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Introduction

Context

4th-year PhD student at Lund Universtiry

Supervised by Anders Robertsson

K. Berntorp (former student, now at MERL)

B. Olofsson (former student, now at LiU/LU)

Current work

(i) MERL - Estimation Theory

Satellite positioning [1]
Nonlinear Filtering [2, 3]

(ii) LU - Nonlinear and Robust Control

Focus on aerial vehicles
Filtered output feedback [4, 5]

[1] M. Greiff and K. Berntorp, “Projections in Adaptive Mixture Kalman Filtering for GNSS Positioning”, ACC, 2020.

[2] M. Greiff, K. Berntorp and A. Robertsson, “Measurement dimension reduction in Gaussian filtering”, CCTA, 2020.

[3] M. Greiff, K. Berntorp and A. Robertsson, “Exploiting Linear Substructure In LRKFs (Extended) ”, CDC, 2020.

[4] E. Lefeber, M. Greiff and A. Robertsson, “Filtered Output Feedback Tracking Control of a Quadrotor UAV”, IFAC, 2020.

[5] M. Greiff, Z. Sun and A. Robertsson, “Attitude Control on SU(2): Stability, Robustness, and Similarities”, L-CSS, 2020.
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Introduction

Motion planning?
Necessary in practical experiments

Taught by Björn at LU in 2017

Disclaimer
Not an expert in the field

Share some useful ideas

Presentation Purpose
+ Introduce differential flatness (DF)

+ Convex polynomial optimization (CPO)

+ Sequential quadratic programming (SQP)

= Theoretical and practical examples

Motivation
DF Applicable to ground, surface, and aerial vehicles

CPO Powerful method enabled by DF

SQP Generally useful, enforce constraints in CPO

x(t0)

x(tf )
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Introduction

Motion planning

ẋ(t) = f(x(t),u(t))
x(t) ∈ X , u(t) ∈ U

t ∈ [t0, tf ]

Approaches
Collocation-based (BVPs) [6]

Sampling-based (RRT, PF methods)

Optimization-based (MPC, SQP [7], CPO [8])

Older and newer solutions combined
Defining a set of flat outputs

Path planning by polynomial optimization

Form QP to speed up/slow down time

x(t0)

x(tf )

[6] T. Glück et al., “Swing-up control of a triple pendulum”, Automatica, 2013.

[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E

[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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ẋ(t) = f(x(t),u(t))
x(t) ∈ X , u(t) ∈ U

t ∈ [t0, tf ]
Approaches

Collocation-based (BVPs) [6]

Sampling-based (RRT, PF methods)

Optimization-based (MPC, SQP [7], CPO [8])

Older and newer solutions combined
Defining a set of flat outputs

Path planning by polynomial optimization

Form QP to speed up/slow down time

Simulation example A

The BVP-method in [6] applied to a variation
of the under-actuated two-pendulum cart
problem, and solved with the bvp5c()
function in Matlab.

Under-actuated two-pendulum cart process.

[6] T. Glück et al., “Swing-up control of a triple pendulum”, Automatica, 2013.

[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E

[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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Introduction

Motion planning

ẋ(t) = f(x(t),u(t))
x(t) ∈ X , u(t) ∈ U

t ∈ [t0, tf ]
Approaches

Collocation-based (BVPs) [6]

Sampling-based (RRT, PF methods)

Optimization-based (MPC, SQP [7], CPO [8])

Older and newer solutions combined
Defining a set of flat outputs

Path planning by polynomial optimization

Form QP to speed up/slow down time

Simulation example B

A minimum torque SQP-method in [7]
initialized with an interpolation between

θ1(t0) = 0 θ1(tf ) = π

θ2(t0) =
−π
2

θ2(tf ) =
π

2

A fully actuated planar two-link robotic arm.

[6] T. Glück et al., “Swing-up control of a triple pendulum”, Automatica, 2013.

[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E

[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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Introduction

Motion planning

ẋ(t) = f(x(t),u(t))
x(t) ∈ X , u(t) ∈ U

t ∈ [t0, tf ]
Approaches

Collocation-based (BVPs) [6]

Sampling-based (RRT, PF methods)

Optimization-based (MPC, SQP [7], CPO [8])

Older and newer solutions combined
Defining a set of flat outputs

Path planning by polynomial optimization

Form QP to speed up/slow down time

Simulation example C

A minimum torque SQP-method in [7]
initialized with an interpolation between

θ1(t0) = 0 θ1(tf ) = π+2π

θ2(t0) =
−π
2

θ2(tf ) =
π

2
+2π

A fully actuated planar two-link robotic arm.

[6] T. Glück et al., “Swing-up control of a triple pendulum”, Automatica, 2013.

[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E

[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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Motion planning
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[6] T. Glück et al., “Swing-up control of a triple pendulum”, Automatica, 2013.
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Introduction

Problem formulation
Find (1) a flat output space F , and (2) a
feasible flat-output trajectory γ(t) ∈ F ,
which drives the system from an initial
state x(t0) to a terminal state x(tf ),
and (3) find an augmented trajectory,
γ∗(t), minimising tf without altering
the shape of γ(t) inF given constraints
in x(t) ∈ X and u(t) ∈ U .

Outline
1 Introduce the concept of differential flatness

2 Plan path in flat output space F
3 QP to warp the rate at which time flows [9]

4 Demonstrate approach in three control examples

x(t0)

x(tf )

[9] M. Greiff, “A Time-warping Transformation for Differentially Flat Systems”, ACC, 2018.
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1. Differentially Flat Dynamics - Definitions

Swedish English Meaning

Platthet Flatness
1. Having a level surface without

raised areas or indentations.
2. Lack of emotion or enthusiasm.

Plattityd Platitude
A statement which is considered
meaningless and boring.

h(·)

φ(·),β(·)

Complicated

Dependent
Nonlinear

Unintuitive

ẋ = f(x,u)

Trivial
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2. Lack of emotion or enthusiasm.

Plattityd Platitude
A statement which is considered
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Remark (Jokingly by Anders and Rolf)
Differentiell platthet är bara en plattityd
Differential flatness is only a platitude

h(·)

φ(·),β(·)

Complicated

Dependent
Nonlinear

Unintuitive
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1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, ẋ = f(x,u), with x ∈ Rn, u ∈ Rm, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

γ = h(x,u, u̇, · · · ,u(r)) ∈ Rm,

such that

x = φ(γ, γ̇, · · · ,γ(q)), u = β(γ, γ̇, · · · ,γ(q)),

where {h,φ,β} are smooth functions.

[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems,” 1995.

[11] G. Rigatos, “Nonlinear control and filtering using differential flatness approaches,” 2015.
7 / 25
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A system, ẋ = f(x,u), with x ∈ Rn, u ∈ Rm, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

γ = h(x,u, u̇, · · · ,u(r)) ∈ Rm,

such that

x = φ(γ, γ̇, · · · ,γ(q)), u = β(γ, γ̇, · · · ,γ(q)),

where {h,φ,β} are smooth functions.

Useful? Which of (A) and (B) would you rather do planning for?

(A) dx
dt = f(x,u),

(B) dqγ

dtq = v(t)
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A system, ẋ = f(x,u), with x ∈ Rn, u ∈ Rm, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

γ = h(x,u, u̇, · · · ,u(r)) ∈ Rm,

such that

x = φ(γ, γ̇, · · · ,γ(q)), u = β(γ, γ̇, · · · ,γ(q)),

where {h,φ,β} are smooth functions.

(A) dx
dt = f(x,u),

(B) d
dt


γ
γ̇
...

γq−1

 =


0m Im · · · 0m

0m 0m
. . . 0m

...
. . . . . .

...
0m 0m · · · 0m



γ
γ̇
...

γq−1

+


0m

0m
...

Im

v
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(A) dx
dt = f(x,u),

(B) d
dt


γi

γ̇i
...

γq−1
i

 =


0 1 · · · 0

0 0 . . . 0
...

. . . . . .
...

0 0 · · · 0



γi

γ̇i
...

γq−1
i

+


0
0
...
1

 vi ∀i = 1, ...,m

7 / 25



1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])
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1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, ẋ = f(x,u), with x ∈ Rn, u ∈ Rm, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

γ = h(x,u, u̇, · · · ,u(r)) ∈ Rm,

such that

x = φ(γ, γ̇, · · · ,γ(q)), u = β(γ, γ̇, · · · ,γ(q)),

where {h,φ,β} are smooth functions.

Useful? Yes, simplifies planning problem significantly.

Constructive? Yes, but it can be challenging to find {h,φ,β}...!
Example: Feedback-linearization, Chapter 13 in [12]

[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems,” 1995.

[11] G. Rigatos, “Nonlinear control and filtering using differential flatness approaches,” 2015.

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
7 / 25



1. Differentially Flat Dynamics - Toy Example

Consider a system ẋ = f(x) + g(x)u, configured on C = R3, where

f(x) =

 −x1 + x2
x1 − x2 − x1x3
x1 + x1x2 − 2x3

 , g(x) =

0
1
0



[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8 / 25
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Consider a system ẋ = f(x) + g(x)u, configured on C = R3, where

f(x) =

 −x1 + x2
x1 − x2 − x1x3
x1 + x1x2 − 2x3

 , g(x) =

0
1
0



Show how to derive flat outputs

Enough details to do it yourselves

Temporarily a bit more mathematical

Don’t worry if it is a bit tricky to follow

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8 / 25



1. Differentially Flat Dynamics - Toy Example

Consider a system ẋ = f(x) + g(x)u, configured on C = R3, where

f(x) =

 −x1 + x2
x1 − x2 − x1x3
x1 + x1x2 − 2x3

 , g(x) =

0
1
0



Definition (Lie Derivative [12])
The so-called Lie-derivative of h with respect to f ,

(Lf h)(x) = ∂h
∂xf(x)

denotes a change in h along the trajectories of the system ẋ = f(x)

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8 / 25



1. Differentially Flat Dynamics - Toy Example

Consider a system ẋ = f(x) + g(x)u, configured on C = R3, where

f(x) =

 −x1 + x2
x1 − x2 − x1x3
x1 + x1x2 − 2x3

 , g(x) =

0
1
0


1 Find an output γ = h(x) yielding full relative degree, i.e. such that

Lgh(x) = 0
LgLfh(x) = 0
LgL

2
fh(x) 6= 0

such as

h(x) = a
(1

2x
2
1 − x3

)
+ b, a ∈ R\{0}, b ∈ R.

2 With a = 1, b = 0, we find a surjective map x = φ(γ, γ̇, γ̈).

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
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0
1
0



1 Find an output γ = h(x) yielding full relative degree, i.e. such that

2 With a = 1, b = 0, we find a feedback linearization

γ = L0
fh(x) = x2

1/2− x3

γ̇ = L1
fh(x) = −x2

1 − x1 + 2x3

γ̈ = L2
fh(x) = 2x2

1 + 3x1 − x2 − 4x3

which (surprisingly) turns out to be a surjective map x = φ(γ, γ̇, γ̈).

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
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1 Find an output γ = h(x) yielding full relative degree, i.e. such that

2 With a = 1, b = 0, we find a surjective map x = φ(γ, γ̇, γ̈).

3 With γ(t) = h(x), the endogenous feedback law

u = 1
LgL2

fh(x) [−L3
fh(x) + v] = 4x2 − 8x1 + 8x3 + x1x3 − 4x2

1 − v

results in a system
d3γ(t)
dt3

= v(t),

As x is known from φ, and v is known from
...
γ , we also know u = β(γ, γ̇, γ̈,

...
γ ).
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γ , we also know u = β(γ, γ̇, γ̈,

...
γ ).

4 Sufficiently smooth trajectories, here γ ∈ C2(R), can be followed!
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= v(t),

As x is known from φ, and v is known from
...
γ , we also know u = β(γ, γ̇, γ̈,

...
γ ).

4 Sufficiently smooth trajectories, here γ ∈ C2(R), can be followed!

Disclaimer: Not always possible. What about other systems?

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
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1. Differentially Flat Dynamics - UGV (unconstrained)

Unmanned ground vehicle (UGV) configured on C = SE(2),

x =


θ
pxG
pyG
ω
vxB
vyB


Attitude
Translation in xG
Translation in yG
Attitude rate
Velocity in xB
Velocity in yB

u =
[
τ1
τ2

]
Torque along xB at wheel 1
Torque along yB at wheel 2

with X ⊆ R6, U ⊆ R2, and dynamics

θ̇(t) = ωB(t)
ṗxG(t) = vxB(t) cos(θ(t))− vyB(t) sin(θ(t))
ṗyG(t) = vxB(t) sin(θ(t)) + vyB(t) cos(θ(t))
ω̇(t) = (h/(Jr))(τ1(t)− τ2(t))
v̇xB(t) = ω(t)vyB(t) + (r/m)(τ1(t) + τ2(t))
v̇yB(t) = −ω(t)vxB(t)
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1. Differentially Flat Dynamics - UGV (unconstrained)

Unmanned ground vehicle (UGV) configured on C = SE(2),

x =


θ
pxG
pyG
ω
vxB
vyB


Attitude
Translation in xG
Translation in yG
Attitude rate
Velocity in xB
Velocity in yB

u =
[
τ1
τ2

]
Torque along xB at wheel 1
Torque along yB at wheel 2

with X ⊆ R6, U ⊆ R2, and flat outputs

γ(t) = h(x(t)) =
[
pxG(t) pyG(t)

]T ∈ C3(R2)

in the flat output space F .
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1. Differentially Flat Dynamics - UGV (constrained)

Constrained UGV with no lateral slip configured on C = SE(2),

x =


pxG
pyG
θ
α̇1
α̇2


Attitude
Translation in xG
Translation in yG
Angular rate of wheel 1
Angular rate of wheel 2

u =
[
τ1
τ2

]
Torque along xB at wheel 1
Torque along yB at wheel 2

with X ⊆ R5, U ⊆ R2, and dynamics

ṗxG(t) = (α̇1(t) + α̇2(t))(r/2) cos(θ)
ṗyG(t) = (α̇1(t) + α̇2(t))(r/2) sin(θ)
θ̇(t) = (α̇2 − α̇1(t))/(2h)
α̈1(t) = J−1

1 τ1(t)
α̈2(t) = J−1

2 τ2(t)
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1. Differentially Flat Dynamics - UGV (constrained)

Constrained UGV with no lateral slip configured on C = SE(2),

x =


pxG
pyG
θ
α̇1
α̇2


Attitude
Translation in xG
Translation in yG
Angular rate of wheel 1
Angular rate of wheel 2

u =
[
τ1
τ2

]
Torque along xB at wheel 1
Torque along yB at wheel 2

with X ⊆ R5, U ⊆ R2, and flat outputs
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1. Differentially Flat Dynamics - UAV

Unmanned Aerial Vehicle (UAV) configured on C = SE(3),

x =

pG
R
vG
ω

 Translation
Attitude
Translational Velocity
Angular rate

u =

fzτxτy
τz

 Positive force along zB
Torque along xB
Torque along yB
Torque along zB

with X ⊆ R9 × S2, U ⊆ R4, but
we may instead use rotor speeds
Ω = [Ω1, · · · ,Ω4] as inputsfz(t)τx(t)
τy(t)
τz(t)

 =

 k
∑4

i=1 Ω2
i (t)

kl(−Ω2
2(t) + Ω2

4(t))
kl(−Ω2

1(t) + Ω2
3(t))∑4

i=1 bΩ
2
i (t) + IM Ω̇i(t)


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1. Differentially Flat Dynamics - UAV

Unmanned Aerial Vehicle (UAV) configured on C = SE(3),

x =

pG
R
vG
ω

 Translation
Attitude
Translational Velocity
Angular rate

u =

fzτxτy
τz

 Positive force along zB
Torque along xB
Torque along yB
Torque along zB

with X ⊆ R9 × S2, U ⊆ R4, and
flat outputs in u or Ω,

γ(t) = h(x(t)) =
[
pTG (t) ψ(t)

]T ∈ C5(R4)

defines the flat outputs [13, 14].

[13] D. W. Mellinger, “Trajectory generation and control for quadrotors”, PhD Thesis, 2012, available online as a pdf.

[14] M. Greiff, “Modelling and control of the crazyflie quadrotor”, M.Sc. Thesis, 2017, available online as a pdf.
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1. Differentially flat systems - Summary

Main takeaways

1 A very large number of systems are “boring” [11, 15]
2 Ways of finding flat outputs exists (feedback linearization)
3 Almost always found as functions of the system configurations
4 Independent planning in flat output dimensions
5 Plan for smoothness in γ instead of explicitly enforcing ẋ = f(x,u) in time.

Toy example γ ∈ C2(R1)
UGV (unconstrained) γ ∈ C3(R2)
UGV (constrained) γ ∈ C2(R2)
UAV γ ∈ C5(R4)

Suitable parameterizations of the flat trajectories?

Sinusoids

Bezier curves

LP-filtered signals

Polynomials

[11] G. Rigatos, “Nonlinear control and filtering using differential flatness approaches,” 2015.

[15] R. Murray et al., “Differential flatness of mechanical control systems,” 1995.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

1 Consider n polynomial splines P1(t), ..., Pn(t) with deg(Pk) = N , as

Pk(t) =
N∑
i=0

pk,it
i = pT(k)t(t), t ∈ [0, Tk], p(k) = [pk,0, ..., pk,N ]T

2 Integral cost associated with sum of spline derivatives

J(Tk) =
N∑
i=0

∫ Tk

0
ci

∥∥∥dP (i)
k (t)
dt

∥∥∥2

2
dt = pT(k)Q(k)p(k)

3 Sum cost over all splines with p = [pT(1), ...,pT(n)]T

Minimize
n∑
k=1

J(Tk) ⇒ Minimize pTQp

Subject to Pk(t) ∈ CM (R) ∀k = 1, .., n ⇒ Subject to Ap− b = 0.

4 Do this independently for each flat dimension

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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Spline Name Objective
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Remark (Regarding the smoothness)

If we need a function CM (R), add constraint
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

Consider n polynomials P1(t), ..., Pn(t) with deg(Pk) = N

Integral cost associated with sum of spline derivatives

Sum cost over all splines

What happens between the endpoints?

Reconsider the toy example

ẋ = f(x) + g(x)u, f(x) =

 −x1 + x2
x1 − x2 − x1x3
x1 + x1x2 − 2x3

 , g(x) =

0
1
0



[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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What happens between the endpoints?

Reconsider the toy example

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
14 / 25



3. Time-warping transformation

Remark (Change the rate of time)

Let a trajectory γ(τ) be generated in terms of the time unit τ , relating
to a second time unit t on which the system evolves, such that
α(τ)dτ = dt for some α(τ) > 0.
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3. Time-warping transformation

Optimization program to maximize α(τ), enforcing smoothness [16]

[16] M. Greiff, “A Time-Warping Transformation for Time-Optimal Movement”, 2018.
16 / 25



3. Formulating a QP

Given the maps {h,φ,β} for a differentially flat system, and

A feasible flat trajectory γ(τ) ∈ CM

A smoothness constraint on α(τ) ∈ CM−1

minimize the time tf − t0 taken to traverse γ(t) by maximising α(τ)

Example: Consider a UGV, path in F generated by CPO, velocity constraints

−
[
5 + 2 sin(τ)
5 + 2 sin(τ)

]
≤ γ(1)

t (τ) ≤
[
5 + 2 sin(τ)
5 + 2 sin(τ)

]
,
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3. Simulation Example - UGV

Simulation example D - UGV with and without time-warping

Figure 1: A nominal αn(τ) = 1 ∀τ and optimal α(τ) ∈ C3(R) subject to sinusoidal constraints.
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3. Simulation Example - UGV

Figure 1: The nominal trajectory γn(τ) (blue) and simulated motion along the optimised flat output trajectory
γ∗(t) with the SE(2) configured UGV (left) and the non-holonomically constrained UGV (right).

Example summary

Optimal warping found as the problem is convex

Same flat output trajectory, very different state-trajectories

Original dynamical system dim(x) = {5, 6}, dim(u) = 2
System in the warping MPC formulation dim(xα) = 3, dim(uα) = 1
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3. Formulating a SQP

Example: UAV dynamics, starting and finishing in γ(0) = 0,
performing a looping manoeuvre defined by the path

γ(τ) = −[sin(πτ/4), sin(πτ/2), cos(πτ/2),−πτ/4]T .

Figure 2: A looping manoeuvre with γ(τ) ∈ C∞(R4).
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3. Formulating a SQP

Example: UAV dynamics, starting and finishing in γ(0) = 0,
performing a looping manoeuvre defined by the path

γ(τ) = −[sin(πτ/4), sin(πτ/2), cos(πτ/2),−πτ/4]T .

Two main saturating constraints

Velocities:

−

[5
5
5

]
≤

[
vx(t)
vy(t)
vz(t)

]
≤

[5
5
5

]
[m/s] (Linear in α)

Rotor-speeds:500
500
500
500

 ≤
Ω1(t)

Ω2(t)
Ω3(t)
Ω4(t)

 ≤
2400

2400
2400
2400

 [rad/s] (Highly nonlinear in α)
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3. Simulation Example - UAV

Simulation example E - Looping UAV with and without time-warping

Figure 2: The nominal- (blue) and computed locally time-optimal trajectories (red) for the SE(3)-configured
UAV during the looping manoeuvre with actuator constraints.
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3. Simulation Example - UAV

Figure 2: Nominal and locally time-optimal solutions for a looping manoeuvre given actuator constraints.

Example summary

Locally optimal warping found (problem is now non-convex)

The posed constraints are close to saturated at almost all times

Original system dim(x) = {12, 13}, dim(u) = 4
System in the SQP formulation dim(xα) = 5, dim(uα) = 1
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Summary

Two-step approach
Path planning of the flat outputs

Augment higher order derivatives through α(τ)
Contents

Differential flatness

Polynomial path planning

Examples with QP and SQP time-warping

Examples
Toy example

UGV with nonholonomic constraints

UGV with no constraints

UAV with actuator constraints

x(t0)

x(tf )
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