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Today I will consider different types of ground vehicles 

2

One important question: In which directions can the different vehicles move?

Modelling of Ground Vehicles



Mathematical Modelling
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In the basic automatic control course linear state-space models in the form 

 

were considered. The state-vector is denoted ,  is the control vector, and 
 is the output vector. 

  
In this course,  we will consider more general non-linear models 

 

where  and  are non-linear functions. 

{
·q(t) = Aq(t) + Bu(t)
y(t) = Cq(t) + Du(t)

q u
y

{
·q(t) = f(q(t), u(t))
y(t) = h(q(t), u(t))

f h

Mathematical Modelling of Systems



Non-linear state space models 5

I will derive models in the form  for different kinds ground 
vehicles, where  is the state vector and  is the input vector. 

First, I will describe how a system of the type  can be 
interpreted geometrically, and I will use the model 

 

for illustration. 

The state vector is  and  in this example

·q = f(q, u)
q u

·q = f(q, u)

( ·x
·y) = ( y cos x

uy sin x)

q = (x
y) f(q, u) = ( y cos x

uy sin x)
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For every point  and control signal , the right-hand side is a vector  

  

                                  The vector fields for the two values 

(x, y) u

f(q, u) = ( y cos x
uy sin x)

u = ± 1
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The left-hand side of ,  can be interpreted as the velocity vector of a 
particle and the solution is the trajectory of the particle moving in the vector field. 

A particle moving first in the vector field corresponding to  and then the 
control signal switches to  

·q = f(q, u)

u = + 1
u = − 1
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Another type models often considered in control theory are double integrators 

 

  
A typical application is dynamic systems where the left-hand side  is the acceleration and the right-
hand side  is representing the force acting on the system. 

Note that the double integrator can be written in state-space form with states  and : 

 

 

{
··q(t) = f(q(t), u(t))
y(t) = h(q(t), u(t))

··q
f(q, u)

x1 = q x2 = ·q
·x1 = x2
·x2 = f(x1, u)
y = h(x1, u)

Double integrators



9
The same left-hand side as before is considered.  
In this case  and   respectively:u = + 1 u = − 5
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In this case the left-hand side is equal to the acceleration: 
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The Omnidirectional robot



The Omnidirectional Robot
12



The Differentially-Driven Mobile Robot



The Differentially-Driven Mobile Robot

If the wheels rotate in the same direction, then the robot moves 
forward, and if they rotate in opposite direction, then the robot rotates. 

Has two separately driven wheels placed on either side of the body of the robot.  



15Underactuated Systems 
For the differentially driven mobile robot, we shall use kinematic model with 
three states (position  and orientation  with respect to -axis), and 
linear combinations of the two wheel speeds as control signals. The system 
is called underactuated since the number of actuators  is less than the 
dimension of the state space.

(x, y) θ x

How can we accomplish a movement in the direction perpendicular 
the orientation of the vehicle?

y

x

(x, y)

✓



16Solution inspired by parallel parking

Conclusion: The robot moves one step upwards



17Repeating the procedure:



18By taking smaller and smaller steps, the procedure can  
approximate a motion straight in the -direction: y



19Add the trajectory in the state space:



20Repeat the procedure:



Model of the robot 21

With the state vector       and control vector , a model 

of the differential driven mobile robot can be written in the form 

    

where    and     

The speed of the driven wheels are  and  where 
b is half of the distance between the right and left wheels.  

q = (
x
y
θ) u = (u1

u2)
·x
·y
·θ

= ·q = f(q, u) = u1f1(q) + u2f2(q)

f1(q) = (
0
0
1) f2(q) = (

cos θ
sinθ

0 )
vr = u2 + bu1 vl = u2 − bu1



22In the maneuvers described above, the robot moved in the directions  

  and f1(q) = (
0
0
1) f2(q) = (

cos θ
sinθ

0 )

This is the trajectory of  with the control sequence: ·q = u1f1(q) + u2f2(q)

(u1, u2) = (−1,0), (0, − 1), (1,0), (0,1)

q = (
x
y
θ)

�f1

x-axis
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23Now we shall investigate what happens if we repeat the procedure for a system 
  

with more general vector fields  and  and arbitrary small time steps .

·q = u1 f1(q) + u2 f2(q)
f1(q) f2(q) Δt = ε

Question: How can we compute an approximation of  ? 

Answer:   where  is the Jacobian matrix.

f3

f3 = ε2((f2)qf1 − (f1)qf2) + 𝒪(ε3) (fi)q = ( ∂fi

∂x
∂fi

∂y
∂fi

∂θ )

f3?

x-axis
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is
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24The expression  is called the Lie bracket and is denoted  (f2)qf1 − (f1)qf2 [f1, f2]

For example, with   and   the result is 

   

f1(q) = (
0
0
1) f2(q) = (

cos θ
sinθ

0 )
[f1, f2] = (f2)qf1 − (f1)qf2 = ( ∂f2

∂x
∂f2

∂y
∂f2

∂θ ) f1 − ( ∂f1

∂x
∂f1

∂y
∂f1

∂θ ) f2
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Sketch of proof 25

Instead of moving as in the figure to the left, we start at position  and first move as in 
the figure to the right to the two positions  and  and then compute 

q0
q12 q21 f3 = q12 − q21
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First move from  to  along  ( ): 

  

where  is the Jacobian matrix. We used that  and 

 

q0 q1 f1 Δt = ε

q1 = q0 + ε ·q(0) +
ε2

2
··q(0) + 𝒪(ε3)

= q0 + εf1(q0) +
ε2

2
(f1)q(q0)f1(q0) + 𝒪(ε3)

(f1)q = [ ∂f1

∂x
∂f1

∂y
∂f1

∂θ ] ·q = f1(q)

··q =
d
dt

·q =
d
dt

f1(q) =
∂f1

∂x
(q) ·x +

∂f1

∂y
(q) ·y +

∂f1

∂θ
(q) ·θ = (f1)q(q)f1(q)

q = (
x
y
θ)q21
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q1 = q0 + εf1(q0) +
ε2

2
(f1)q(q0)f1(q0) + 𝒪(ε3)

q12 = q1 + εf2(q1) +
ε2

2
(f2)q(q1)f2(q1) + 𝒪(ε3)

By repeating the process we get

q12 = q0 + εf1(q0) +
ε2

2
(f1)q(q0)f1(q0)

+εf2(q0 + εf1(q0))

+
ε2

2
(f2)q(q0)f2(q0) + 𝒪(ε3)

The Taylor expansion   givesf2(q0 + εf1(q0)) = f2(q0) + ε(f2)q(q0)f1(q0) + 𝒪(ε2)

Substitute  into :q1 q12

q12 = q0 + ε(f1(q0) + f2(q0))

+
ε2

2
((f1)q(q0)f1(q0) + (f2)q(q0)f2(q0))

+ε2(f2)q(q0)f1(q0) + 𝒪(ε3)

q21

x-axis

✓-axis

y-
ax
is

f2

f2

f1

q2
q0

f1
q1

q12

f3



28

q21 = q0 + ε(f2(q0) + f1(q0))

+
ε2

2
((f2)q(q0)f2(q0) + (f1)q(q0)f1(q0))

+ε2(f1)q(q0)f2(q0) + 𝒪(ε3)

q12 = q0 + ε(f1(q0) + f2(q0))

+
ε2

2
((f1)q(q0)f1(q0) + (f2)q(q0)f2(q0))

+ε2(f2)q(q0)f1(q0) + 𝒪(ε3)

The corresponding expression for  is obtained by letting  and  switch places: q21 f1 f2

Finally: f3 = q12 − q21 = ε2((f2)qf1 − (f1)qf2) + 𝒪(ε3)
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Holonomic and Non-holonomic Systems
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− ·x sin θ + ·y cos θ = 0

The differentially driven robot is an example a non-holonomic systems

✓

x

(x, y)

y

 
ẋ

ẏ

!

 
� sin ✓

cos ✓

!

The directions which the robot can move are given by the condition

A non-holonomic example
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Non-holonomic means that the condition 

  

can not be written in the form 

  

for any function .

− ·x sin θ + ·y cos θ = 0

dG(x, y, θ)
dt

= 0

G(x, y, θ)

A non-holonomic example
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Consider a robot moving in three dimensions and the kinematic 
constraint is 

 

This constraint is holonomic since it can be rewritten as 

  

which is equivalent to 
  

,  

for some constant , i.e., the equation of a sphere where the 
radius is given by the the initial state of the system. 

·xx + ·yy + ·zz = 0

1
2

d
dt

(x2 + y2 + z2) = 0

x2 + y2 + z2 = r2

r

An example of a holonomic system
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Two vector field that span the possible direction to move with the restriction 
 are 

 and  

Can we use a the trick describe above to move in a third direction? 

The answer is no.  

The Lie bracket   also fulfils the restriction and does not add an 

extra direction. 

Conclusion: We can move in any direction as long as we do not leave the sphere. 

·xx + ·yy + ·zz = 0

f1 = (
y

−x
0 ) f2 = (

z
0

−x)

[f1, f2] = (
0
z

−y)

A holonomic example



The Omnidirectional Robot

34



Car with Front Wheel Steering
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A simple kinematic two wheel model of a car with front 
wheel steering. The model will have at least three states, 
position  of the center of the rear wheel, and 
orientation  with respect to -axis. 

(x, y)
θ x

In the the figure,  is the steering angle and  is the wheel base. Note that 
the steering angle is negative in the figure 

It is assumed that wheels are rolling without slipping, i.e., 
The velocity vector is parallel to the direction of the wheels.

δ l

The Kinematic Single Track Model

��

✓

l
(x, y)
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Assume that the car is moving and the speed at the rear wheels is v

 The relation   follows by eliminating the turning radius  
from the equations  (the triangle) and  (circular 
motion).

·θ = vtan δ/l R
−tan δ = l/R −R ·θ = v

·x = v cos θ
·y = v sin θ
·θ = v

tan δ
l

(x, y)

��

R

✓̇

�

✓

l
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·x = v cos θ
·y = v sin θ
·θ = v

tan δ
l

In addition to the three differential equations on the previous slide, 
we need to specify some control inputs. 

One example is to choose the acceleration and tangent of the steering angle
·x = v cos θ
·y = v sin θ
·θ = vu1/l
·v = u2

u1 ∈ [−tan δmax, tan δmax]

Note that we have added and restriction on the steering angle.

��

✓

l
(x, y)
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The model 

 

can be written in the form  with 

,   

·x = v cos θ
·y = v sin θ
·θ = vu1/l
·v = u2

·q = f(q, u)

q =

x
y
θ
v

f(q, u) =

v cos θ
v sin θ
vu1/l

u2



40One drawback with the model is that allows discontinuities in the steering 
angle. One way to get a smoother solution is to use the differentiated steering 
angle as input  and use the steering angle  as an additional state.·δ δ

·x = v cos θ
·y = v sin θ
·θ = vtan δ/l
·δ = u1
·v = u2
δ ∈ [−δmax, δmax]

u1 ∈ [− ·δmax,
·δmax]
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The model 

 

can be written in the form  with 

,   

·x = v cos θ
·y = v sin θ
·θ = vtan δ/l
·δ = u1
·v = u2

·q = f(q, u)

q =

x
y
θ
δ
v

f(q, u) =

v cos θ
v sin θ

vtan δ/l
u1
u2



Motion Planning: Two Classical Problems 
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One classic motion planning problem: Determine the shortest 
path between two points with the orientation specified at the 
initial and final point, and the turning radius limited from below

?
Vf

Vi

(xi, yi)

(xf, yf)

Dubins path



44This problem can be formulated as an optimal control problem with the model 

 

where the objective function is travelling time and  

This problem was studied in the classical paper 

·x = v cos θ
·y = v sin θ
·θ = vu/l
v = 1
u ∈ [−tan δmax, tan δmax]

tan δmax = l/Rmin

Dubins, L.E. (July 1957). "On Curves of Minimal Length with a Constraint on Average 
Curvature, and with Prescribed Initial and Terminal Positions and Tangents". American 
Journal of Mathematics. 79 (3): 497–516 doi:10.2307/2372560.

In the paper it was shown that any optimal solution will consist of 
segments with minimal radius  and straight lines.Rmin

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2307/2372560
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Vi

Vf

The solution of the example before is
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Three examples of solutions: RSL (right-straight-left), RSR, and LRL

It was shown that there exist three more types of solutions: LSR, LSL, and RLR.



Reeds-Shepp Paths 47

Reeds, J.A. and L.A. Shepp, "Optimal paths for a car that goes both 
forwards and backwards", Pacific J. Math., 145 (1990), pp. 367–393.

Can be formulated as an optimal control problem with the model 

 

and time as objective function.

·x = v cos θ
·y = v sin θ
·θ = vu/l
v ∈ {−1,0, + 1}
u ∈ [−tan δmax, tan δmax]

The results were extended to the case where the car is allowed 
to move backward and forwards in the paper:

https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf
https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf
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Some examples of optimal Reeds-Shepp paths:



A dynamic vehicle model (used in Lecture 7)



Dynamic Vehicle Model (1/4)

• Consider the single-track 
vehicle model (lumped 
wheels on each axle). 

• Front steering and front-
wheel driven.

50

m(v̇x � vy ̇) = Fx,f cos(�) + Fx,r � Fy,f sin(�),

m(v̇y + vx ̇) = Fy,f cos(�) + Fy,r + Fx,f sin(�),

IZ  ̈ = lfFy,f cos(�)� lrFy,r + lfFx,f sin(�)
<latexit sha1_base64="MT94h2CUDBJB+vfZfBvQDMGxx1I="></latexit>



Dynamic Vehicle Model (2/4)

• The slip angles (angle between the velocity vector and the 
direction of the wheel) are given by: 

• A simple tire–road interaction model for normal driving 
with linear tire stiffnesses is adopted:

51

↵f = � arctan

✓
vf,y
vf,x

◆
, ↵r = � arctan

✓
vr,y
vr,x

◆

<latexit sha1_base64="YoDd19ebN5wprCP6qasV3rUhY/w="></latexit>

Fy,f = C↵,f↵f , Fy,r = C↵,r↵r
<latexit sha1_base64="TJ9/SEjUkpDzUzpaMlybDJ4pyZY=">AAACMnicbVDLSgMxFM3UV62vUZdugkVwUcpMFXQjFAuiuwq2Ftoy3EkzbWjm0SQjlKHf5MYvEVzoQhG3foRpO4JtPRA4OedcknvciDOpLOvVyCwtr6yuZddzG5tb2zvm7l5dhrEgtEZCHoqGC5JyFtCaYorTRiQo+C6n926/MvbvH6iQLAzu1DCibR+6AfMYAaUlx7zB+MpJhgVvhC9wxUlawKMe6OuUOF6hNRjE0MnhNChmg+I3KBwzbxWtCfAisVOSRymqjvnc6oQk9mmgCAcpm7YVqXYCQjHC6SjXiiWNgPShS5uaBuBT2U4mK4/wkVY62AuFPoHCE/XvRAK+lEPf1UkfVE/Oe2PxP68ZK++8nbAgihUNyPQhL+ZYhXjcH+4wQYniQ02ACKb/ikkPBBClW87pEuz5lRdJvVS0T4ql29N8+TKtI4sO0CE6RjY6Q2V0jaqohgh6RC/oHX0YT8ab8Wl8TaMZI53ZRzMwvn8AsWiorw==</latexit>



Dynamic Vehicle Model (3/4)
• A path parameter is introduced to describe the traversal 

along the reference path (traversal computed in the MPC): 

• The vehicle position in the global coordinate frame is 
obtained by integration of the quantities:

52

ṡ =
ds

dt
<latexit sha1_base64="qzbCdxGTNpOv6c9yPiNtZ1oRZeA=">AAACDnicbZDLSsNAFIYnXmu9RV26GSwFVyWpgm6EohuXFewFmlAmk0k7dHJh5kQsIU/gxldx40IRt67d+TZO2yDa+sPAx3/OmZnze4ngCizry1haXlldWy9tlDe3tnd2zb39topTSVmLxiKWXY8oJnjEWsBBsG4iGQk9wTre6GpS79wxqXgc3cI4YW5IBhEPOCWgrb5ZdfwYsMIX2AkkoZkD7B4yP1f5D0Je7psVq2ZNhRfBLqCCCjX75qe+l6Yhi4AKolTPthJwMyKBU8HyspMqlhA6IgPW0xiRkCk3m66T46p2fBzEUp8I8NT9PZGRUKlx6OnOkMBQzdcm5n+1XgrBuZvxKEmBRXT2UJAKDDGeZIN9LhkFMdZAqOT6r5gOiY4FdIKTEOz5lRehXa/ZJ7X6zWmlcVnEUUKH6AgdIxudoQa6Rk3UQhQ9oCf0gl6NR+PZeDPeZ61LRjFzgP7I+PgG3yecpw==</latexit>
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cos( ) � sin( )
sin( ) cos( )
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<latexit sha1_base64="Z1sBpVROBW9ZGwCUkm1ei/EtWdk=">AAACoHicbVFNSyNBEO0ZdXWz7hr1KEJhUPSwYUYX1osgevGwosJGo5kw9HQqsbGnp+nuCYYhv8v/4c1/Y08SxRgLGl5VvVddH4kS3NggePH8ufmFb4tL3ys/ln/+Wqmurl2bLNcMGywTmW4m1KDgEhuWW4FNpZGmicCb5OG0zN/0URueyf92oLCd0p7kXc6odaG4+gQQJdjjslAptZo/DiHqZBZU3IQoesO3EKHsvFMqAEezMpaZ3UgZvgc78DsyXI69ssq7AztOCx+5U4VnikI/fiz76MeDaWZcrQX1YGQwC8IJqJGJXcbVZzcLy1OUlglqTCsMlG0XVFvOBA4rUW5QUfZAe9hyUNIUTbsYLXgI2y7SgW6m3ZMWRtGPioKmxgzSxDFdf/fmc64MfpVr5bZ72C64VLlFycYfdXMBNoPyWtDhGpkVAwco09z1Cuyeasqsu2nFLSH8PPIsuN6vhwf1/as/teOTyTqWyAbZIrskJH/JMTkjl6RBmLfpnXr/vHN/yz/zL/yrMdX3Jpp1MmX+3SshLcuc</latexit>

Faulwasser, T., & Findeisen, R: ”Nonlinear model predictive control for constrained output 
path following”. IEEE Transactions on Automatic Control, 61(4), 1026-1039, 2015.



Dynamic Vehicle Model (4/4)
• Collect the states and the control inputs in the vectors: 

• With these variables, the vehicle dynamics can be written 
as an explicit ordinary differential equation system as:

53

x(t) =
�
pX pY  vx vy  ̇ s

�T
<latexit sha1_base64="y8yZAuozqZBZ+YaT3OjzdwuTSzs="></latexit>

u(t) =
�
� Fx,f Fx,r ṡ

�
<latexit sha1_base64="tuGYUjUK+ORbTxT2VkPodftvy8Q="></latexit>

ẋ(t) = fcar(x(t), u(t))
<latexit sha1_base64="W8lRLDd6GI8rs2F61s8yUCGLs9o=">AAACDnicbVDLSgMxFM3UV62vUZdugqXQgpSZKuhGKLpxWcE+oB1KJs20oZkHyR2xDP0CN/6KGxeKuHXtzr8x085CWw8kHM65N7n3uJHgCizr28itrK6tb+Q3C1vbO7t75v5BS4WxpKxJQxHKjksUEzxgTeAgWCeSjPiuYG13fJ367XsmFQ+DO5hEzPHJMOAepwS01DdLvUEI+KEMFXyJvX7PJzCSfkKJnJZT9STWV6VvFq2qNQNeJnZGiihDo29+6Xdp7LMAqCBKdW0rAichEjgVbFroxYpFhI7JkHU1DYjPlJPM1pniklYG2AulPgHgmfq7IyG+UhPf1ZXpuGrRS8X/vG4M3oWT8CCKgQV0/pEXCwwhTrPBAy4ZBTHRhFDJ9ayYjogkFHSCBR2CvbjyMmnVqvZptXZ7VqxfZXHk0RE6RmVko3NURzeogZqIokf0jF7Rm/FkvBjvxse8NGdkPYfoD4zPH2Nvmmo=</latexit>


