
Introduction to (some) computer
tools for Python in TSFS12
Erik Frisk <erik.frisk@liu.se>
Department of Electrical Engineering
Linköping University

Introduction to (some) computer tools
• If you have none, or little, experience in Python before; we support anyone

taking the opportunity to learn.

• Bear in mind though that it will probably mean extra work for you. We can

help, but this is not a course in Python.

• Experience from previous years:

some are hindered by not being efficient in the computer tools used

• To help, we include this non-mandatory lecture to get you started. If you are

efficient and used to working in Python IDE:s; there will be nothing new for

you here.

2

Introduction to (some) computer tools
• What it is: Introduction to Jupyter notebooks and Visual Studio Code

• a brief discussion on when they are suitable

• illustrate on code for the first hand-in — discrete planning

• a quick guide to how to start configuring Visual Studio Code for Python

• What it isn’t: Introduction to Python

3

Integrated Development Environments
• Three widespread tools (I use) are:

• Jupyter notebooks (https://jupyter.org)

• Visual Studio Code (https://code.visualstudio.com)

• PyCharm (https://www.jetbrains.com/pycharm/)

• Free and available for Windows, Linux, and Mac

• Jupyter notebooks

• Excellent for experimenting, exploring, and light coding

• Big +: Documentation and code together

• Big -: Poor debugging alternatives and a very simple editor

• Visual Studio Code (VSC)

• More programming like environment, full editor capabilities

• Good debug functionality

• PyCharm

• Same as VSC — matter of preference, more tailored to Python

• There are also others: Sublime text, vim, atom, emacs, …

4

https://jupyter.org
https://code.visualstudio.com
https://www.jetbrains.com/pycharm/

Getting started with the hand-in files

Getting started
6

Create virtual environment and install all packages needed
% cd tsfs12_work

% python -m venv env

% source env/bin/activate # On Windows: env\Scripts\activate

% (env) pip install -U pip # Update package manager is always a good idea

% (env) pip install -r requirements.txt # Install all required packages

Get all files from the repository
% mkdir tsfs12_work

% cd tsfs12_work

% git clone https://gitlab.liu.se/vehsys/tsfs12.git

% cd tsfs12

% git pull # When you want to get all the latest updates

If you don’t use git, you can also download a zip-file with the repo from
 https://gitlab.liu.se/vehsys/tsfs12.

Note to M1 Mac users: you might

run into a few speed-bumps but

you can always talk to me

https://gitlab.liu.se/vehsys/tsfs12.git
https://gitlab.liu.se/vehsys/tsfs12

Jupyter Notebooks
— demo on hand-in 1: Discrete Planning in a Structured Road Network

Some useful information
• Project homepage https://jupyter.org; for usage information go to

Documentation->JupyterLab->"The JupyterLab interface"
https://jupyterlab.readthedocs.io/en/latest/user/interface.html

8

Useful shortcuts (there are more)

• Shift-enter — execute cell

• ESC — leave editing mode

• Return — edit cell

• a — add cell above

• b — add cell below

• x — cut cell

• v — paste cell

• Right-click + new console for
notebook — get console

• Tab — tab completion, works for
almost everything

• Shift-tab — get method help

• m — make cell Markdown, a
documentation cell. See, e.g.,
(https://www.markdownguide.org/
basic-syntax/)

https://jupyter.org
https://jupyterlab.readthedocs.io/en/latest/user/interface.html
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/

Working with imports
• Python caches imports

• If you import your code from a separate file, e.g., planners.py like in the

demo, run “ipython magic”
%load_ext autoreload
%autoreload 2

• Then your changes will take immediate effect

• See https://ipython.org/ipython-doc/3/config/extensions/autoreload.html for
more information.

9

https://ipython.org/ipython-doc/3/config/extensions/autoreload.html

Visual Studio Code
— demo on hand-in 1: Discrete Planning in a Structured Road Network

Visual Studio Code
• A general purpose code editor that is highly configurable and very popular as a

code editor and development environment for Python

• There are many extensions available that you can explore

• For Python development, I use the recommended, standard, Microsoft

“Python extension for Visual Studio Code” (which is a collection of a number of

useful extensions)

• Not as important, I also find the following packages useful

• flake8 for linting the code

• black for automated formatting

11

Configuration
• A lot of configuration possibilities

• For basic operation it is simple though:
1. Install the python extension collection from Microsoft
2. Enter the preferences and check the setting

“Jupyter: Send Selection To Interactive Window”

12

Take home messages

Short summary - Jupyter notebooks
• Pros

• available for Windows, Linux, Mac

• easy, runs in your browser (you can also run notebooks in Visual Studio Code
but I won’t cover that here)

• Supports interactive experimentation & exploration (don’t just run the file)

• Supports documentation and code in same document.

• Reports for hand-ins can conveniently be written directly in the notebook.

• Cons

• very basic editing

• does not really support debugging or more advanced coding

14

Short summary - Visual Studio Code
• Pros

• available for Windows, Linux, Mac

• Capable editor

• Full debugging capabilities

• Supports both interactive (Shift-enter) and running scripts

• Highly extendable, with capable Python extensions easy to install

• Cons

• Requires more “low-level” tinkering with configurations

• Does not support documentation in the session
(actually, you can run jupyter notebooks also in VSCode but …)

15

Take-home message
• Both Jupyter and Visual Studio Code are excellent tools

• Different objectives; with different pros and cons.

• These exercises, are they programming or experiments?

• Personally, I spend more time in VSCode and PyCharm than in Jupyter

notebooks

• Here: Entirely up to you.

• Submitting reports as notebooks is allowed.

• I will put these slides and link to the recorded video in the course git-repo.

16

