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Purpose of this Lecture

 Give a background on methods for motion planning of systems with
differential motion constraints.

 Study how rapidly-exploring random trees (RRTs) and extensions of
such strategies can be used for motion planning.

 Extend the graph-search methods from Lecture 2 to autonomous
vehicles with differential motion constraints using lattice planning.

« Extra material: Study how path-constrained trajectory-planning
problems can be solved.
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[ UNIVERSITY



Expected Take-Aways from this Lecture

« Knowledge about how important differential motion
constraints can be considered in motion planning.

« Be familiar with commonly used methods for motion
planning targeting autonomous vehicles.

« Knowledge about some available computer tools and
libraries for motion planning.
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Literature Reading

The following book and article sections are the main reading material for this lecture. References to
further reading are provided throughout the slides and at the end of the lecture slides.

« Sections 5.1-5.5 and 14.1-14.4 in LaValle, S. M: Planning Algorithms.
Cambridge University Press, 2006.

« Sections 3.3.3 and 5 in Karaman, S., & E. Frazzoli: “Sampling-based
algorithms for optimal motion planning". The International Journal of
Robotics Research, 30(7), 846-894, 2011.

 Section 4.5 in Bergman, K: "Exploiting Direct Optimal Control for
Motion Planning in Unstructured Environments ”, Ph.D. Thesis No. 2133,
Div. Automatic Control, Linkoping Univ., 2021.
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Outline of the Lecture

* The motion-planning problem.
« Methods:
 Rapidly-exploring random trees (RRTs) for motion planning.
« Planning using motion primitives and state lattices.
 Tools and libraries for motion planning.

« Extra material: Decoupled approaches to motion planning.

II LINKOPING
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Context in the Architecture for an Autonomous Vehicle
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Figure from: Paden, B., Cviép, M., Yong, S. Z., Yershov, D., & Frazzoli, E: A survey of motion planning and control
techniques for self-driving urban vehicles”. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55, 2016.



The Motion-Planning Problem

II LINKOPING
[ UNIVERSITY



Motion Planning — Introduction (1/3)

« Compute a strategy for transferring a vehicle from an initial
state to another desired state.

« The state could be the position, orientation, and derivatives
thereof, for the vehicle.

—

- -
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Motion Planning — Introduction (2/3)

« Constraints to be fultilled during the motion (feasibility):
« The motion equations of the vehicle.

« Obstacles, humans, and other vehicles (stationary or
time-varying).

 Physical limits on control inputs (e.g., motor power in a
car, maximum torgue in a robot motor).

II LINKOPING
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Motion Planning — Introduction (3/3)

« Constraints to be fultilled during the motion (feasibility),
cont'd:

« Constraints on internal states (e.g., velocity, available
friction between tires and road, torque transtfer in clutches).

« Road constraints.

+ Often also desirable to minimize energy/power consumption,
time, path length, or other performance criteria (optimality).

II LINKOPING
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Some Important Terms and Concepts

« Path: A curve in space defining A
the geometric motion.

f(s) e R, s € |s0,sf] >
* Trajectory: Is a path with a time- f(s) / )
parameterization connected to it \_‘/ I
(i.e., also specities the velocity or S0 C
evolution of time along the path). -

f(s(t), t & lto,ty]

II. Ll“K/%FI;Ié\II?Y Nilsson, H., and B. Olofsson: “Optimal tracking and identification of paths for industrial robots”. Dept. Automatic Control, Lund Univ., 2010.
U




Motion Planning — Compare Lectures 2 & 3

Linkopit

ooooo

In Lecture 2, discrete motion
planning was considered (example

Latitude (°)
P

from Hand-in Exercise 1 to the right).

In this lecture, the differential motion .

constraints are also considered.

Recall the motion needed to make
parallel transitions with a car from

Lecture 3 (cf. parallel parking). l Z=—— y

12
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Differential Motion Constraints

e As seen in Lecture 3 on modeling of autonomous vehicles, many
systems can be described by differential equations on the
format:

xr — states

T =g(z,u) u — 1Inputs

« An essential task in high-performance motion planning is to take
this constraint into account to make the motion plan feasible.

II LINKOPING
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The Contiguration Space

» The manifold detfining the set of possible transformations of a
vehicle from one state to another is called the configuration
space C.

« The configuration space can be viewed as the state space in
which the vehicle moves.

» The search for a feasible motion plan is done in the
configuration space C.

II LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY
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The Obstacle Region and the Free Space

« Assume a world )V and an obstacle region O. Further, let
the configuration of the autonomous vehicle AV be
defined by ¢ in the configuration space C.

« The obstacle region C,ps can then be defined as:

Cobs = {qge€C | AV(q)NO £ D}
» The free space is accordingly defined as Cfroe = C \ Cobs -

II “ LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY
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Conceptual lllustration of the Configuration Space for Planning

Cfree

LINKOPING
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The State Space

« The configuration space considers only the configuration g of the
system.

« To consider also higher-order derivatives required for ditferential
constraints (e.g., velocity and acceleration), the phase space is
used.

+ The phase space X has higher dimension than the configuration
space (typically both position and velocity variables).

 In motion planning, the state space is the configuration space or
the phase space, depending on the planning task.

II LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY



Example: The State Space for a Double Integrator

« The differential equation for a double integrator with the
Input u Is
=
+ With the states = = (g, ¢) and the state space X = R?,

the state-space dynamic equations for the double
integrator can be written as

L1 — X2,

.C.EQ u

II LINKOPING
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Obstacle Region in the Phase Space

« The obstacle region in the phase space is defined as

Xobs = {ZE c X E(:E) - Cobs}

« The mapping Z gives the configuration variables from

the complete set of states and Xroe = X\ Xops -

« If the state space is the configuration space, then it
coincides with Cyps.

II LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY
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Directed Graphs for Motion Planning

» Adirected graph G, comprising
vertices ) and edges £ .
e The direction of an edge

between two vertices indicates
the transition direction.

« Avertex is also commonly known
as a node.

II LINKOPING
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The Path-Planning Problem

« Let g1 be the initial configuration and qg the desired
goal configuration.

» The path-planning problem consists of computing a path f
for the autonomous vehicle AV according to

f:10,1] = Chree, with f(0) =q1, f(1) =qa

 The path must only reside in Cgee .

II “ LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY
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The Motion-Planning Problem w. Differential Constraints

« Let x1 be the initial state and ¢ the desired goal state.

» The motion-planning problem with differential constraints
is to compute the control inputs u(t) for the vehicle AV
such that the corresponding state trajectory x(t) satisfies

r(t) € Xpee, x(0)=z1, x(T)=2qg

» Often constraints on u(t)and other specifications on z(t).

II LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY



Rapidly-Exploring Random Trees (RRTs) for
Motion Planning
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The Basic Idea of RRTs (1/2)

« The basic idea behind rapidly- ;
exploring random trees (RRTs) is to :

| g

« A tree is a graph where any two vertices
;
:
:

r P | |
2 3 4 5 6 7 8 9 10
X [m]

Tree and solution computed using RRT

incrementally construct a tree in the
state space by sampling.

Y [m]

(each vertex corresponds to a state 2

are connected by exactly one path : %

S Eh AN A

and the edge is the feasible motion !
J , |
segment between two vertices). :

II " LINKOPING LaValle, S. M., & J. J. Kuffner Jr: "Randomized kinodynamic planning”. The International Journal of Robotics Research, 20(5), 378-400, 2001.
o UNIVERSITY
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The Basic |dea of RRTs (2/2)

« The sampling can be random or any other strategy
leading to a dense sequence of samples.

* RRT computes a feasible path, whereas RRT* also aims to
minimize a cost associated with the motion.

LINKOPING LaValle, S. M., & J. J. Kuffner Jr: "Randomized kinodynamic planning”. The International Journal of Robotics Research, 20(5), 378-400, 2001.
I. UNIVERSITY  Karaman, S., & E. Frazzoli: “Sampling-based algorithms for optimal motion planning". The International Journal of Robotics Research, 30(7), 846-894, 2011.
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Sampling in the State Space

Construction of the tree relies on efficient sampling of the
state space ( Ciree OF Xfree)-

Sequence of the samples important, not only the set of
samples.

Sampling can be both random and deterministic.

Special attention required when sampling in orientation
spaces such as the 3D rotation group SO(3).

LINKOPING
UNIVERSITY
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Basic Version of RRT (1/2)

Algorithm 1: RRT w/o. Differential Constraints

27

Vg, £ 0; ,
| for 4i—1 N _do
‘J Qrand < Sample;
| Gnearest < NeareSt(g

II." LINKOPING LaValle, S. M., & J. J. Kuffner Jr: "Randomized kinodynamic planning”. The International Journal of Robotics Research, 20(5), 378-400, 2001.

UNIVERSITY



Basic Version of RRT (2/2)

« Sample: Gives a sample in the free state space.

« Nearest: Provides the vertex in the tree that is closest to the sampled
state.

« Steer: In general this is a so called two-point boundary value problem
(TPBV). Construct a path from the nearest vertex towards the sampled
state, often with a maximum step length (alternative strategies exist).

« ObstacleFree: Checks whether the path from the closest vertex in the
graph to the new state is collision free.

28

II LINKOPING
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RRT with Biased Sampling

» To speed up the process of reaching the goal state, a bias
towards it can be introduced in the sampling.

» In practice: with a certain pre-defined probability [ the
sampled state is the goal state.

* In general, the sampling could be biased to be, e.g., in the
direction of the road or directions implied by the
environment geometry.

II LINKOPING
[ UNIVERSITY
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RRT — Example w/o. Obstacles

“ ~~ — 1 Sample

Q " ‘ Nearest

Jrand | new | (nearest 4 Steer
9.é) N~ | ObstacleFree

LINKOPING
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RRT — Example w. Obstacle

The steer function moves forward towards the
sampled node until the obstacle is detected.

Nearest
Q (A Steer
e ' ObstacleFree

LINKOPING
II." UNIVERSITY
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R RT —_ Exa m p ‘ e . Tree and solution computed using RRT
9 q

« Plan a path from the initial state
(blue cross) to the goal state
(red cross) using RRT.

« The red boxes are obstacles.

A particle moving in a 2D world.

« How to handle differential
motion constraints?

LINKOPING
II." UNIVERSITY
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RRT with Differential Motion Constraints (1/2)

Algorlthm 2: RRT w. Differential Constraints

33

]2g4$£}_hf’4—m ﬁl V
L for i—=1 . N-do. |

| Trand ¢ Sample;
Tnearest = Nearest(G =

'1 f Ubstacleb‘ree(a:nearet,a:ne‘ hen
V — V U {Znew };

nearest; Tnew; U )}

II." LINKOPING LaValle, S. M., & J. J. Kuffner Jr: "Randomized kinodynamic planning”. The International Journal of Robotics Research, 20(5), 378-400, 2001.
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RRT with Differential Motion Constraints (2/2)

« Sample: Gives a sample in the free state space.

« Nearest: Provides the vertex in the tree that is closest to the sampled state.

. Steer: Apply the input u” from a pre-defined discrete set of possible
control input trajectories, leading as close to the sampled state as possible.

 The input trajectories are often of the same time duration.

A simulation of the motion equations can be used to compute the
trajectories obtained with the different inputs.

« ObstacleFree: Checks whether the path from the closest vertex to the new
state is collision free.

II LINKOPING
[ UNIVERSITY
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Introduction to RRT*

« RRT* is an extension of RRT targeting optimal sampling-based motion
planning.

« Compared to RRT, more steps are performed each time a new vertex is
added to the tree.

e In this lecture, RRT* without differential motion constraints are
considered.

« Extensions covering differential motion constraints exist, but are not
covered in the lectures, however, a possible mini-project.

II. LINKOPING Karaman, S., & E. Frazzoli: “Sampling-based algorithms for optimal motion planning”. The International Journal of Robotics Research, 30(7), 846-894, 2011.
UNIVERSITY
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RRT* — Optima\ Motion Planning (1/2)

Algorithm 3: RRT* w/o. Differential Constraints

1 Vedat. E«0; ‘%
|2 J'or i=1,.... N do: I | » 7
3 ,M Qrand <_ Sa'mplea
4 M Qnearest < NeareSt(g = (V, 8), Qrand) ;
5 l Gnew +—Steer(gnearestrarana)s : —————————— ~——-—n ‘
6 | - ) Tee(Qhearesta QHewf—mr‘
7 ;< Qnear — Near(g = (V7 8), dnew ’Y) )
8 | V <+ VU {gnew}; Use path with minimum
9 i Qmin € Qnearest ; Cmin < COSt(Qnearest) + COStL(Line(Qnearest, Qnew)) ; | cost for Connecting the
10 foreach gnear € Qnear do
11 if CollisionFree(gnear, gnew) && new state to the tree.
12 Cost(gnear) + CostL(Line(gnear; gnew)) < Cmin then
13 dmin < Qnear; Cmin < COSt(Qnear) + COStL(Line(Qnear, Qnew)) 5
14 €+ £ U {(Qminalnom)bi R ,
15 =ﬁ%a‘*jl Ynear thear do- - —
16 | if CollisionFree(gnew; gnear) && Re-wire the vertices in a
17 | Cost(gnew) + CostL(Line(gnew, gnear)) < Cost(gnear) then neighborhood of the new
18 dparent < Parent(Qnear)
19 «— (g \ {(qparem, qnear)}) U {(gnew, @near) }; state that can reduce the cost.
20 return G =(V, £): —

i

II " LINKOPING  Karaman, S., & E. Frazzoli: “Sampling-based algorithms for optimal motion planning". The International Journal of Robotics Research, 30(7), 846-894, 2011.
o UNIVERSITY
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RRT* — Optimal Motion Planning (2/2)

« Same functions as in the RRT algorithm, but with certain additional functions:
« Near: Provides all vertices within a ball with radius 7y in the tree.
o Cost: The cost-to-come to the current vertex from the tree root (initial state).
« CostL: The cost of moving along a straight line from the specified vertices.
« Line: Gives the path between two vertices as a straight line.
« Parent: Gives the vertex that is parent to the current vertex in the tree.
« Note that in RRT* more steps are done each time a new state is obtained:
« Make sure that the new vertex is connected along the path with minimum cost.

« Re-wire the existing tree so as to try to minimize the cost gradually.

II LINKOPING
[ UNIVERSITY



RRT* — Bxample Queas

y
Sample |
Nearest (nearest
Steer
ConnectMinCost

: GV, &)
Re-Wire S —

38
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Comparison of RRT and RRT*

Tree and solution computed using RRT ; Tree and solution computed using RRT*

10

39
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RRT — Implementation Aspects

Choice of norm for measure of closeness between vertices.
Bi-directional growth of two RRTs (or even more) simultaneously.
Sampling strategies dedicated to specific state spaces.
Kd-trees for efficient search in the tree.

CL-RRTs sample in the space of reference values for the closed-
loop controllers (decreases state dimension and allows unstable
dynamics), see Lecture 9.

LINKOPING
UNIVERSITY



Planning Using Motion Primitives and State
Lattices
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General |[dea with Lattice Planning (1/2)

* In contrast to the discrete graph-search problems in Lecture 2, a
motion-planning problem with a continuous-time differential motion
constraint is an infinite-dimensional problem.

« No graph with a finite set of nodes exists.

 |dea: Select a finite number of control-signal segments (motion
primitives) and choose them such that the start and end states of their
corresponding trajectories are on a discrete lattice (i.e., a regular grid)

— Back on the graph-search problem from Lecture 2.

42

Likhachev, M., & D. Ferguson: “Planning long dynamically feasible maneuvers for autonomous vehicles".

II. H“K/%FI;IQI'?Y The International Journal of Robotics Research, 28(8), 933-945, 2009.



General |[dea with Lattice Planning (2/2)

« The solution is a sequence of motion primitives.

+ +
+ +
+ +
+ +
+ +

43

Likhachev, M., & D. Ferguson: “Planning long dynamically feasible maneuvers for autonomous ve

II. H“K/%FI;IQI'?Y The International Journal of Robotics Research, 28(8), 933-945, 2009.
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State Lattice — Discretization ot State Space

To transform the original continuous motion-planning problem to
a discrete (finite-dimensional) problem, the state space is
discretized into the set Xj.

 All state variables are discretized, e.g., using a uniform grid, which

results in a so called state lattice.

« The planning is then relying on using a sequence of motion

segments, each bringing the vehicle from one state in the discrete
set X7 to another (never outside this set).

LINKOPING
UNIVERSITY
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State Lattice — Example

« An example where the
translational coordinates (CC, y)
are discretized uniformly and
four different orientations 6 are
allowed at each positional state.

« The arrows indicate the set of
allowed orientations.

II LINKOPING
[ UNIVERSITY



46

Motion Primitives

 The transition from one state in X to the next must obey the
motion equations of the system (i.e., a differential constraint).

» To encode a (discrete) set of possible state transitions within
the lattice, a set of motion primitives MP is computed.

« Each motion primitive must start and end at one state in the
set X4 (though not necessary that all states are connected).

II LINKOPING
[ UNIVERSITY
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Motion Primitives — Examples

Mcgt_ion Primitives for Pre-Defined State Lattice

« Consider a vehicle with dynamics

T = COS(@), x,y — translational coordinates |
6 — orientation coordinate

Yy =" Sin((g), v — velocity A
u — steering angle (input)

0 = U/L tan(u) L — wheelbase
« A sample set of motion primitives

(constant velocity) with the

E ol
>

discretized orientation angles
@Cl — {07 7T/47 7T/27 37T/47 , _37T/47 _7T/27 _7T/4} ) ) ’ X([)m] 2 4 6

II LINKOPING
[ UNIVERSITY
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Computation of Motion Primitives

 For certain types of vehicles, analytical solutions exist for a dynamically feasible motion
between an initial state and another desired state (e.g., Dubins path, see Lecture 3).

* In other cases, numerical optimal control can be used to compute (optimal) motion
segments to be used as motion primitives (see Lecture 5 and Hand-in Exercise 2).

« Typically a cost (e.g., path length, maneuver time, utilization of control inputs) is
associated with each motion primitive.

 Constraints on control inputs introduced in the computations of the primitives.

« Utilize symmetries and translational invariances in the computations (translation,
rotations, and mirroring).

Bergman, K: “Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments “, Ph.D. Thesis, Div.
I LINKOPING Automatic Control, Linképing Univ., 2021.
I.“ UNIVERSITY Ljungqvist, O: "Motion planning and feedback control techniques with applications to long tractor-trailer vehicles”, Ph.D.
Thesis, Div. Automatic Control, Linkdping Univ., 2020.
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Planning on the Lattice Using Motion Primitives (1/4)

« Recall the graph-search methods studied in Lecture 2.

 Using the (finite set of) motion primitives, the motion-
planning problem can now be solved using graph search.

 In each state x4 € &4 in the discretized state space, the
possible transitions are given by

ur € MP(ZL’d)

LINKOPING
II.“ UNIVERSITY
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Planning on the Lattice Using Motion Primitives (2/4)

 After application of a possible motion primitive, a collision check

gives whether the motion is feasible (given current obstacles), i.e., it
must be verified that

Path(a:'d, ﬂp) E Xtreo

« Graph-search methods such as Dijkstra’s and A* applicable for the
planning.

« The search is terminated when x G has been selected for expansion.

II LINKOPING
[ UNIVERSITY



Planning on the Lattice Using Motion Primitives (3/4)

 Recall the A* graph-search algorithm from Lecture 2.

_Algorithm 4: A* with Motion Primitives

C(x1) =0;

. N - Q — priority queue P
Q'msert(xl’.c(ml) +hen); 4 C(x) — cost-to-come to state x
| h(x) — heuristic cost-to-go to goal state for state x
V(z) — parent node to state z
9 P(x) — motion primitive used to reach state x
8 7 __return SIICCESS - e - 7; 7 V
9 ) | foreach ur € Mﬁ—r? -I
10 | x’ = NextState(zx, @) ;
11 | if Path(z,d?) € Xpee then
12 | continue;
13 if not V(z') || C(z') > C(z) + Cost(z,z’) then
14 V(z') =x;
15 P(.’L") = aP;
16 C(z' C(m) + Cost(z, z');
17" - Q‘Wertx , C(x’ +h:1: ;
18 return FAIL%RE,m ( ( : =) —
-

LINKOPING
II." UNIVERSITY
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Planning on the Lattice Using Motion Primitives (4/4)
« Same functions as in the A* graph-search algorithm from Lecture
2, but with some additional ones:

« NextState: Provides the state reached after application of the
considered motion primitive.

« Path: Gives the path between the state x and the next state by
application of the specific motion primitive ,,.

« Cost: The cost to move between two specified states.

II LINKOPING
[ UNIVERSITY
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Lattice Planning — Implementation Aspects

« Choice of state discretization non-trivial task, closely connected to
the specific vehicle dynamics and targeted planning situations.

« Cardinality of the sets X; and MP influences the online
computational time, since the graph-search problem increases in size.

« The set of motion primitives can be computed offline.

« Tabulated values for computing heuristics for distance between two
states (e.g., representing the cost-to-go in free space).

Ljungqvist, O: "Motion planning and feedback control techniques with applications to long tractor-trailer vehicles”,

II. H“K/%FI;IQI'?Y Ph.D. Thesis, Div. Automatic Control, Linképing Univ., 2020.



Example: Lattice Planning (1/2)

« The task is to move from the blue
arrow to the black arrow, using the set
of motion primitives shown on a
previous slide.

 Application of the Dijkstra and A*
algorithms from Hand-in Exercise 1
gives the results in the plot to the right

(blue lines — forward, red lines — reverse).

Y [m]

LINKOPING
II." UNIVERSITY




Example: Lattice Planning (2/2)

Lattice Planning Using Dijkstra and A*

10

« Some observations in the results:

« The finite set of motion primitives
implies restrictions on the motion.

Y [m]

« The choice of graph-search
strategy leads to different
solutions.

e Further studied in Hand-in Exercise 2.

55
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Tools and Libraries for Motion Planning

II LINKOPING
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The Open Motion Planning Library ~
Open Motion Planning Library

 Library containing several different state-of-the-art algorithms for
sampling-based motion planning.

« A subset of the planners also support optimal motion planning
and planning with differential constraints.

« Possible to interface with visualization and collision-checking
software libraries.

« Homepage: https://ompl.kavrakilab.org

II LINKOPING
[ UNIVERSITY
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ROS Package MovelT

« A ROS (Robot Operating System) package for motion planning.
 Includes, e.qg., interfaces to planners from:

« Open Motion Planning Library,

« Search Based Planning Library

Visualization is possible using the tool RViz.

C++ and Python interfaces are available.

Homepage: https://moveit.ros.org

II LINKOPING
[ UNIVERSITY



Decoupled Approaches to Motion Planning

The material in the following section is slightly more advanced and can be
considered as extra material in the course. The methods presented here
will not be part of the hand-in exercises.

II LINKOPING
[ UNIVERSITY
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Decoupled Approach to Motion Planning

« The motion-planning problem can be decoupled into the
following two phases to reduce complexity:

« path planning and
* trajectory planning (~velocity planning).

« The second problem is then often called path-constrained
trajectory planning.

II LINKOPING LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.
[ UNIVERSITY
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Parameterization of Vehicle Dynamics on Path (1/2)

« Assume that a path is described by a (two-times
differentiable) function of a (scalar) path coordinate

q:f(s)a 86[80,3]"], QERn

. . . )
« The idea is now to describe =
the vehicle dynamics using -
Y ) el LD
this additional path-tracking S P
requirement. ; \_D ______ s

II LINKOPING Dahl, O: “Path Constrained Robot Control”, Ph.D. Thesis, Dept. Automatic Control, Lund Univ., 1992.
o UNIVERSITY
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Parameterization of Vehicle Dynamics on Path

« Using the chain rule, the following relations can be shown

. df  dfds ., .. I
= " asa T o, d
. d*f  d [/dfds ()Ng
‘P&?ﬁﬂ@@) g
_ @2fdsds  dfd?s ()N&
 ds2dt dt  ds de?
= f"(s)$" + f'(s)3

II LINKOPING Dahl, O: “Path Constrained Robot Control”, Ph.D. Thesis, Dept. Automatic Control, Lund Univ., 1992.
o UNIVERSITY
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Example: Particle Motion in Two Dimensions (1/2)

« Assume that we have a particle moving in a plane like a 2D
orinter, where the force in each direction can be controlled

migi = Ui, Mag2 = U2, —1 <wup,up <1

—

« Using the relations on the previous slide, it is obtainec

ma(f1(s)8 + f1'(s)$%) = w,
ma(f5(s)8 + f3(8)$%) = us

II LINKOPING
[ UNIVERSITY
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Example: Particle Motion in Two Dimensions (2/2)
» The path to be followed is a straight line described by

f1 = ks, f2 = kas
« With this path and the considered vehicle dynamics, the
problem is to determine the path acceleration s (and
thereby the control inputs 11, u2) such that

ds ,
E -5 —1 S m1k1<§ S 17 S(O) — S50, S(tf) — Sf,
d?s . —1 < mokes <1 5(0)=0, s(ty)=0

ae
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Transtormation to Fixed Interval (1/3)

« The time duration of the motion is unknown a priori, and
thus the final time is part of the problem to compute.

« Transformation to a fixed interval (over values of the path
coordinate), allows reduction of the problem complexity.

II LINKOPING Dahl, O: “Path Constrained Robot Control”, Ph.D. Thesis, Dept. Automatic Control, Lund Univ., 1992.
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Transtormation to Fixed Interval (2/3)

« For a general second-order system, the system dynamics
can be written as follows

F(s,§,8u) =0

 Introduce new variables according to
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Transtormation to Fixed Interval (2/3)

« Using the chain rule again, it is obtained that
d 1 / -_1 /(5
=3 VA6) = - iy s = 5F )
= B'(s) = 2a(s)

« Assume now that the cost function to minimize in this
motion-planning problem is the time. This cost can be

written in the path velocity as follows

tfd Sfld 1d
—to—/ L= / —5—/ —=ds
f VB
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Optimization Problem tor Path Tracking (1/2)

« With the transformations on the previous slides, the time-optimal
trajectory-planning problem for path following can be stated as

mmlmlze / ——ds

a(s), s€[s0,5y]
subject to ' = 204, F(s,B,a,u) =0,
Umin S U < Umax
« The solution tells us how fast we can go along the desired path,

while taking the motion constraints and control-input constraints
Into account.
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Optimization Problem for Path Tracking (2/2)

« The optimization problem can be solved using numerical
optimal control (see Lecture 5) or by constructing the solution in
the phase plane by integration (next slide).

« Note that the problem has been transformed such that
* itis now over a fixed interval (time unknown a priori) and

 the state dimension is independent of the number of degrees-
of-freedom 71 in the considered vehicle dynamics.
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Planning in the Phase Plane s—S "

« To compute the time-optimal
solution, the path velocity s should be
as high as possible along the path.

S

« The solution can be constructed by
integrating forward and backward
with maximum or minimum path

acceleration s.

« The allowed area in the phase plane
is described by

Stree = {(5,8) : $min(s,$) < Smax(s,$)}

" Bobrow, J. E., S. Dubowsky, & J. S. Gibson: “"Time-optimal control of robotic manipulators along specified paths”,
I LINKOPING ) .
® UNIVERSITY The International Journal of Robotics Research, 4(3), 3-17, 1985.
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Example: Time-Optimal Motion for the Particle Model (1/4)
* Recall the previous example where the particle is moving
along a straight line with constant limits on the forces. Let the
parameters be
m1:2, m2:1, klzl, kgzl, 8():0, szl
* Given the constraints on the inputs, the time-optimal solution

should satisfy Lll < mikid < 1,
—1 S m2k2§ S 1

. cow
Smax = Inin =

1
- i=1,2m;k; 2

—1 <wuj,up <1 i ) in 1
Smin — mMax = — =

i=1,2m; k; 2

Y
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Example: Time-Optimal Motion for the Particle Model (2/4)
« The time-optimal solution is of bang-bang character, i.e.,

(

gmaX7 tO S t S tl
Smin, t1 <t <ty

S = <

\

* Integration two times and utilization of boundary values
and continuity of path coordinate and path velocity gives

12
~42, tg <t <t

R - t1:\/§, tr = 2t
—it2+\/§t—1, t1 S 1<ty f
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Example: Time-Optimal Motion for the Particle Model (3/4)

 Recall the differential relations with respect to the path
coordinate

B'(s) = 2a(s), a(s(t)) = 3(t), B(s(t)) = 5(t)°

« Path acceleration and path velocity then computed as

.. iliﬁl(S):Qoz(;W \/B: \/Ea So§8§31
<s<s | f —

o = Smax; 50 =8 = 51 V(=s+1), s1<s<sy

gmina 31<S§Sf i |
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Example: Time-Optimal Motion for the Particle Model (4/4)"
Path coordinate s(t) Path velocity $(t)

0 1 1
0 0.5 1.5 2 2.

ui(t) (blue), ug(t) (red) Path velocity v/B(s)
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Reterences and Further Reading (1/2)

All the following books and articles are not part of the reading assignments for the course, but cover the
topics studied during this lecture in more detail.

« Bergman, K: “Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments “,
Ph.D. Thesis No. 2133, Div. Automatic Control, Linkoping Univ., 2021.

« Bobrow, J. E., S. Dubowsky, & J. S. Gibson: “Time-optimal control of robotic manipulators along
specified paths". The International Journal of Robotics Research, 4(3), 3-17, 1985.

« Dahl, O: "Path Constrained Robot Control”, Ph.D. Thesis, Dept. Automatic Control, Lund Univ., 1992.

« Dubins, L. E., "On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents”, American Journal of Mathematics, 79(3),
497-516, 1957.

II LINKOPING
[ UNIVERSITY



Reterences and Further Reading (2/2)

Karaman, S., & E. Frazzoli: "Sampling-based algorithms for optimal motion planning".
The International Journal of Robotics Research, 30(7), 846-894, 2011.

LaValle, S. M., & J. J. Kuffner Jr: "Randomized kinodynamic planning”. The International
Journal of Robotics Research, 20(5), 378-400, 2001.

LaValle, S. M: Planning Algorithms. Cambridge University Press, 2006.

Likhachev, M., & D. Ferguson: “Planning long dynamically feasible maneuvers for
autonomous vehicles". The International Journal of Robotics Research, 28(8), 933-945,
2009.

Ljungqvist, O: "Motion planning and feedback control techniques with applications to

77

long tractor-trailer vehicles”, Ph.D. Thesis, Div. Automatic Control, Linképing Univ., 2020.

II LINKOPING
[ UNIVERSITY



www.liu.se

LINKOPING
II.“ UNIVERSITY



