
Discrete motion planning
TSFS12: Autonomous Vehicles —planning, control, and learning 

systems 

Lecture 2: Erik Frisk <erik.frisk@liu.se>



Motion planning, from discrete problems …
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… to continuous, nonholonomic, systems with inertia
3

NASA/Lockheed Martin X-33 Re-entry trajectory

From “Planning Algorithms”, S. LaValle, 2006.



Motion planning and discrete graph search

• Graph search algorithms are very useful for planning motion and 
trajectories for autonomous vehicles 

• But, robots do not move on a graph?  

• Discretize (spatial and temporal) 

• Use graph search as a component in a continuous planner, for 
example in so called lattice planners (Lecture 4) 

• This lecture will focus on the graph search problem and introduce 
fundamental algorithms 

• These algorithms are the topic of hand-in 1, and will be used also in 
hand-in 2.
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Scope of this lecture

• Formalization of a planning problem as a graph search problem 

• Main algorithms for graph search 

• Dijkstra’s algorithm 

• A* 

• Properties of  heuristics in A* to ensure optimality and efficiency 

• Introduction to any-time planning using A* — ARA*

5



Graphs and discrete planning problems



Solving problems by searching in a graph
7

Nodes/vertices

Edges

Start

Goal



A node can represent any state in a search space
8
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Formulating a planning problem as a graph search

• Problem solving is sometimes well formulated as graph search 
problems 

• Formulation of graph search problem requires 

• State-space  

• For each state  there is an action space   

• A state-transition function, i.e., description of the next state  if 

action  is used in state   

 for each  

• Initial state  and goal state 

𝒳

x ∈ 𝒳 𝒰(x)

x′ 

u x

x′ = f(x, u) ∈ 𝒳 u ∈ 𝒰(x)

xI xG

9



Definition of a graph search problem
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X = {1, . . . , 25}

U(x) ⊆ {Up,Down,Left,Right}

xI = 1, xG = 14
<latexit sha1_base64="SbJcnYSNz01U35KGQVDSSUm+bZQ="></latexit>

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

x0 = f(x, u) ∈ X
<latexit sha1_base64="gf2DqGDZaF+P8gvFl/WoAI84rhw=">AAACBHicbZDLSsNAFIYn9VbrLeqym8EiVpCS1ELtQii6cVnBXqAJZTKdtEMnkzAzkZbQhRtfxY0LRdz6EO58G5M0iLcfBj7+cw7nzO8EjEplGB9abml5ZXUtv17Y2Nza3tF39zrSDwUmbewzX/QcJAmjnLQVVYz0AkGQ5zDSdSaXSb17S4SkPr9Rs4DYHhpx6lKMVGwN9OL0CJ5Dtzw9geExtCi3PKTGGLGoNx/oJaNipIJ/wcygBDK1Bvq7NfRx6BGuMENS9k0jUHaEhKKYkXnBCiUJEJ6gEenHyJFHpB2ln5jDw9gZQtcX8eMKpu73iQh5Us48J+5MTpS/a4n5X60fKvfMjigPQkU4XixyQwaVD5NE4JAKghWbxYCwoPGtEI+RQFjFuRXSEBqp4ALqtQwa5lcInWrFPK1Ur2ul5kUWRx4UwQEoAxPUQRNcgRZoAwzuwAN4As/avfaovWivi9acls3sgx/S3j4Bi1GXMg==</latexit>

f(17, u) =











18 u = Up

22 u = Right

16 u = Down
<latexit sha1_base64="XXLiyZOZlwP/lytqTZPm2RlvEk4="></latexit>

U(8) = {Left,Down}
<latexit sha1_base64="Qvg02Rg2u6y6qrXJFHFZa52nm6g=">AAACDHicbVDLSgMxFM34rPVVdekmWAQFKTMq6EYQdeHCRQWrhU4pmfRODWYyQ3JHLcN8gBt/xY0LRdz6Ae78G9PHQq0HAifnnEtyT5BIYdB1v5yx8YnJqenCTHF2bn5hsbS0fGniVHOo8VjGuh4wA1IoqKFACfVEA4sCCVfBzXHPv7oFbUSsLrCbQDNiHSVCwRlaqVUq1zb2N+kB9TMf4R6zMwgx36KDy0l8p3I/tym34vZBR4k3JGUyRLVV+vTbMU8jUMglM6bhuQk2M6ZRcAl50U8NJIzfsA40LFUsAtPM+svkdN0qbRrG2h6FtK/+nMhYZEw3CmwyYnht/no98T+vkWK438yESlIExQcPhamkGNNeM7QtNHCUXUsY18L+lfJrphlH21/RluD9XXmUXG5XvJ3K9vlu+fBoWEeBrJI1skE8skcOySmpkhrh5IE8kRfy6jw6z86b8z6IjjnDmRXyC87HN46Nmrk=</latexit>



State-space and search tree

• Naïve solution; exhaustive 
search 

• Build search tree and explore 
until solution is found 

• Different ways to traverse 
the tree 

• depth first 

• breadth first 

• …
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Queues

• A queue is a data structure where you can 

• Push (or insert) elements on the queue 

• Pop (or remove) elements from the queue 

• Very useful for describing and implementing search algorithms 

• Three different queues will be used 

• FIFO - First In First Out 

• LIFO - Last In First Out 

• Priority Queue - assign priority to each element  
≈ efficiently keep the queue always sorted (not exactly sorted …) 
Will return to this queue later.
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General forward search (and keep track of visited nodes)
13

• During the search, define a 
mapping 

     

• Keeps track of paths, node  

is predecessor of node  

• Keeps track of which nodes 
that are visited 

• Depth first - LIFO queue 

• Breadth First - FIFO queue

x′ = previous(x)

x

x′ 

1 function ForwardSearch :
2 Q. i n s e r t (xI )
3

4 while Q 6= ;
5 x = Q. pop ( )
6 i f x = xG

7 return SUCCESS
8

9 for u 2 U(x)
10 x0 = f(x, u)
11 i f no prev ious (x0 )
12 prev ious (x0 ) = x

13 Q. i n s e r t (x0 )
14

15 return FAILURE

Type of queue 

decides depth first 

or breadth first



Breadth First search - FIFO queue
14
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Depth First search - LIFO queue
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• The mapping 
 

       
 
defines the path.  

• Node  is the predecessor 

of node  

• Backtracking from goal to 
start then gives the path

x′ = previous(x)

x

x′ 

Generate path from visited mapping
16

1 function Backtrack ( v i s i t e d , source , goa l ) :
2 i f found
3 p = ;
4 u = goa l
5 while prev ious [ u ] 6= s t a r t
6 i n s e r t u at the beg inning o f p
7 u = prev ious [ u ]
8 i n s e r t u at the beg inning o f p



Backtrack generated path
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What about quality of plan?
18

Depth First/LIFO

I

A

C

G

I C

B

A

G

1 2

1 1

1

B

I

A

C

G

Breadth First/FIFO

• Clearly neither depth-first nor breadth-first finds the shortest path in the 
graph 

• Not surprising since there is no notion of distance/stage-cost in the search 

• Next step is to find shortest paths …



Dijkstra’s algorithm - finding shortest path



Dijkstra’s algorithm

• Well known algorithm, first published in the 1950’s 

• Computes, not only the shortest path between two nodes, but the 
shortest path between a source node and all other nodes; shortest path 
tree 

• Idea: keep track of cost-to-come for each visited node, and explore the 
tree search prioritized by cost-to-come 

• Use Priority Queues instead of FIFO/LIFO

20



Priority Queue

• You can insert and pop  (element, priority) pairs 

• Here priority is typically path cost (length/time) 

• Operations (for min-priority queue) 

• insert(element, priority) - insert pair into the queue 

• pop() - returns element and priority corresponding to the lowest priority 

• decrease_key(element, priority) - change priority for an element  

• In general, you can decrease an elements priority by pushing it again 

• This is not strictly needed, I will come back to this; lazy delete 

• Insert and pop are no longer constant time operations, typically  
for implementations based on a data-structure called heap

𝒪(log n)

21



Dijkstra’s algorithm

•  cost (∼ length) to go from 

node  to  

• During search, update mapping 

            
that keeps track of cost-to-come 

to node . 

• Use a priority queue, with cost-
to-come as priority to explore the 
shortest paths first 

• Modify the search to rewire in 
case a cheaper path is found

d(x, x′ )

x x′ 

C(x)

x

22

1 function Di jk s t r a :
2 C(xI ) = 0
3 Q. i n s e r t (xI , C(xI))
4

5 while Q 6= ;
6 x = Q. pop ( )
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0 ) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0 ) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0))
17

18 return FAILURE



Dijkstra on the small graph
23

I C

B

A

G

1 2

1 1

1

Start:   I 

  Prio   0 

Pop I:   A B 

  Prio   1 1 

Pop A:   B C 

  Prio   1 3 

Pop B:   C  alt. C C 

  Prio   2       2 3 

Pop C:   G  alt G C 

  Prio   3      3 3 

Pop G:  Goal 

    

Previous(x) 

I      - 

A      I 

B      I 

C      A B 

G      C

B

I

A

C

G

Breadth First/FIFO

C? Here path to C 

is rewired



Dijkstra’s algorithm
24

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Start:   1 

  Prio   0 

Pop 1:   2 6 

  Prio   1 1 

Pop 2:   6 3 7 

  Prio   1 2 2 

Pop 6:   3 7 11 

  Prio   2 2 2 

Pop 3:   7 11 4 8 

  Prio   2  2 3 3 

Pop 7:  11 4 8 

  Prio   2 3 3 

Pop 11:  4 8 16 

  Prio   3 3  3 

Pop 4:   8 16 5 

  Prio   3  3 4 

Pop 8:  16 5 

  Prio   3 4 

Pop 16:  5 17 21 

  Prio   4  4  4

Pop 5:  17 21 

  Prio   4  4 

Pop 17: 21 18 22 

  Prio   4  5  5 

Pop 21: 18 22 

  Prio   5  5 

Pop 18: 22 19 23 

  Prio   5  6  6 

Pop 22: 19 23 

  Prio   6  6 

Pop 19: 23 14 20 24 

  Prio   6  7  7  7 

Pop 23: 14 20 24 

  Prio   7  7  7 

Pop 14: Goal



Example, backtracking path
25Node Previous Cost

1 -1 0

2 1 1

3 2 2

4 3 3

5 4 4

6 1 1

7 2 2

8 3 3

9

10

11 6 2

12

13

14 19 7

15

16 11 3

17 16 4

18 17 5

19 18 6

20 19 7

21 16 4

22 17 5

23 18 6

24 19 7

25

• During search, two mappings are 
updated 

• Previous( ) - keep track of parent 
node 

• Cost( ) - current cost to come 

• Using Previous( ), backtracking gives 
the resulting path 

• 14 - 19 - 18 - 17 - 16 - 11 - 6 - 1 

• Note that you get minimum length 
path from start to all nodes

x

x

x



Visited nodes

Unvisited nodes

xI

xG

u

w

v

Sketch of proof of optimality

• Typically a proof by induction 

• Assume  is minimal for all visited nodes 

• Take an edge to an unvisited node  with 

the lowest  (corresponds to the pop-
operation in the priority queue) 

• Then,  is minimal 

• If there was a shorter path  

• via visited nodes, that edge would have 
been chosen 

• Via unvisited nodes, that edge would 
have been explored before

C(x)

u

C(x)

C(u) = C(v) + d(v, u)

26



Properties of Dijkstra’s algorithms

• Once you pop the goal node (on line 6), 
you are sure you’ve found the optimal path 

• Complexity properties ≈ edges gives 
insertions and nodes pops: 

          

• With balanced binary heap, both 

operations are  and 

 so resulting 

           

• Worst-case bounds for fully connected 
graphs maybe not that relevant; nodes are 
typically only connected to a few nodes.

𝒪( |E |Tinsert + |V |Tpop)

𝒪( |V | log |V | )

|E | = 𝒪( |V |
2 )

𝒪( |V |
2 log |V | )

27

1 function Di jk s t r a :
2 C(xI ) = 0
3 Q. i n s e r t (xI , C(xI))
4

5 while Q 6= ;
6 x = Q. pop ( )
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0 ) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0 ) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0))
17

18 return FAILURE



Dijkstra optimal in length, but not in performance
28

Depth First 

26 km path 

7570 nodes visited

Dijkstra 

5.38 km path 

11626 nodes visited

A* 

5.38 km path 

6594 nodes visited



A* - efficiently finding an optimal path



Keep optimality but reduce the number of visited nodes

Strategy:  
1. Prioritize nodes according to estimated final length 
2. Explore nodes in the search that have high chance to be in optimal path.

30

<



Estimated final length

• Let  be the cost to come as before 

• Let  be an estimate of cost to go  
to the goal;  called a heuristic function 

• The estimated total length is then 
 

                  
 
used in the priority queue 

• Means; explore nodes that have a low 
estimated final length 

• With a good heuristic, we will find a 
solution without exploring too many nodes

C(x)

h(x) ≥ 0

C(x) + h(x)

31
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Estimated final length — heuristics

• Let  be the cost to come as before 

• Let  be an estimate of cost 
to go to the goal; called a heuristic 
function 

• The estimated length is then 
 

           
 
used in the priority queue 

• In the example here, the  
Euclidean distance to the goal  
is used as heuristic

C(x)

h(x)

C(x) + h(x)

32



Dijkstra vs A* — very similar just a change of priority
33

1 function Di jk s t r a :
2 C(xI ) = 0
3 Q. i n s e r t (xI , C(xI))
4

5 while Q 6= ;
6 x = Q. pop ( )
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0 ) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0 ) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0))
17

18 return FAILURE

1 function Astar :
2 C(xI) = 0
3 Q. i n s e r t (xI , C(xI) + h(xI))
4

5 while Q6= ;
6 x = Q. pop ( )
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0 ) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0 ) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0) + h(x0))
17

18 return FAILURE



Does A* find the optimal path?

• Efficiency of A* depends on the heuristic; the better estimate of cost-to-
go, the more efficient search 

• The heuristic helps us prioritize; do not prioritize nodes that probably is 
not part of the solution 

• The priority in Dijkstra is  and  in A* 

• Clearly, for  both algorithms give the same result and explore 
exactly the same search space 

• The higher the value of cost-to-go for a node, the lower priority in the 
search. Note that no node is excluded from the search, it is just put way 
back in the queue if the expected cost to go through that node is high!

C(x) C(x) + h(x)

h(x) = 0

34



Does A* find the optimal path?

• Edge costs in black, heuristic in red 

• A* will find path S—G 

• What went wrong here? Found 
sub-optimal path. 

• Heuristic seems to be the reason!

35

S
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h=0

1

5

3



Does A* find the optimal path?

• Let  be the (unknown) true cost-to-go function 

• A heuristic that satisfies 

                                                
is called admissible 

• With an admissible heuristic, once the goal node is popped the optimal 
solution is found.  

• Optimality can be proven with a similar argument as for Dijkstra, not 
covered now.

h*(x)

h(x) ≤ h*(x)

36



With admissible heuristic, optimality is preserved

Explore nodes in the search that have high chance to be in optimal path; here 
means explore nodes that, with underestimated cost-to-go, is cheaper than 
others

37
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Start:   1 

  Prio   5 

Pop 1:   2 6 

  Prio   5 5 

Pop 2:   3 6 7 

  Prio   5 5 5 

Pop 3:   4 6 7 8 

  Prio   5 5 5 5 

Pop 4:   6 7 8 5 

  Prio   5 5 5 7 

Pop 6:   7 8 11 5 

  Prio   5 5  5 7 

Pop 7:   8 11 5 

  Prio   5  5 7 

Pop 8:  11 5 

  Prio   5 7 

Pop 11:  5 16 

  Prio   7  7 

A* search with manhattan heuristic
38
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2
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0

1
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2

1

2

5
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3

2

3 Pop 5:  16 

  Prio   7  

Pop 16: 17 21 

  Prio   7  9 

Pop 17: 18 21 22 

  Prio   7  9  9 

Pop 18: 19 21 22 23 

  Prio   7  9  9  9 

Pop 19: 14 20 21 22 23 24 

  Prio   7  9  9  9  9  9 

Pop 14: Goal! 



Resulting path
39Node Previous Cost

1 1 0

2 1 1

3 2 2

4 3 3

5 4 4

6 1 1

7 2 2

8 3 3

9

10

11 6 2

12

13

14 19 7

15

16 11 3

17 16 5

18 17 5

19 18 6

20 19 7

21 16 5

22 17 5

23 18 6

24 19 7

25

• During A* search, two functions are 
updated 

• Previous(x) - keep track of parent 
node 

• Cost(x) - current cost to come 

• Using Previous(x), backtracking gives 
the resulting path 

• 14 - 19 - 18 - 17 - 16 - 11 - 6 - 1



A closer look at heuristics — 

consistent and admissible heuristics



• Clearly the heuristic is 
important to gain efficiency 
in the search 

• In complex search problems, 
this can be really difficult  

• In a simple path planning 
example, e.g., use the 
Euclidean distance 

               

• Heuristic trivially admissible 

             

h(x) = |x − xG |

h(x) ≤ h*(x)

Estimated final length - example heuristic
41



Heuristics, not always so simple

• Euclidean distance as heuristic can 
be a good choice for path planning 

• Maze or cube-like problems 

• Nonholonomic vehicles, e.g., 
parking maneuver of a car  

• High-degree of freedom  
problems, e.g., positioning  
of a robotic arm

42

Figure from: “Optimisation based path planning for car parking in narrow 

environments”, P. Zips et.al., Robotics and Autonomous Systems, 2016



What happens here?

• Heuristic is admissible, so A* will find the optimal path  
S-A-C-G 

• Perform A*, you will see that node C  
returns to the priority queue  
during search 

• Consistent heuristic 

     

• Consistency means that the estimate, i.e., heuristic, becomes better and 

better along the path to the goal, . Here, the 
problem is the poor heuristic at C 

        

h(x) − h(x′ ) ≤ d(x, x′ )

h(x′ ) ≥ h(x) + d(x, x′ )

h(A) − h(C) ≥ d(A, C)

43
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Consistency has to do with efficiency, not optimality

• The search will find an optimal solution, regardless if the heuristic is 
consistent or not 

• Inconsistency might lead to inefficiency, in a worst case exponential 
increase in node expansions 
 
Martelli, Alberto. "On the complexity of admissible search algorithms" 
Artificial Intelligence 8.1 (1977): 1-13.

44



• The Euclidean heuristic is consistent 
 
 

• Consistent heuristic implies admissible (triangle equality is 
necessary and sufficient): Pearl, Judea. "Heuristics: intelligent 
search strategies for computer problem solving." (1984). 

• Proof sketch: Let the path be the optimal path from node  to ; 
then the induction step is given by:

x xG

Properties of consistent heuristics
45

x = xn

xn−1

xG = x0

x1

h(xn) ≤ h(xn−1) + d(xn, xn−1) ≤

h∗(xn−1) + d(xn, xn−1) = h∗(xn)
<latexit sha1_base64="wJ+dMOc3vRAq7Gpq/EQgK/wQwJ0="></latexit>

h(x) = |x− xG| = |(x− x0)− (xG − x0)| ≤ |x− x0|+ |x0
− xG| ≤

≤ |x− x0|+ h(x0) ≤ d(x, x0) + h(x0)
<latexit sha1_base64="Jv6KUqRTCYNdt1OvRsemqnOVnxw="></latexit>



Short summary on heuristics

• Heuristic function  estimates distance from goal state 

• Two properties 

•  — admissibility, implies optimality of solution 

•  — consistency, efficiency  
(nodes doesn’t re-appear in search after popped) 

• The closer  is to the true distance , the better. Dijkstra 

corresponds to the trivial heuristic  

• Consistency implies admissibility 

• Heuristic that fulfills triangle inequality, e.g., Euclidean distance is 
consistent

h(x)

h(x) ≤ h*(x)

h(x) − h(x′ ) ≤ d(x, x′ )

h(x) h*(x)

h(x) = 0

46



Heuristics not always so easy
47

(x) (xg)

h(x) = |x − xg |

(x, y, θ)

(xg, yg, θg)

h(x) = ?

Need to solve problem to get accurate heuristic



Any-time planning



What about a non-admissible heuristic?

• What happens with a non-admissible heuristic, i.e., doesn’t satisfy 

                             

• With a non-admissible heuristic, a solution will be found but may not be 
optimal.  

• The solution may be found faster though!

h(x) ≤ h*(x)
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Effects of non-admissible heuristics in map routing
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ARA* - Anytime A*, basic principle

• Basic principle 

1. Find a solution with an inflated heuristic 

2. Lower inflation factor  

3. Reuse previous computations and compute a new solution 

4. Finish if satisfied with solution (or out of time), else go to 2 

• Likhachev et.al. "ARA*: Anytime A* with provable bounds on sub-
optimality."  
Advances in neural information processing systems, 2004. 

• Connects to receding horizon control and replanning; this will be 
returned to later in the course
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Best First Search

• Assume your heuristic is 
very good, i.e. , close to the 
real cost-to-go. 

• Then it makes sense to 

expand node  with lowest 

, i.e., use heuristic  
as priority in the queue. 

• Direct forward search using 
a priority queue with the 
heuristic as priority.

x

h(x) h(x)
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1 function Bes tF i r s t :
2 Q. i n s e r t (xI , h(xI))
3

4 while Q6= ;
5 x = Q. pop ( )
6 i f x = xG

7 return SUCCESS
8

9 for u 2 U(x)
10 x0 = f(x, u)
11 i f no prev ious (x0 )
12 prev ious (x0 ) = x

13 Q. i n s e r t (x0 , h(x0))
14

15 return FAILURE



Some concluding comments



Forward-, backward-, and bi-drectional search

• Sometimes it is better to 
search in a particular 
direction 

• Backward search 

• Forward search 

• Bi-directional search
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Reading instructions

• “Planning Algorithms”, Chapter 2 (mainly sections 2.1-2.3), S. LaValle. 

• Want to dig a little deeper? Here’s some extra reading… 

• “ARA*: Anytime A* with provable bounds on sub-optimality.”, 
Likhachev et al. Advances in neural information processing systems, 
2004. 

• “Priority queues and Dijkstra's algorithm”, Chen, Mo, et al.. 
Computer Science Department, University of Texas at Austin, 2007.
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Some take-home messages

• How to formulate path planning as a 
search on a graph 

• Basic search algorithms for motion 
planning in discrete graphs, in 
particular A* 

• The heuristic function used in A*, 
and how it affects search efficiency 

• Discrete graph search algorithms 
will be directly useful for motion 
planning with motion models 

• There are many extensions to the 
basic A*
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Graph planning with motion models
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(x, y, θ) = (0,0,0)

(x, y, θ) = (20,20,π)

• Revisit graph search  
algorithms in  

• Lecture 4 - Planning under 
differential-constraints 

• Hand-in 2
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