
Discrete motion planning
TSFS12: Autonomous Vehicles —planning, control, and learning

systems

Lecture 2: Erik Frisk <erik.frisk@liu.se>

Motion planning, from discrete problems …
2

… to continuous, nonholonomic, systems with inertia
3

NASA/Lockheed Martin X-33 Re-entry trajectory

From “Planning Algorithms”, S. LaValle, 2006.

Motion planning and discrete graph search

• Graph search algorithms are very useful for planning motion and
trajectories for autonomous vehicles

• But, robots do not move on a graph?

• Discretize (spatial and temporal)

• Use graph search as a component in a continuous planner, for
example in so called lattice planners (Lecture 4)

• This lecture will focus on the graph search problem and introduce
fundamental algorithms

• These algorithms are the topic of hand-in 1, and will be used also in
hand-in 2.

4

Scope of this lecture

• Formalization of a planning problem as a graph search problem

• Main algorithms for graph search

• Dijkstra’s algorithm

• A*

• Properties of heuristics in A* to ensure optimality and efficiency

• Introduction to any-time planning using A* — ARA*

5

Graphs and discrete planning problems

Solving problems by searching in a graph
7

Nodes/vertices

Edges

Start

Goal

A node can represent any state in a search space
8

1 4 3

7 6

5 8 2

1 3

7 4 6

5 8 2

1 4 3

7 6 2

5 8

Formulating a planning problem as a graph search

• Problem solving is sometimes well formulated as graph search
problems

• Formulation of graph search problem requires

• State-space

• For each state there is an action space

• A state-transition function, i.e., description of the next state if

action is used in state

 for each

• Initial state and goal state

𝒳

x ∈ 𝒳 𝒰(x)

x′

u x

x′ = f(x, u) ∈ 𝒳 u ∈ 𝒰(x)

xI xG

9

Definition of a graph search problem
10

X = {1, . . . , 25}

U(x) ⊆ {Up,Down,Left,Right}

xI = 1, xG = 14
<latexit sha1_base64="SbJcnYSNz01U35KGQVDSSUm+bZQ=">AAACa3icbVFda9RAFJ2kftRV62ofFPVhcGmpUJZk3dL2QSgqqOBDFdMubJYwmb3ZHTqZpDM3dZeQF3+ib/4DX/wPTrJh8evAwLnnfnImzqUw6HnfHXfj2vUbNzdvdW7fubt1r3v/wZnJCs0h4JnM9ChmBqRQEKBACaNcA0tjCefxxes6f34F2ohMfcZlDpOUzZRIBGdopaj7NUwZzjmT5aiiuy9pWPr7NJxmaPbp4CCswrAT7C2e093QFLEBhEtbEiIssAzyypY29E32Ra2DD5DgOvgkZnOsmjmL6H29oZ5/WbApXURvqQ2HUbfn9b0G9F/it6RHWpxG3W/2QF6koJBLZszY93KclEyj4BKqTlgYyBm/YDMYW6pYCmZSNl5VdMcqU5pk2j6FtFF/7yhZaswyjW1l7Yz5O1eL/8uNC0yOJqVQeYGg+GpRUkiKGa2Np1OhgaNcWsK4FvZWyudMM472ezqNCccN6IocDlty7K9NOBv0/Rf9wcdh7+RVa8cmeUKekT3ik0NyQt6RUxIQTn44W85D55Hz0912H7tPV6Wu0/Zskz/g7vwCNl23jg==</latexit>

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

x0 = f(x, u) ∈ X
<latexit sha1_base64="gf2DqGDZaF+P8gvFl/WoAI84rhw=">AAACBHicbZDLSsNAFIYn9VbrLeqym8EiVpCS1ELtQii6cVnBXqAJZTKdtEMnkzAzkZbQhRtfxY0LRdz6EO58G5M0iLcfBj7+cw7nzO8EjEplGB9abml5ZXUtv17Y2Nza3tF39zrSDwUmbewzX/QcJAmjnLQVVYz0AkGQ5zDSdSaXSb17S4SkPr9Rs4DYHhpx6lKMVGwN9OL0CJ5Dtzw9geExtCi3PKTGGLGoNx/oJaNipIJ/wcygBDK1Bvq7NfRx6BGuMENS9k0jUHaEhKKYkXnBCiUJEJ6gEenHyJFHpB2ln5jDw9gZQtcX8eMKpu73iQh5Us48J+5MTpS/a4n5X60fKvfMjigPQkU4XixyQwaVD5NE4JAKghWbxYCwoPGtEI+RQFjFuRXSEBqp4ALqtQwa5lcInWrFPK1Ur2ul5kUWRx4UwQEoAxPUQRNcgRZoAwzuwAN4As/avfaovWivi9acls3sgx/S3j4Bi1GXMg==</latexit>

f(17, u) =











18 u = Up

22 u = Right

16 u = Down
<latexit sha1_base64="XXLiyZOZlwP/lytqTZPm2RlvEk4=">AAACUHicbZHPb9MwFMdfOn5s4ccKO3KxqIaGhKqkTHQ7TJoGB44D0W1SU1WO+5Jac5zIfgGqqH/iLrvt7+DCYWhz04Ao7CtZ/urznp+tr+NCSUtBcOW11u7df/BwfcN/9PjJ0832s+cnNi+NwIHIVW7OYm5RSY0DkqTwrDDIs1jhaXz+flE//YrGylx/oVmBo4ynWiZScHJo3E6TnbD/hpWv2QHzoxhTqSvh5tm5H+6xV6x0PCL8TtWgmEeR3+utwM8yndKCh+9W+If8m577EepJM23c7gTdoBb734SN6UCj43H7MprkosxQk1Dc2mEYFDSquCEpFLrZpcWCi3Oe4tBZzTO0o6oOZM62HZmwJDduaWI1/ftExTNrZ1nsOjNOU/tvbQHvqg1LSvZGldRFSajF8qKkVIxytkiXTaRBQWrmDBdGurcyMeWGC3J/4Nch7NdiS9Pfbcx++CeEk143fNvtfdrtHB41cazDC3gJOxBCHw7hIxzDAARcwA+4hl/epffTu2l5y9bfO2zBilr+Lap9sCo=</latexit>

U(8) = {Left,Down}
<latexit sha1_base64="Qvg02Rg2u6y6qrXJFHFZa52nm6g=">AAACDHicbVDLSgMxFM34rPVVdekmWAQFKTMq6EYQdeHCRQWrhU4pmfRODWYyQ3JHLcN8gBt/xY0LRdz6Ae78G9PHQq0HAifnnEtyT5BIYdB1v5yx8YnJqenCTHF2bn5hsbS0fGniVHOo8VjGuh4wA1IoqKFACfVEA4sCCVfBzXHPv7oFbUSsLrCbQDNiHSVCwRlaqVUq1zb2N+kB9TMf4R6zMwgx36KDy0l8p3I/tym34vZBR4k3JGUyRLVV+vTbMU8jUMglM6bhuQk2M6ZRcAl50U8NJIzfsA40LFUsAtPM+svkdN0qbRrG2h6FtK/+nMhYZEw3CmwyYnht/no98T+vkWK438yESlIExQcPhamkGNNeM7QtNHCUXUsY18L+lfJrphlH21/RluD9XXmUXG5XvJ3K9vlu+fBoWEeBrJI1skE8skcOySmpkhrh5IE8kRfy6jw6z86b8z6IjjnDmRXyC87HN46Nmrk=</latexit>

State-space and search tree

• Naïve solution; exhaustive
search

• Build search tree and explore
until solution is found

• Different ways to traverse
the tree

• depth first

• breadth first

• …

11

1 3

7 4 6

5 8 2

1 4 3

7 6

5 8 2

4 3

1 7 6

5 8 2

1 4 3

5 7 6

8 2

1 4 3

7 8 6

5 2

1 4 3

7 8 6

5 2

1 4

7 6 3

5 8 2

1 4 3

7 6 2

5 8

1 3

7 4 6

5 8 2

4 3

1 7 6

5 8 2

1 4 3

7 8 6

5 2

1 4 3

7 6

5 8 2

1 4 3

7 6

5 8 2

Up

Down
Left

Right

Left Right Up Down Left Right Up Down

Queues

• A queue is a data structure where you can

• Push (or insert) elements on the queue

• Pop (or remove) elements from the queue

• Very useful for describing and implementing search algorithms

• Three different queues will be used

• FIFO - First In First Out

• LIFO - Last In First Out

• Priority Queue - assign priority to each element
≈ efficiently keep the queue always sorted (not exactly sorted …)
Will return to this queue later.

12

General forward search (and keep track of visited nodes)
13

• During the search, define a
mapping

• Keeps track of paths, node

is predecessor of node

• Keeps track of which nodes
that are visited

• Depth first - LIFO queue

• Breadth First - FIFO queue

x′ = previous(x)

x

x′

1 function ForwardSearch :
2 Q. i n s e r t (xI)
3

4 while Q 6= ;
5 x = Q. pop ()
6 i f x = xG

7 return SUCCESS
8

9 for u 2 U(x)
10 x0 = f(x, u)
11 i f no prev ious (x0)
12 prev ious (x0) = x

13 Q. i n s e r t (x0)
14

15 return FAILURE

Type of queue

decides depth first

or breadth first

Breadth First search - FIFO queue
14

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Node Previous

1 -

2 1

3 2

4 3

5 4

6 1

7 2

8 3

9

10

11 6

12

13

14 19

15

16 11

17 16

18 17

19 18

20

21 16

22 21

23 22

24

25

Depth First search - LIFO queue
15

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

• The mapping

defines the path.

• Node is the predecessor

of node

• Backtracking from goal to
start then gives the path

x′ = previous(x)

x

x′

Generate path from visited mapping
16

1 function Backtrack (v i s i t e d , source , goa l) :
2 i f found
3 p = ;
4 u = goa l
5 while prev ious [u] 6= s t a r t
6 i n s e r t u at the beg inning o f p
7 u = prev ious [u]
8 i n s e r t u at the beg inning o f p

Backtrack generated path
17

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Node Previous

1 -

2 1

3 2

4 3

5 4

6 1

7 2

8 3

9

10

11 6

12

13

14 19

15

16 11

17 16

18 17

19 18

20

21 16

22 21

23 22

24

25

What about quality of plan?
18

Depth First/LIFO

I

A

C

G

I C

B

A

G

1 2

1 1

1

B

I

A

C

G

Breadth First/FIFO

• Clearly neither depth-first nor breadth-first finds the shortest path in the
graph

• Not surprising since there is no notion of distance/stage-cost in the search

• Next step is to find shortest paths …

Dijkstra’s algorithm - finding shortest path

Dijkstra’s algorithm

• Well known algorithm, first published in the 1950’s

• Computes, not only the shortest path between two nodes, but the
shortest path between a source node and all other nodes; shortest path
tree

• Idea: keep track of cost-to-come for each visited node, and explore the
tree search prioritized by cost-to-come

• Use Priority Queues instead of FIFO/LIFO

20

Priority Queue

• You can insert and pop (element, priority) pairs

• Here priority is typically path cost (length/time)

• Operations (for min-priority queue)

• insert(element, priority) - insert pair into the queue

• pop() - returns element and priority corresponding to the lowest priority

• decrease_key(element, priority) - change priority for an element

• In general, you can decrease an elements priority by pushing it again

• This is not strictly needed, I will come back to this; lazy delete

• Insert and pop are no longer constant time operations, typically
for implementations based on a data-structure called heap

𝒪(log n)

21

Dijkstra’s algorithm

• cost (∼ length) to go from

node to

• During search, update mapping

that keeps track of cost-to-come

to node .

• Use a priority queue, with cost-
to-come as priority to explore the
shortest paths first

• Modify the search to rewire in
case a cheaper path is found

d(x, x′)

x x′

C(x)

x

22

1 function Di jk s t r a :
2 C(xI) = 0
3 Q. i n s e r t (xI , C(xI))
4

5 while Q 6= ;
6 x = Q. pop ()
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0))
17

18 return FAILURE

Dijkstra on the small graph
23

I C

B

A

G

1 2

1 1

1

Start: I

 Prio 0

Pop I: A B

 Prio 1 1

Pop A: B C

 Prio 1 3

Pop B: C alt. C C

 Prio 2 2 3

Pop C: G alt G C

 Prio 3 3 3

Pop G: Goal

Previous(x)

I -

A I

B I

C A B

G C

B

I

A

C

G

Breadth First/FIFO

C? Here path to C

is rewired

Dijkstra’s algorithm
24

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Start: 1

 Prio 0

Pop 1: 2 6

 Prio 1 1

Pop 2: 6 3 7

 Prio 1 2 2

Pop 6: 3 7 11

 Prio 2 2 2

Pop 3: 7 11 4 8

 Prio 2 2 3 3

Pop 7: 11 4 8

 Prio 2 3 3

Pop 11: 4 8 16

 Prio 3 3 3

Pop 4: 8 16 5

 Prio 3 3 4

Pop 8: 16 5

 Prio 3 4

Pop 16: 5 17 21

 Prio 4 4 4

Pop 5: 17 21

 Prio 4 4

Pop 17: 21 18 22

 Prio 4 5 5

Pop 21: 18 22

 Prio 5 5

Pop 18: 22 19 23

 Prio 5 6 6

Pop 22: 19 23

 Prio 6 6

Pop 19: 23 14 20 24

 Prio 6 7 7 7

Pop 23: 14 20 24

 Prio 7 7 7

Pop 14: Goal

Example, backtracking path
25Node Previous Cost

1 -1 0

2 1 1

3 2 2

4 3 3

5 4 4

6 1 1

7 2 2

8 3 3

9

10

11 6 2

12

13

14 19 7

15

16 11 3

17 16 4

18 17 5

19 18 6

20 19 7

21 16 4

22 17 5

23 18 6

24 19 7

25

• During search, two mappings are
updated

• Previous() - keep track of parent
node

• Cost() - current cost to come

• Using Previous(), backtracking gives
the resulting path

• 14 - 19 - 18 - 17 - 16 - 11 - 6 - 1

• Note that you get minimum length
path from start to all nodes

x

x

x

Visited nodes

Unvisited nodes

xI

xG

u

w

v

Sketch of proof of optimality

• Typically a proof by induction

• Assume is minimal for all visited nodes

• Take an edge to an unvisited node with

the lowest (corresponds to the pop-
operation in the priority queue)

• Then, is minimal

• If there was a shorter path

• via visited nodes, that edge would have
been chosen

• Via unvisited nodes, that edge would
have been explored before

C(x)

u

C(x)

C(u) = C(v) + d(v, u)

26

Properties of Dijkstra’s algorithms

• Once you pop the goal node (on line 6),
you are sure you’ve found the optimal path

• Complexity properties ≈ edges gives
insertions and nodes pops:

• With balanced binary heap, both

operations are and

 so resulting

• Worst-case bounds for fully connected
graphs maybe not that relevant; nodes are
typically only connected to a few nodes.

𝒪(|E |Tinsert + |V |Tpop)

𝒪(|V | log |V |)

|E | = 𝒪(|V |
2)

𝒪(|V |
2 log |V |)

27

1 function Di jk s t r a :
2 C(xI) = 0
3 Q. i n s e r t (xI , C(xI))
4

5 while Q 6= ;
6 x = Q. pop ()
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0))
17

18 return FAILURE

Dijkstra optimal in length, but not in performance
28

Depth First

26 km path

7570 nodes visited

Dijkstra

5.38 km path

11626 nodes visited

A*

5.38 km path

6594 nodes visited

A* - efficiently finding an optimal path

Keep optimality but reduce the number of visited nodes

Strategy:
1. Prioritize nodes according to estimated final length
2. Explore nodes in the search that have high chance to be in optimal path.

30

<

Estimated final length

• Let be the cost to come as before

• Let be an estimate of cost to go
to the goal; called a heuristic function

• The estimated total length is then

used in the priority queue

• Means; explore nodes that have a low
estimated final length

• With a good heuristic, we will find a
solution without exploring too many nodes

C(x)

h(x) ≥ 0

C(x) + h(x)

31

<

Estimated final length — heuristics

• Let be the cost to come as before

• Let be an estimate of cost
to go to the goal; called a heuristic
function

• The estimated length is then

used in the priority queue

• In the example here, the
Euclidean distance to the goal
is used as heuristic

C(x)

h(x)

C(x) + h(x)

32

Dijkstra vs A* — very similar just a change of priority
33

1 function Di jk s t r a :
2 C(xI) = 0
3 Q. i n s e r t (xI , C(xI))
4

5 while Q 6= ;
6 x = Q. pop ()
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0))
17

18 return FAILURE

1 function Astar :
2 C(xI) = 0
3 Q. i n s e r t (xI , C(xI) + h(xI))
4

5 while Q6= ;
6 x = Q. pop ()
7 i f x = xG

8 return SUCCESS
9

10 for u 2 U(x)
11 x0 = f(x, u)
12 i f no prev ious (x0) or
13 C(x0) > C(x) + d(x, x0)
14 prev ious (x0) = x

15 C(x0) = C(x) + d(x, x0)
16 Q. i n s e r t (x0 , C(x0) + h(x0))
17

18 return FAILURE

Does A* find the optimal path?

• Efficiency of A* depends on the heuristic; the better estimate of cost-to-
go, the more efficient search

• The heuristic helps us prioritize; do not prioritize nodes that probably is
not part of the solution

• The priority in Dijkstra is and in A*

• Clearly, for both algorithms give the same result and explore
exactly the same search space

• The higher the value of cost-to-go for a node, the lower priority in the
search. Note that no node is excluded from the search, it is just put way
back in the queue if the expected cost to go through that node is high!

C(x) C(x) + h(x)

h(x) = 0

34

Does A* find the optimal path?

• Edge costs in black, heuristic in red

• A* will find path S—G

• What went wrong here? Found
sub-optimal path.

• Heuristic seems to be the reason!

35

S

A

G

h=7

h=6

h=0

1

5

3

Does A* find the optimal path?

• Let be the (unknown) true cost-to-go function

• A heuristic that satisfies

is called admissible

• With an admissible heuristic, once the goal node is popped the optimal
solution is found.

• Optimality can be proven with a similar argument as for Dijkstra, not
covered now.

h*(x)

h(x) ≤ h*(x)

36

With admissible heuristic, optimality is preserved

Explore nodes in the search that have high chance to be in optimal path; here
means explore nodes that, with underestimated cost-to-go, is cheaper than
others

37

<

Start: 1

 Prio 5

Pop 1: 2 6

 Prio 5 5

Pop 2: 3 6 7

 Prio 5 5 5

Pop 3: 4 6 7 8

 Prio 5 5 5 5

Pop 4: 6 7 8 5

 Prio 5 5 5 7

Pop 6: 7 8 11 5

 Prio 5 5 5 7

Pop 7: 8 11 5

 Prio 5 5 7

Pop 8: 11 5

 Prio 5 7

Pop 11: 5 16

 Prio 7 7

A* search with manhattan heuristic
38

S

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

5

4

3

2

3

4

3

2

3

0

1

4

3

2

1

2

5

4

3

2

3 Pop 5: 16

 Prio 7

Pop 16: 17 21

 Prio 7 9

Pop 17: 18 21 22

 Prio 7 9 9

Pop 18: 19 21 22 23

 Prio 7 9 9 9

Pop 19: 14 20 21 22 23 24

 Prio 7 9 9 9 9 9

Pop 14: Goal!

Resulting path
39Node Previous Cost

1 1 0

2 1 1

3 2 2

4 3 3

5 4 4

6 1 1

7 2 2

8 3 3

9

10

11 6 2

12

13

14 19 7

15

16 11 3

17 16 5

18 17 5

19 18 6

20 19 7

21 16 5

22 17 5

23 18 6

24 19 7

25

• During A* search, two functions are
updated

• Previous(x) - keep track of parent
node

• Cost(x) - current cost to come

• Using Previous(x), backtracking gives
the resulting path

• 14 - 19 - 18 - 17 - 16 - 11 - 6 - 1

A closer look at heuristics —

consistent and admissible heuristics

• Clearly the heuristic is
important to gain efficiency
in the search

• In complex search problems,
this can be really difficult

• In a simple path planning
example, e.g., use the
Euclidean distance

• Heuristic trivially admissible

h(x) = |x − xG |

h(x) ≤ h*(x)

Estimated final length - example heuristic
41

Heuristics, not always so simple

• Euclidean distance as heuristic can
be a good choice for path planning

• Maze or cube-like problems

• Nonholonomic vehicles, e.g.,
parking maneuver of a car

• High-degree of freedom
problems, e.g., positioning
of a robotic arm

42

Figure from: “Optimisation based path planning for car parking in narrow

environments”, P. Zips et.al., Robotics and Autonomous Systems, 2016

What happens here?

• Heuristic is admissible, so A* will find the optimal path
S-A-C-G

• Perform A*, you will see that node C
returns to the priority queue
during search

• Consistent heuristic

• Consistency means that the estimate, i.e., heuristic, becomes better and

better along the path to the goal, . Here, the
problem is the poor heuristic at C

h(x) − h(x′) ≤ d(x, x′)

h(x′) ≥ h(x) + d(x, x′)

h(A) − h(C) ≥ d(A, C)

43

S

A

B

C G

h=2

h=1

h=4

h=1 h=0

1

1
2

1

3

Consistency has to do with efficiency, not optimality

• The search will find an optimal solution, regardless if the heuristic is
consistent or not

• Inconsistency might lead to inefficiency, in a worst case exponential
increase in node expansions

Martelli, Alberto. "On the complexity of admissible search algorithms"
Artificial Intelligence 8.1 (1977): 1-13.

44

• The Euclidean heuristic is consistent

• Consistent heuristic implies admissible (triangle equality is
necessary and sufficient): Pearl, Judea. "Heuristics: intelligent
search strategies for computer problem solving." (1984).

• Proof sketch: Let the path be the optimal path from node to ;
then the induction step is given by:

x xG

Properties of consistent heuristics
45

x = xn

xn−1

xG = x0

x1

h(xn) ≤ h(xn−1) + d(xn, xn−1) ≤

h∗(xn−1) + d(xn, xn−1) = h∗(xn)
<latexit sha1_base64="wJ+dMOc3vRAq7Gpq/EQgK/wQwJ0=">AAACQ3icfZDLSgMxGIUz9VbrrerSTbAIrZcyUwXdCEU3LivYC3bGkknTNjSTGZOMWIa+mxtfwJ0v4MaFIm4FM+0gasUfAh/nnJ8kxw0Ylco0H43U1PTM7Fx6PrOwuLS8kl1dq0k/FJhUsc980XCRJIxyUlVUMdIIBEGey0jd7Z/Gfv2GCEl9fqEGAXE81OW0QzFSWmplL3v52xYvQJuRaxhzxPesYQHuwHZs7MIvZZSw7Uzvavu/2DEcB3ihlc2ZRXM0cBKsBHIgmUor+2C3fRx6hCvMkJRNywyUEyGhKGZkmLFDSQKE+6hLmho58oh0olEHQ7illTbs+EIfruBI/b4RIU/KgefqpIdUT/72YvEvrxmqzpETUR6EinA8vqgTMqh8GBcK21QQrNhAA8KC6rdC3EMCYaVrz+gSrN9fnoRaqWjtF0vnB7nySVJHGmyATZAHFjgEZXAGKqAKMLgDT+AFvBr3xrPxZryPoykj2VkHP8b4+ATVLat6</latexit>

h(x) = |x− xG| = |(x− x0)− (xG − x0)| ≤ |x− x0|+ |x0
− xG| ≤

≤ |x− x0|+ h(x0) ≤ d(x, x0) + h(x0)
<latexit sha1_base64="Jv6KUqRTCYNdt1OvRsemqnOVnxw=">AAACVHicbZFJSwMxFMczo3WpW9Wjl2CxnaKWGS1UD4LoQY8V7AKdUjJppg3NLCYZaWn9kHoQ/CRePJhZELcHIb/3f+8l4R8nZFRI03zT9IXF3NLyymp+bX1jc6uwvdMSQcQxaeKABbzjIEEY9UlTUslIJ+QEeQ4jbWd8Hdfbj4QLGvj3chqSnoeGPnUpRlJJ/cJ4ZEwqsHQB55PjSf9mDhUZCsuVY0PlMcyhzchD0lCew0MF5bQ1lm07X4r3r6o6r1xJJwbG5AjGWab2C0WzaiYB/4KVQRFk0egXXuxBgCOP+BIzJETXMkPZmyEuKWbkKW9HgoQIj9GQdBX6yCOiN0tMeYIHShlAN+Bq+RIm6veJGfKEmHqO6vSQHInftVj8r9aNpHvWm1E/jCTxcXqRGzEoAxg7DAeUEyzZVAHCnKq3QjxCHGGp/iGfmHCeBEyhXsvg3PoyoXVStU6rJ3e14uVVZscK2AP7wAAWqINLcAsaoAkweAbvGtA07VX70Bf0XNqqa9nMLvgR+uYnAMKr1g==</latexit>

Short summary on heuristics

• Heuristic function estimates distance from goal state

• Two properties

• — admissibility, implies optimality of solution

• — consistency, efficiency
(nodes doesn’t re-appear in search after popped)

• The closer is to the true distance , the better. Dijkstra

corresponds to the trivial heuristic

• Consistency implies admissibility

• Heuristic that fulfills triangle inequality, e.g., Euclidean distance is
consistent

h(x)

h(x) ≤ h*(x)

h(x) − h(x′) ≤ d(x, x′)

h(x) h*(x)

h(x) = 0

46

Heuristics not always so easy
47

(x) (xg)

h(x) = |x − xg |

(x, y, θ)

(xg, yg, θg)

h(x) = ?

Need to solve problem to get accurate heuristic

Any-time planning

What about a non-admissible heuristic?

• What happens with a non-admissible heuristic, i.e., doesn’t satisfy

• With a non-admissible heuristic, a solution will be found but may not be
optimal.

• The solution may be found faster though!

h(x) ≤ h*(x)

49

Effects of non-admissible heuristics in map routing
50

��� ��� ��� ��� ���
IDFWRU

�����

�����

�����

�����

�����

�����

�����

�����

/H
QJ
WK
�>N

P
@

����

����

����

����

����

����

����

����

7L
P
H�
>V
@

(IIHFWV�RI�QRQ�DGPLVVLEOH�KHXULVWLFV�RQ�$VWDU

hc(x) = c h(x)

ARA* - Anytime A*, basic principle

• Basic principle

1. Find a solution with an inflated heuristic

2. Lower inflation factor

3. Reuse previous computations and compute a new solution

4. Finish if satisfied with solution (or out of time), else go to 2

• Likhachev et.al. "ARA*: Anytime A* with provable bounds on sub-
optimality."
Advances in neural information processing systems, 2004.

• Connects to receding horizon control and replanning; this will be
returned to later in the course

51

Best First Search

• Assume your heuristic is
very good, i.e. , close to the
real cost-to-go.

• Then it makes sense to

expand node with lowest

, i.e., use heuristic
as priority in the queue.

• Direct forward search using
a priority queue with the
heuristic as priority.

x

h(x) h(x)

52

1 function Bes tF i r s t :
2 Q. i n s e r t (xI , h(xI))
3

4 while Q6= ;
5 x = Q. pop ()
6 i f x = xG

7 return SUCCESS
8

9 for u 2 U(x)
10 x0 = f(x, u)
11 i f no prev ious (x0)
12 prev ious (x0) = x

13 Q. i n s e r t (x0 , h(x0))
14

15 return FAILURE

Some concluding comments

Forward-, backward-, and bi-drectional search

• Sometimes it is better to
search in a particular
direction

• Backward search

• Forward search

• Bi-directional search

54

qG
qI

Reading instructions

• “Planning Algorithms”, Chapter 2 (mainly sections 2.1-2.3), S. LaValle.

• Want to dig a little deeper? Here’s some extra reading…

• “ARA*: Anytime A* with provable bounds on sub-optimality.”,
Likhachev et al. Advances in neural information processing systems,
2004.

• “Priority queues and Dijkstra's algorithm”, Chen, Mo, et al..
Computer Science Department, University of Texas at Austin, 2007.

55

Some take-home messages

• How to formulate path planning as a
search on a graph

• Basic search algorithms for motion
planning in discrete graphs, in
particular A*

• The heuristic function used in A*,
and how it affects search efficiency

• Discrete graph search algorithms
will be directly useful for motion
planning with motion models

• There are many extensions to the
basic A*

56

����� ����� ����� ����� ����� ����� ����� �����

������

������

������

������

������

������

%UHDGWK)LUVW���������P�
'HSWK)LUVW����������P�
'LMNVWUD���������P�
$VWDU���������P�
%HVW)LUVW���������P�

Hand-in 1
Discrete planning in a structured road
network

Graph planning with motion models
57

(x, y, θ) = (0,0,0)

(x, y, θ) = (20,20,π)

• Revisit graph search
algorithms in

• Lecture 4 - Planning under
differential-constraints

• Hand-in 2

www.liu.se

