of MPC problems.
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Literature Reading

The following book and article sections are the main reading material for this lecture. References to
further reading are provided throughout the slides and at the end of the lecture slides.

« Chapter 1 in Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model
Predictive Control: Theory, Computation, and Design. 2nd Edition.
Nob Hill Publishing, 2017.

e Section V-C in Paden, B., Cviép, M., Yong, S. Z., Yershov, D., &
Frazzoli, E: “A survey of motion planning and control techniques
for selt-driving urban vehicles”. IEEE Transactions on Intelligent

Vehicles, 1(1), 33-55, 2016.
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Outline of the Lecture

« Application example: Look-ahead control for autonomous
trucks.

« Fundamentals of model predictive control (MPC).
 Trajectory tracking for autonomous vehicles using MPC.
 Path following for autonomous vehicles using MPC.

« Tools and libraries for optimization and MPC.
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Context in the Architecture for an Autonomous Vehicle
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Figure from: Paden, B., Cviép, M., Yong, S. Z., Yershov, D., & Frazzoli, E: A survey of motion planning and control
techniques for self-driving urban vehicles”. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55, 2016.



Overview of Control Methods for Autonomous Vehicles

Controller Model Stability Time Complexity Comments/Assumptions
*
Lecture 6 Pure Pursuit (V-A1) Kinematic fe?spatti O(n)* No path curvature
Rear wheel : . LES* to . 5 rmsm
based feedback (V-A2) Kinematic oo, paili O(n) C*(R™) ref. paths
Front wheel ; ; LES* to ‘ C*(R™) ref. paths;
based feedback (¥-53) dEmang ref. path On) Forward driving only
Feedback (V-B2) Steering rate LES* o(1) C*(R™) ref. traj.;
linearization controlled kinematic to ref. traj. Forward driving only
Control Lyapunov . : LES* to Stable for constant path
Lecture 6 design (V-B1) sinemalic ref. traj. o(h curvature and velocity
: ; G (R™ x R™) LES* to ref. t Stability depends
This lect ) N
is lecture | Linear MPC (V-O) o or path O (\/N In ( = )) on horizon length
_ . CH(R™ x R™) N . :
This lecture | Nonlinear MPC (V-0) model! Not guaranteed O(z) Works well in practice
I LINKOPING Table from: Paden, B., Cviép, M., Yong, S. Z., Yershov, D., & Frazzoli, E: "A survey of motion planning and control
I." UNIVERSITY techniques for self-driving urban vehicles”. IEEE Transactions on intelligent vehicles, 1(1), 33-55, 2016.



Application Example:
L ook-Ahead Control for Autonomous Trucks
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Scenario tor Look-Ahead Control (1/2)

« An autonomous long-haulage heavy truck on open road.
« An on-board road topography map and on-board GPS.

« Control inputs: engine torque, brake torque, and gear.

.

" Hellstrém, E., Ivarsson, M., Aslund, J., & Nielsen, L: “Look-ahead control for heavy trucks to minimize trip
I LINKOPING : . . . .
® UNIVERSITY time and fuel consumption”. Control Engineering Practice, 17(2), 245-254, 2009.
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Scenario tor Look-Ahead Control (2/2)

« Objective: Minimize consumption of fuel, with a maximum trip time.

« An autonomous cruise controller with optimal control actions,
considering road topography.

« Can be formalized as a mathematical optimization problem (recall
Lecture 5).

.

" Hellstrém, E., Ivarsson, M., Aslund, J., & Nielsen, L: “Look-ahead control for heavy trucks to minimize trip
I LINKOPING : . . . .
® UNIVERSITY time and fuel consumption”. Control Engineering Practice, 17(2), 245-254, 2009.



Receding Horizon "

« Objective is to minimize a performance criterion over the complete
driving mission — however, high computational cost and uncertainty.

 Consider a finite horizon (look-ahead horizon) at point A, solve problem
and apply control inputs in first part of the interval until point B, then
solve problem again at point B over a shifted finite horizon —i.e., a
receding horizon.

Entire horizon

________ _>
Look-ahead horizon
I LINKOPING Hellstrom, E., Ivarsson, M., Aslund, J., & Nielsen, L: “Look-ahead control for heavy trucks to
I. UNIVERSITY minimize trip time and fuel consumption”. Control Engineering Practice, 17(2), 245-254, 2009.



Application of Look-Ahead Control g

« A GPS gives the position of the autonomous truck.

« Aroad data base gives the road slope ahead of the vehicle from the current
position over a limited distance ahead of the vehicle (typically about 2 km).

« A dynamic programming (DP) algorithm, together with a model of the vehicle, is

used to determine the control inputs that minimize the fuel consumption over
this intervall.
o )

Set speed
Pesiion @02 T -
Road "
Road slope _ \1 B R .
database DP algorithm J< 5
®

Current velocity and gear

Hellstrém, E., Ivarsson, M., Aslund, J., & Nielsen, L: “Look-ahead control for heavy trucks to minimize trip

II “ LINKOPING time and fuel consumption”. Control Engineering Practice, 17(2), 245-254, 2009.
o UNIVERSITY

Bertsekas, D. P: Reinforcement learning and optimal control. Belmont, MA: Athena Scientific, 2019.



Key Characteristics of Look-Ahead Control °

« The look-ahead approach can take limitations on control signals
and internal vehicle states into account.

 In this driving segment, the truck will accelerate before an uphill if it
is necessary to avoid that the speed decreases below a lower limit
on speed because of limits on the propelling force.

Entire horizon

Look-ahead horizon

A B

« Can handle changing driving conditions, thanks to re-optimization.

I LINKOPING Hellstrom, E., Ivarsson, M., Aslund, J., & Nielsen, L: “Look-ahead control for heavy trucks to
I. UNIVERSITY minimize trip time and fuel consumption”. Control Engineering Practice, 17(2), 245-254, 2009.



Fundamentals of Model Predictive Control

LINKOPING
II.“ UNIVERSITY



Model Predictive Control (MPC)

> Past Future >
D
Uty +hyp,
Uty —
T ——t :
tk Salmple perilod tk L hp

Prediction horizon

15
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Key Concepts in MPC (1/2)

« A model of the system is used for prediction.

« The length of the finite horizon is called the prediction
horizon.

« The control horizon is the subset of the prediction
horizon over which the control inputs are allowed to vary.

e Could also be the full set, i.e., the horizons coincide.

16
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Key Concepts in MPC (2/2)

« Cost function describing desired objective and
constraints on control inputs and states.

« User-specified weights often used to trade different

components to each other in the cost function of the
MPC formulation.

17
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Recall Optimization Problem from Lecture 5

Lagrange integrand
« Optimization problem over time horizon

|

T, where T
possibly is a free optimization variable:

minimize /O L(z(t), u(t)) dt + T(z(T))

subject t0 " 7(0) = zo, #(t) = f(t, x(t), u(t)),

r(t) € X, u(t) e U, z(T) € Xp, t €[0,T]

Terminal
State and control _
. constraints
constraints

LINKOPING
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A General MPC Formulation

« Solve optimization problem over the time horizon [tx,tx + hp] at
selected time instants ¢, k£ =0,1,2,..., with h, the prediction horizon:

tret+hop
minimize / Lz (t), u(t)) dt + T(z(ty + hy))

172
subject to  x(tx) = xo, ©(t) = f(t,z(t), u(?)),
ZE(t) c X, u(t) c U, ZE(tk + hp) c th+hp, t € [tk,tk -+ hp]

« The computed control inputs are applied until next time step tx+1.

« The current states ¢ are updated at each new iteration.

I LINKOPING Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, 2017.
I. UNIVERSITY



A QP MPC Formulation (1/2)

« Recall the LQR control design from Lecture 6. Assume a

linear model:
t(t) = Ax(t) + Bu(t)

« Choose the cost function as the following:

L(z(t),u(t)) = =~ (t)Qx(t) + u(t)” Ru(t)
F(z(te + hp)) = x(tr + hp>Tme(tk + hp)

20
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A QP MPC Formulation (2/2)

« The possibly time-varying weight matrices (), R, Py are
positive (semi-)definite and are specitied by the user.

« Trade different objectives to each other.

« With all remaining constraints linear or affine, the problem

is a quadratic program (QP), i.e., a convex optimization
problem.

LINKOPING
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Model Considerations in MPC

The model equations of the system appear as a constraint,
therefore imply properties of the resulting optimization problem.

Recal
from

the discussion on convex vs. non-convex optimization
_ecture 5.

Non-linear models possible to include in the MPC formulation.

Linearizing a non-linear model along a nominal/reference
trajectory leads to a linear time-varying (LTV) system:

t(t) = A(t)x(t) + B(t)u(t)

LINKOPING

UNIVERSITY
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Hard vs. Soft Constraints

 Explicit constraint that needs to be fultilled exactly — hard
constraint.

« Penalty in cost function with certain weight — soft constraint
(fulfil it as good as possible, given other objectives).

« Could be benetficial in real-time applications.

« Slack variables for constraints can be introduced in the MPC
formulation to avoid infeasible problems because of constraints.

I LINKOPING Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, 2017.
I. UNIVERSITY



Hard vs. Soft Constraints — Example

« Assume that the speed v of an autonomous car should be kept
close to a desired reference velocity v,.f.

« A soft constraint can be formulated as a component in the cost

function as:
tk—|—hp
/ (v — Uref)Z dt
7%

« A hard constraint can be formulated as an explicit constraint as:

Uref_ggvévref_l_g

24
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Discretization of MPC Problem

« Continuous-time MPC problems need to be transformed to a

finite-dimensional optimization problem (a non-linear program,
NLP) for solution in a computer.

e Recall the methods from Lecture 5:
« Direct multiple shooting or collocation.

 Discretization of system dynamics and cost function, with
polynomial approximation of control inputs and possibly states.

II LINKOPING
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Computational Considerations

» A longer prediction horizon h,, implies a larger optimization
problem, and thus higher computational cost.

« Also the length of the sampling period At = {1 — 1,
i.e., how often the MPC problem is solved, affects the

computational cost.

« A control horizon shorter than the prediction horizon can
be used to save computational resources.

II LINKOPING
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Stability of MPC

+ Length of prediction horizon important in practice.
« Sufficiently long horizon avoids short-term optimization.
« Choice of cost or constraint at end of prediction horizon.

« Compare with having a sufficiently good cost-to-go
estimate.

« Extensive theory exists for different formulations, see
references for further details.

Rawlings, J. B., D. Q. Mayne, & M. Diehl: Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, 2017.
II LINKOPING Di Cairano, S., Kalabi¢, U. V., & Berntorp, K: “Vehicle tracking control on piecewise-clothoidal trajectories by MPC with guaranteed
® UNIVERSITY error bounds”. In IEEE Conference on Decision and Control (CDC), 709-714, 2016.



Why MPC for Autonomous Vehicles?

- ENEEIS

R ": ?%1\; - ;
Py - g ”
-

L=

« Constantly changing environment f‘-?‘i
with inherent uncertainty typical for 2
autonomous vehicles.

 Different sensor systems provide
updated information periodically
(situation awareness).

« MPC offers re-planning capabilities
combined with optimal feedback
control.

LINKOPING
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MPC for Autonomous Trajectory Tracking
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Trajectory Tracking vs. Path Following

 Recall the difference between a path (curve in space) and a
trajectory (time-parameterized, velocity profile included).

« MPC can be formulated both for trajectory tracking and path-
following applications.

« Consider the example of driving along a straight line.

« Driving exactly at the straight line with a lower speed than
according to the reference trajectory, gives a large trajectory
error but no path error. Ty —> U

30
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Problem Formulation for Trajectory Tracking

« Assume that we have reference values x..¢ for the states
that should be tracked.

« An MPC cost function for trajectory tracking could then be:

tr+hp
/ {(‘/E(t) T $ref(t))TQ($(t) — xref(t)) —+ u(t)TRu(t)} dt

157
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Example Constraints in Trajectory Following

« A key feature of MPC is that constraints can be included in the
formulation and thus considered in the controller.

Linear constraints on inputs and states formulated as:

Umin < U(t) S Umax

Lmin < Qj(t) S L'max

Input can be acceleration and states could be position ana
velocity for an autonomous vehicle, thus specitying, e.g., maximum
forward acceleration or not allowed areas in geometric space.

II LINKOPING
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MPC for Kinematic Path Following
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Path Following for Kinematic Mode|

« Recall the kinematic motion model and
path-following problem from Lecture 6.

, v
$= 1T 7c(s) cos(f.),
d = vsin(6,),

0. = vu — $c(s)

« States * = (d 96) and system dynamics f(z,u) = (

vsin(6,) )

vu — Sc(S)

II LINKOPING
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MPC Formulation for Kinematic Path Following (1/2)

« An MPC problem for path following, where the objective
is to achieve that x — 0 (i.e., no path deviations).

 With the weights () = diag(q1,¢2), R = r, the MPC
problem for path following can be formulated as:

te+hyp
minimize / G d* + go (92 + ru? dt
lk

subject to x(tg) = xo, () = f(x(t),u(t)),
w(t) €U, t € [ty tr + hy)

LINKOPING
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MPC Formulation for Kinematic Path Following (2/2)

» The constraint on the control input can be determined based
on steering-angle limitations as:

U= {u|1l/Ltan(dmin) < u < 1/Ltan(dmax)}

» Compared to the LQR approach, with MPC a finite-horizon
optimization problem is instead solved at each sample

instant, considering both the non-linear vehicle model and
constraints on the input.

« Results in a computationally more expensive controller.

II LINKOPING
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Example: Extra Assignment for Hand-in 3 (1/2)

« Part of extra assignment for Hand-in Exercise 3 to
implement this path-following MPC.

 Linearization of the non-linear kinematic single-track
model at each MPC update step.

« Quadratic cost function and linear constraints, leads
to convex optimization problem (efficient solvers exist).

II LINKOPING
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Example: Extra Assignment for Hand-in 3 (2/2)

« Application on an example path
from Hand-in Exercise 3.

« Constraints on control signal
(steering angle).

y[m]

« Choices of prediction horizon
and sample period.

« Multiple shooting with explicit
Runge-Kutta method of fourth
order for discretization of vehicle
motion equations (see Lecture 5).

gl

II LINKOPING
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MPC for Autonomous Path Following
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Problem Formulation

« The task is to follow a desired path (position and orientation) and a
nominal velocity profile.

« To account for dynamic effects of a ground vehicle, a single-track model
with a linear tire-road interaction model is used.

* More complex model than the kinematic model in the previous
example, beneficial for higher velocities and in more advanced
maneuvers.

« Design an MPC (objective and constraints) for this task.

II LINKOPING
[ UNIVERSITY
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Dynamic Vehicle Model (1/4)

Fyr
« Consider the single-track y
° FCL‘,’I' T
vehicle model (lumpea | \Zar - 1%
wheels on each axle). y

« Front steering and front-
wheel driven. m(0e — vyh) = Fy g c0s(6) + Fu,p — Fy sin(d),
m (0, + ve)) = F, fcos(8) + F, . + F,_¢sin(d),

IZzZ =1 F, fcos(0) — . F, . + s Fy ¢sin(0)

II LINKOPING
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Dynamic Vehicle Model (2/4)

« The slip angles (angle between the velocity vector and the
direction of the wheel) are given by:

v Uy
af = —arctan [ 22 ) o, = —arctan | —*
Uf x Ur x

+ A low-complexity tire-road interaction model for normal

driving with linear tire stiftnesses is adopted:

Fyp=Cayay,  Fyr=Caray

II LINKOPING
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Dynamic Vehicle Model (3/4)

« A path parameter is introduced to describe the traversal

along the reference path (traversal computed in the MPC):

- ds

At

« The vehicle position in the global coordinate frame is
obtained by integration of the quantities:

(2 = (Sonfe) ot ()

S

43

LINKOPING Faulwasser, T., & Findeisen, R: “Nonlinear model predictive control for constrained output
I. UNIVERSITY path following”. IEEE Transactions on Automatic Control, 61(4), 1026-1039, 2015.
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Dynamic Vehicle Model (4/4)

« Collect the states and the control inputs in the vectors:
- T
v(t)=(px py ¥ ve vy, ¢ 3
AT
u(t) = (5 For Fip, s)

« With these variables, the vehicle dynamics can be written
as an explicit ordinary differential equation system as:

33(?5) — fcar (m(t)v u(t))

LINKOPING
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MPC Problem (1/4)

« Reference values for the vehicle consist of position in
global coordinate frame, longitudinal velocity, and yaw

orientation.

e |ntroduce the vector of reference values as:

T
(pX,ref PY.ref Ugx ref 2p]ref)

45
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MPC Problem (2/4)

 Introduce a function that describes the error quantities

that the controller should drive to zero (reference values
as function of the path parameter S ):

pX,ref(S) — PX (t)
(pY,ref(S) — pY(t)\
R A S

ref{S) — t
\ Ve ret(5) — va(t) )

» The orthogonal projection of the path error is:
€l (t, S) — Sin(wref)(pX,ref(S) — DX (t)) — Cos(wref)(pY,ref(S) — DYy (t))

LINKOPING
II.“ UNIVERSITY



MPC Problem (3/4)

* The finite-horizon MPC problem to be solved at each
sample instant can then be stated as:

T —I—hp
minimize / dLQP + u' Rudt

7%
subject to x(tr) = xg, T(t) = fear(x(t), u(t)),
r(t) € X, u(t) e U, t € [tg,tx + hyp)
« The weights ), R are used to trade different objectives in
the cost function to each other.

47

LINKOPING Berntorp, K., Quirynen, R., Uno, T., & Di Cairano, S: “Trajectory tracking for autonomous vehicles on varying road
I. UNIVERSITY surfaces by friction-adaptive nonlinear model predictive control”. Vehicle System Dynamics, 58(5), 705-725, 2020.
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MPC Problem (4/4)

There is large flexibility in terms of

the choice of constraints.

There are typically constraints on the Omin < 0 < Omax;

steering angle and the driving and £z, fmin < Fo f < Fo fmax;
braking forces. Frrmin < Frr < Fyormax;

Update of path parameter also 1l —sAa <5< 14 s
constrained.

Geometric constraints also possible.

LINKOPING
UNIVERSITY
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Solution of the MPC Problem

At each sample instant, the finite-horizon MPC problem
is solved with updated state measurements (or often, in
practice state estimates).

The model is non-linear, and thus the problem is a non-
linear MPC (NMPCQC).

Numerical solution of the optimization problem required.

LINKOPING
UNIVERSITY



Solving MPC Optimization Problems

« A large number of optimization problems are solved in
sequence online in MPC.

« Often there are real-time computational constraints for
an MPC controller executing online.

« How can the associated optimization problem be solved
efficiently and the special structure of it be utilized?

50

II LINKOPING
[ UNIVERSITY



Solving MPC Optimi

* One proposed method is t

1

zation Problems Using RT]

ne Real-Time Iteration (RTI) scheme:

» Multiple shooting for discretization of continuous dynamics.

« Sequential quadratic programming (SQP), using one single
Newton step, and an effective warm starting by using the state
and control input trajectories from the previous MPC iteration.

 Separation of computations in preparation phase and
feedback response phase (highly important in real-time

implementations).

Diehl, M., Bock, H. G., & Schldder, J. P: "A real-time iteration scheme for nonlinear optimization in optimal feedback control”. SIAM
II LINKOPING Journal on Control and Optimization, 43(5), 1714-1736, 2005.
o

UNIVERSITY Gros, S., Zanon, M.

, Quirynen, R., Bemporad, A., & Diehl, M: "From linear to nonlinear MPC: Bridging the gap via the real-time

iteration”. International Journal of Control, 93(1), 62-80, 2020.



Summary and Outlook of Model Predictive
Control for Autonomous Vehicles

LINKOPING
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Characteristics of Model Predictive Control

Integrated planning and control possible.

Possible to apply at different layers of the decision-making
architecture of an autonomous vehicle, MPC offers a framework.

Automatic inherent re-planning obtained at each sample instant,
implicit feedback mechanism.

High flexibility in terms of modeling and constraints.

« Also one of the main challenges in the MPC design.

LINKOPING
UNIVERSITY
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MPC Qutlook (1/2)

« Decentralized formulations and optimization for multiple
vehicles — reduce computational cost at the local node.

e Trade-off with communication load.

« Dual to MPC for state estimation — Moving horizon
estimation (MHE).

 Allows explicit constraints in the estimation problem.

" Rao, C. V., Rawlings, J. B., & Mayne, D. Q: "Constrained state estimation for nonlinear discrete-time systems: Stability and moving
I LINKOPING . R . .
® UNIVERSITY horizon approximations”. IEEE Transactions on Automatic Control, 48(2), 246-258, 2003.
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MPC Qutlook (2/2)

 Integrated collision —  meww

avoidance and local ~ ;
planning in complex traffic - .
scenarios with MPC. e ’g:’:' :
« Obstacle representation, -
obstacle motion prediction, "'"‘"":u----
and collision-risk estimates. |-
| X axis [m]

II " LINKOPING F. Mohseni, B. Olofsson, & E. Frisk: “Multi-Vehicle Autonomous Driving Using a Gaussian Risk and Model Predictive Control”, 2020.
[ ) UNIVERSITY



Tools and Libraries for Numerical Optimal
Control and Model Predictive Control
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II.“ UNIVERSITY



CasAD:i &> CasADi

» Open-source tool for numerical optimization and optimal
control.

* Includes efficient algorithms for automatic differentiation and
computing Jacobians and Hessians in forward and backward
mode.

* Interfaces to various NLP solvers and numerical integrators for
ODEs/DAEs.

« Homepage: https://web.casadi.org

57

II LINKOPING
[ UNIVERSITY



Math. Program., Ser. A 106, 25-57 (2006)

Digital Object Identifier (DOI) 10.1007/s10107-004-0559-y 58

| P O P | Andreas Wichter - Lorenz T. Biegler

On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming

» Software package for solving large-scale NLPs.

* Implements a primal-dual interior-point method for finding local
minima to the NLP.

» Scaling of model equations for numerical stability.

» Relies on external software packages for solving the inherent
linear equation systems (e.g., MA27 and MA57 from HSL
Mathematical Software Library).

» Homepage: https://github.com/coin-or/lpopt

II LINKOPING
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YOP

* YOP - Yet Another Optimal Control Problem Parser.

« Matlab toolbox for numerical optimal control, with an
interface to CasADi for access to integrators and solvers of
nonlinear programs.

* Developed at Div. Vehicular Systems at Linkoping University.

« Several examples available on toolbox homepage: https://
www.yoptimalcontrol.se/index.html

59
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Reterences and Further Reading

LINKOPING
II.“ UNIVERSITY



61

Reterences and Further Reading (1/2)

All the following books and articles are not part of the reading assignments for the course, but cover
the topics studied during this lecture in more detail.

« Andersson, J., J. Gillis, G. Horn, and J. B. Rawlings, & M. Diehl: "CasADi-A software framework for
nonlinear optimization and optimal control”. Mathematical Programming Computation, 2018.

« Berntorp, K., Quirynen, R., Uno, T., & Di Cairano, S: “Trajectory tracking for autonomous vehicles on
varying road surfaces by friction-adaptive nonlinear model predictive control”. Vehicle System
Dynamics, 58(5), 705-725, 2020.

 Bertsekas, D. P: Reinforcement learning and optimal control. Belmont, MA: Athena Scientific, 2019.

« Di Cairano, S., Kalabi¢, U. V., & Berntorp, K: “Vehicle tracking control on piecewise-clothoidal
trajectories by MPC with guaranteed error bounds”. In IEEE Conference on Decision and Control (CDC),
709-714, 2016.

« Diehl, M., Bock, H. G., & Schldder, J. P: "A real-time iteration scheme for nonlinear optimization in
optimal feedback control”. SIAM Journal on Control and Optimization, 43(5), 1714-1736, 2005.

II LINKOPING
[ UNIVERSITY



62

Reterences and Further Reading (1/2)

All the following books and articles are not part of the reading assignments for the course, but cover
the topics studied during this lecture in more detail.

« Gros, S., Zanon, M., Quirynen, R., Bemporad, A., & Diehl, M: “From linear to nonlinear MPC: Bridging the gap
via the real-time iteration”. International Journal of Control, 93(1), 62-80, 2020.

- Faulwasser, T., & Findeisen, R: “Nonlinear model predictive control for constrained output path following”. [EEE
Transactions on Automatic Control, 61(4), 1026-1039, 2015.

« Hellstréom, E., Ivarsson, M., Aslund, J., & Nielsen, L: “Look-ahead control for heavy trucks to minimize trip time
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