Learning for Autonomous Vehicles

TSFS12: Autonomous Vehicles - planning, control, and learning
systems

Lecture 10: Erik Frisk <erik.frisk@liu.se>
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Learning, models, and data

e

| Q: What is (machine) learning?
| A:using data to build models that can predict and/or act upon the world
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Rough characterization of machine Iearning tasks

« Supervised learning
« Learn by examples
« Unsupervised learning
« No labeled data
« Reinforcement learning

e Learn with a reward
function
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Learning and Autonomous Vehicles

From the start, it became important to know where you are in the world
w [ocalization and mapping

Then it became important to know more about surroundings
m Perception

« Computer Vision
« Sensor development, Lidar technology, ...

A current hot topic is how to model and predict behavior of the
environment
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Modeling camera inputs and agent ;1{

., : . data and learning an exciting
behavior in an uncertain and complex . :
world is difficult possibility going forward
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» Methods look for patterns in data
» Models often opaque — be careful what your model predicts
« Can be very sensitive when extrapolating into areas not covered by data
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Edge cases are surprising and rare

This is not a human orisit...

http://bit.ly/2tvCCPK

* You won’t see them in testing; things no-one thought about

* You need on-line system supervision of methods and algorithms that are
difficult to monitor

II " LINKOPINGS Source: “Autonomous Vehicle Safety Technical and Social Issues”, P. Koopman,
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Learning - some basics

« Basic machine learning looks for
patterns in data

« Correlation models
« It does not find cause and effect
« Extrapolation becomes brittle
« Models are only as good as your data

* You need a lot of information (not
the same as many data points)

* Look out for biased models
(mathematically, socially, ethically, ..

)
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Machine learning, and autonomous vehicles

« Learning systems have the
potential to make high-level
autonomy a reality —
but we’re not there yet

« Many current systems are
hand-crafted and are heavily
based on advanced sensor Deep Learning Perception
techniques

« Probable components where deep-learning systems will be core

« computer vision, situation awareness
« model-based reinforcement learning for decision making

« ML will most likely be an important part of the solution
(but most likely not the only solution)
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Learning and Autonomous Vehicles

 This is not a course in machine learning
« Objectives of this part of the course
« Discuss learning in the context of autonomous vehicles
« Identify key areas of ML that is interesting
» Get some basic, hands-on, experience with methods
« In particular, three methods/areas will be discussed in some detail

« Reinforcement learning
« Gaussian Processes
« Neural Networks
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Reflections on the Learning-to-Control Renaissance |

* Plenary Talk from the June

2020 IFAC World CongreSS &:‘fllrections on the Learning-to-
(IFAC - International Federation of Control Rena‘ssancy

Automatic Control) b 0
« Benjamin Recht - UC Berkley .
} s B -
« Slightly advanced — but highly P ol g

recommended 45 minutes

 Modern discussion on learning, COIltI'Ol, https://youtu.be/IEZFwh8sw8s
when they apply and how they can fit
together

« Asyou’ll see, I borrowed some of his insights into this lecture
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Learning for Autonomous Vehicles

LINKOPINGS
II.“ UNIVERSITET



Where are we now and where are we learning? :

Boston Dynamics ETH Ziirich

Waymo, Tesla, ...
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Semantic segmentation in the CARLA simulator

Converted

13
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Semantic segmentation for real-world data
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Vision based systems

« Maps are good; but need detailed information about environment that is
not included in maps,

« Detection of other vehicles, pedestrians, cyclists,

« Road boundaries, road condition, rain, free space ...
« Traffic lights, signs, ...

« Detection of people in a search and rescue mission

 Vision systems and cameras are (currently) cost-effective compared to, e.g.,
Lidar systems

« Are Lidars essential or can they be replaced by learning-powered Vision
systems?

« Learning techniques are core in these tasks

16
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Vision based systems

e Machine learning methods have enhanced the field tremendously during
the last years, but still a long way to go

« Robustness
e Reduce need for labeled data
e Verification of function based on ML models

 Big area for autonomous vehicles that is not covered in this course:
recommend courses from computer vision laboratory:

TSBB17 - Visual Object Recognition and Detection
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Perception yes, but can we learn how to act?

« Reinforcement learning is

learning what to do by > Agent |
maximizing a reward without o] o )
. rewar ]
being told what to do. s, | |& aton
« Instead perform actions and A Environment ]4
evaluate the results R

Figure 3.1: The agent—environment interaction in a Markov decision process.

« Discover actions on its own, by
eXplorlng and evaluatlng the “Reinforcement Learning: An Introduction”
outcome. Richard S. Sutton and Andrew G. Barto

* Learn
« policy/controller, u, = f(x,)

e cost-to-go
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End-to-end (camera-to-control) learning

" .

Inrthils expeimiEnttmwesaite

goINg e demenstrate a

reinforcement learnine
algorithm learning,to'drive
a car.
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. . Kendall, Alex, et al. "Learning to drive in a day." 2019 International
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End-to-end learning, deep reinforcement learning

« The result from the last video is impressive, but is it a good idea for real-
life autonomous vehicles? It highlights some striking problems.

 If perception can give us road boundaries, do we need to learn how to
drive at the center of the road?

« There are plenty of arguments
« Learn to adapt to uncertainty
« Model the world is too difficult, measure instead
« Why should we learn things we already know

 Fair to say the jury is still out on this one
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Why is this so difficult in practice?

Uncertainty, robustness, humans, ...

Worlds like Go, chess follow simple rules (although succeeding in these
games is certainly not simple ...).

» Closed-world assumption holds true.
CWA not true for real driving/flying environments; Anything can happen
Modeling the real world is difficult; significant model errors inevitable
How do you ensure safety? Humans are fragile and unpredictable.
A main challenge — introduce robustness, safety, and resilience

| Most likely, performant systems will consist of learning
n
\‘\K systems and advanced control, (and ...)
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A possible use-case - driver prediction
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Example - behavioral models of drivers

« Physical models are very useful, they can e
be understood, and they extrapolate well. !

« We know how to model basic mechanics;
but how do we model human behavior?

« Consider the 6 lane highway, a section of
the I-80 in Emeryville outside Oakland

« To plan safe motion in high density
traffic, it would be good to have
predictions what surrounding drivers
will do next

Study Area
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What could influence a driver? (1/2)

The (unknown) long-term plan 5001

Surrounding traffic - positions,
velocities, accelerations

Many aim for high speed lanes to the ™

left, i.e., lane shifts to the left more
common than the opposite

200 -

Could depend on mean velocity and ']

density, in lanes
... and then some

400 A

0 5 10 15 20 25
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What could influence a driver? (2/2)

Predicting what a driver will do 500 -

short-term (less than a second),
look at the velocity vector

On a medium time-scale 1-3 seconds, _ o

drivers start to interact and act with >
the environment

Long-term, then strategic driver plans 1o

Building a rule-based model for
driver behavior will be difficult

400 A

200 -

0 5 10 15 20 25
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A simple approach

500 A

« Maybe using recorded data to build
ML models can be used to predict
driving behavior

400 A

300 A

« Find features x, data about the
current situation and try to predict if
a driver will change lanes within the
next 3 seconds

« Model
y = f(x) € {left, stay, right } ’

« What is a good feature vector x? |

| In hand-in 5-extra, you will build a neural-
L network model f(x)

200 A

100 1
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Summary of introduction

Learning for autonomous vehicles is still very much an active research
area

Computer vision, detection and classification of objects in images,
semantic segmentation of the world

« areas where learning techniques are already important (essential)

We are dealing with mechatronic systems, classical control will be
important

« Model Predictive Control is an especially interesting branch of control

A basic research question for learning and control;
how, where, and when they can collaborate to realize safe, robust, and
resilient autonomous systems
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