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B. Olofsson (former student, now at LiU/LU)
Current work

(i) MERL - Estimation Theory

o Satellite positioning [1]

o Nonlinear Filtering [2, 3]
(i) LU - Nonlinear and Robust Control

e Focus on aerial vehicles
o Filtered output feedback [4, 5]

[1] M. Greiff and K. Berntorp, “Projections in Adaptive Mixture Kalman Filtering for GNSS Positioning”, ACC, 2020.
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Motion planning?

@ Necessary in practical experiments

@ Taught by Bjérn at LU in 2017
Disclaimer

@ Not an expert in the field

@ Share some useful ideas
Presentation Purpose

t

Introduce differential flatness (DF)

}

Convex polynomial optimization (CPO)

f

Sequential quadratic programming (SQP)

= Theoretical and practical examples
Motivation

DF Applicable to ground, surface, and aerial vehicles
CPO Powerful method enabled by DF

SQP Generally useful, enforce constraints in CPO
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Motion planning
x(t) = £(x(t), u(t))
x(t) e X, u(t)elU
t e [to,tf}

[6] T. Gluick et al., “Swing-up control of a triple pendulum”, Automatica, 2013.

[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E
[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013. o


https://www.youtube.com/watch?v=cyN-CRNrb3E
https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

Introduction

Motion planning

Simulation example A

¥ — The BVP-method in [6] applied to a variation
X (t) f (X (t) ) u <t) ) of the under-actuated two-pendulum cart
problem, and solved with the bvp5c ()
X(t) S X, u(t) S U function in Matlab.

t € [to, ty]
Approaches

L.

@ Collocation-based (BVPs) [6]
@ Sampling-based (RRT, PF methods)

@ Optimization-based (MPC, SQP [7], CPO [8]) Under-actuated two-pendulum cart process.

[6] T. Gluck et al., “Swing-up control of a triple pendulum”, Automatica, 2013.
[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E
[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf
[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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file:///home/mgreiff/workspace/motion-planning-2020/movies/swingup.mp4
https://www.youtube.com/watch?v=cyN-CRNrb3E
https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

Introduction

Motion planning

Simulation example B

x(t) = £(x(t), u(t)) itatzod it an morpoion bowesn
x(t) e X, u(t) el 01(t)) =0 O1(ty) =7
t e [to, tf} 02(to) = _; O2(ty) = g

Approaches
@ Collocation-based (BVPs) [6] :
@ Sampling-based (RRT, PF methods) L
@ Optimization-based (MPC, SQP [7], CPO [8])

A fully actuated planar two-link robotic arm.

[6] T. Gluck et al., “Swing-up control of a triple pendulum”, Automatica, 2013.
[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E
[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.

4/25


file:///home/mgreiff/workspace/motion-planning-2020/movies/2linkSingle.mp4
https://www.youtube.com/watch?v=cyN-CRNrb3E
https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf

Introduction

Motion planning

Simulation example C

x(t) = £(x(t), u(t)) Fitatzed wih an rerpofion etwesn
X(t) e X, u(t) clU 61(tg) =0 01(ty) = mt2m
t € [to, tf} 02(to) = _77( 62(ty) = ng‘ZW
Approaches
@ Collocation-based (BVPs) [6]
@ Sampling-based (RRT, PF methods) s
@ Optimization-based (MPC, SQP [7], CPO [8]) Afully actuated planar two-link robotic arm.

[6] T. Gluck et al., “Swing-up control of a triple pendulum”, Automatica, 2013.
[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E
[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf
[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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file:///home/mgreiff/workspace/motion-planning-2020/movies/2linkDouble.mp4
https://www.youtube.com/watch?v=cyN-CRNrb3E
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Introduction

Motion planning

x(t) = £(x(t), u(t))
x(t) e X, u(t) el
t e [to,tf}
Approaches
@ Collocation-based (BVPs) [6]
@ Sampling-based (RRT, PF methods)
@ Optimization-based (MPC, SQP [7], CPO [8])
Older and newer solutions combined
@ Defining a set of flat outputs
@ Path planning by polynomial optimization

@ Form QP to speed up/slow down time

[6] T. Gluick et al., “Swing-up control of a triple pendulum”, Automatica, 2013.
[6] Link to cool video: https://www.youtube.com/watch?v=cyN-CRNrb3E

[7] Link to nice slides by Boyd https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf
[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013. o


https://www.youtube.com/watch?v=cyN-CRNrb3E
https://web.stanford.edu/class/ee364b/lectures/seq_slides.pdf
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Introduction

Problem formulation

Find (1) a flat output space F, and (2) a
feasible flat-output trajectory ~(t) € F,
which drives the system from an initial
state x(to) to a terminal state x(ty),
and (3) find an augmented trajectory,
~*(t), minimising t; without altering
the shape of(t) in F given constraints
inx(t) € X andu(t) € U.

[9] M. Greiff, “A Time-warping Transformation for Differentially Flat Systems”, ACC, 2018. s
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Introduction

Problem formulation

Find (1) a flat output space F, and (2) a

feasible flat-output trajectory ~(t) € F, o T
which drives the system from an initial
state x(to) to a terminal state x(ty),
and (3) find an augmented trajectory,
~*(t), minimising t; without altering
the shape of(t) in F given constraints
inx(t) € X andu(t) € U.

Outline
@ |Introduce the concept of differential flatness

@ Plan path in flat output space F

© QP to warp the rate at which time flows [9]

© Demonstrate approach in three control examples

[9] M. Greiff, “A Time-warping Transformation for Differentially Flat Systems”, ACC, 2018.
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1. Differentially Flat Dynamics - Definitions

| Swedish | English | Meaning |

1. Having a level surface without

Platthet | Flatness raised areas or indentations.

2. Lack of emotion or enthusiasm.
A statement which is considered
meaningless and boring.

Plattityd | Platitude
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1. Having a level surface without

Platthet | Flatness raised areas or indentations.

2. Lack of emotion or enthusiasm.
A statement which is considered
meaningless and boring.

Plattityd | Platitude

Remark (Jokingly by Anders and Rolf)

Differentiell platthet &r bara en plattityd
Differential flatness is only a platitude
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Complicated
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Dependent
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1. Differentially Flat Dynamics - Definitions

| Swedish | English | Meaning |

1. Having a level surface without

Platthet | Flatness raised areas or indentations.

2. Lack of emotion or enthusiasm.
A statement which is considered
meaningless and boring.

Plattityd | Platitude

Conceptually not “meaningless”, but concerns “boring/trivial” systems

. h(.

Complicated () Trivial

........... d‘lg/df‘lzv
[’)\‘eopr:-:!lnngeaél ¢()7 ﬂ( ) Indlég‘eenegem

Unintuitive Intuitive

6/25



1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, x = f(x, u), with x € R™, u € R™, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

~=h(x,u,1u,--,u") eR",
such that

X:¢(77;77"' 77(q))7 u:/B(’Ya’yv"' 7'7((1))7

where {h, ¢, B} are smooth functions.

[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems,” 1995.

[11] G. Rigatos, “Nonlinear control and filtering using differential flatness approaches,” 2015.

7/25



1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, x = f(x, u), with x € R™, u € R™, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

Y= h(X, u, 1:17 e ’u('/‘)) € Rm?
such that

X:¢(77;77"' 77(q))7 u:/B(’Ya’yv"' 7'7((1))7
where {h, ¢, B} are smooth functions.

Useful? Which of (A) and (B) would you rather do planning for?

dx
dt
diy _

(B) L =v()

(4) — =f(x,u),

7/25



1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, x = f(x, u), with x € R™, u € R™, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

Y= h(X, u, 1:17 e ’u('/‘)) € Rm?
such that
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where {h, ¢, B} are smooth functions.

(4) & = f(x,u),

vy Op In 0 Y Om
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1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, x = f(x, u), with x € R™, u € R™, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

Y= h(X, u, 1:17 e ’u('/‘)) € Rm?
such that

X:¢(77;77"' 77(q))7 u:/B(’Ya’yv"' 7'7((1))7
where {h, ¢, B} are smooth functions.

(4) & = f(x,u),
i Y7 0
¥i Vi 0
(B)% = 0 0 O ]| vi=1,.

1 A 1
o 0 0 --- ol 1
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1. Differentially Flat Dynamics - Definition

Definition (Differential Flatness [10])

A system, x = f(x, u), with x € R™, u € R™, where f is a smooth
vector field is differentially flat if there exists a set of flat outputs,

Y= h(X, u, 1:17 e ’u('/‘)) € Rm?
such that

X:¢(77;77"' 77(q))7 u:/B(’Ya’yv"' 7'7((1))7
where {h, ¢, B} are smooth functions.

Useful? Yes, simplifies planning problem significantly.
Constructive? Yes, but it can be challenging to find {h, ¢, B}...!

Example: Feedback-linearization, Chapter 13 in [12]

[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems,” 1995.
[11] G. Rigatos, “Nonlinear control and filtering using differential flatness approaches,” 2015.

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
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1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + X9 0
f(x) = |::L'1 —Zo — ;L'lzv;g] 1 g(x) = [1]
0

r1+ 1T — 21’5

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + T2 0
f(x)= | z1 — 22 — 2173 |, g(x) = |1
1+ r122 — 223 0

Show how to derive flat outputs
Enough details to do it yourselves

Temporarily a bit more mathematical

®© 6 6 o

Don’t worry if it is a bit tricky to follow

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R3, where

—T1 + X9
f(x)=| 1 — 22 — x123 |, g(x) = [

T+ T129 — 21’3

Definition (Lie Derivative [12])
The so-called Lie-derivative of h with respect to f,

(L) (x) = 22E(x)

denotes a change in h along the trajectories of the system x = f(x)

v

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + Ty 0
f(x)=| 1 —z2 —z123 |, gx)= |1

r1 + X122 721’3 0

@ Find an output v = h(x) yielding full relative degree, i.e. such that

gh(x) =0
L l;f]l()() 0
LgLf (X) ?é 0

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + Ty 0
f(x)=| 1 —z2 —z123 |, gx)= |1

T1 + 129 — 223 0

@ Find an output v = h(x) yielding full relative degree, i.e. such that

gh(x) =0
L l;f]l()() 0
LgLf (X) ?é 0

such as 1
h(x) = a(éﬂff = 963) +b, a€eR\{0},beR.

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + X9 0
f(x)=| 1 — 22 — x123 |, gx)= |1
r1+ 1T — 21’5 0

@ Find an output v = h(x) yielding full relative degree, i.e. such that
@ Witha = 1,b = 0, we find a feedback linearization

v = L¢h(z) = 23 /2 — a3

4 = Lth(z) = —2% — 21 + 223

4 = Lih(z) = 227 + 321 — x2 — a3

which (surprisingly) turns out to be a surjective map x = ¢ (v, 5, 7).

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + X2
f(x)=| 21— 22 — 2123 |, g(x) =

r1+ 1T — 21’5
@ Find an output v = h(x) yielding full relative degree, i.e. such that

o = O

@ Witha = 1,b = 0, we find a surjective map x = ¢(7, ¥, 7).

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + X2 0
f(x) = Tr1 — T2 — T1a3 ) g(X) 2\ L
1+ 172 — 223 0

@ Find an output v = h(x) yielding full relative degree, i.e. such that
@ Witha = 1,b = 0, we find a surjective map x = ¢(, ¥, 7).
@ With y(¢) = h(x), the endogenous feedback law

1
u= m[—L?h(X) + 0] = 4z — 8x1 + 8x3 + z123 — 4ot — 0
results in a system
d>y(t)

As x is known from ¢, and v is known from ¥, we also know u = B(v, ¥, 4, V).

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25
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1. Differentially Flat Dynamics - Toy Example

Consider a system x = f(x) + g(x)u, configured on C = R?, where

—T1 + X2 0
f(x)=| &1 — 22 — 2123 |, gx)= |1
T1 + 129 — 223 0

@ Find an output v = h(x) yielding full relative degree, i.e. such that
@ Witha = 1,b = 0, we find a surjective map x = ¢ (7, ¥, 7).
@ With y(¢) = h(x), the endogenous feedback law results in a system

Py@t)
dt3 N ’U(t)7

As x is known from ¢, and v is known from ¥, we also know u = B(v, ¥, %, 7).

@ sufficiently smooth trajectories, here v € C(R), can be followed!

Disclaimer: Not always possible. What about other systems?

[12] H. Khalil et al., “Nonlinear Systems”, available online as a pdf.
8/25



1. Differentially Flat Dynamics - UGV (unconstrained)

Unmanned ground vehicle (UGV) configured on C = SE(2),

0 Attitude
2] Translation in xg
<= g Translation in y¢ ,
w Attitude rate ‘
Vg Velocity in x5 . — Fe
v Velocity in y @
= -7-1 Torque along x5 at wheel 1
B Torque along y 5 at wheel 2

with X C RS, ¢/ C R?, and dynamics

o(t) = ws(t)
pg(t) = vi(t) cos(6(t)) — v (t) sin(6(2))
pg () = vs(t) sin(6(t)) + vi(t) cos(6(t))
w(t) = (h/(Jr))(m(t) — 72(t))
(1) = w(t)vg(t) + (r/m)(1a(t) + 72(t))
ip(t) = —w(t)vs(t)
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1. Differentially Flat Dynamics - UGV (unconstrained)

Unmanned ground vehicle (UGV) configured on C = SE(2),

0 Attitude
2] Translation in xg
<= g Translation in yg )
w Attitude rate ‘
vE Velocity in x5
v Velocity in y5
w— -7-1 Torque along x5 at wheel 1
T2 Torque along y5 at wheel 2

with X C RS, i/ C R?, and flat outputs
v(t) = h(x(t)) = [p&(t) p4t)]" € C*R?)

in the flat output space F.

9/25



1. Differentially Flat Dynamics - UGV (constrained)

Constrained UGV with no lateral slip configured on C = SE(2),

(g Attitude
PY Translation in xg

x= 10 Translation in yg ,
(o7 Angular rate of wheel 1 w
(e % Angular rate of wheel 2 B < Ff
- o 2h

w— T1 Torque along x5 at wheel 1 s @

L Torque along y at wheel 2

with X C R%, U/ C R?, and dynamics
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1. Differentially Flat Dynamics - UGV (constrained)

Constrained UGV with no lateral slip configured on C = SE(2),

(g Attitude
PY Translation in xg
x= 10 Translation in yg ,
(o7 Angular rate of wheel 1 w
| G2 Angular rate of wheel 2
w— T1 Torque along x5 at wheel 1
L Torque along y at wheel 2

with X C R?, i/ C R?, and flat outputs

~v(t) = h(x(8)) = [pE(t) P4(1)] € C*(R?)

in the flat output space F.
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1. Differentially Flat Dynamics - UAV

Unmanned Aerial Vehicle (UAV) configured on C = SE(3),

pg Translation
x — R Attitude

vg Translational Velocity

| w Angular rate

[f- Positive force along zg
a Tz Torque along x5

Ty Torque along y5

| 7= Torque along zg

with X C R? x S%, U C R*, but
we may instead use rotor speeds
Q= [Q,---,Q] asinputs

f=(t) kYo Qi)
=) | _ | k(= %) + 3(1))
| = | m(-0k0) + 03
Tz(t) Z Qf(t —+ I]uQi(t)
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1. Differentially Flat Dynamics - UAV

Unmanned Aerial Vehicle (UAV) configured on C = SE(3),

pg Translation
x — R Attitude

vg Translational Velocity

| w Angular rate

[f- Positive force along zg
a Tz Torque along x5

Ty Torque along y5
| 7= Torque along zg

with X C R? x S, U/ C R4, and
flat outputs in u or €2,

v(t) = h(x(t) = [pL(t) »(®)]" € C°(RY)

defines the flat outputs [13, 14].

[13] D. W. Mellinger, “Trajectory generation and control for quadrotors”, PhD Thesis, 2012, available online as a pdf.

[14] M. Greiff, “Modelling and control of the crazyflie quadrotor”, M.Sc. Thesis, 2017, available online as a pdf.
11/25



1. Differentially flat systems - Summary

Main takeaways

@ A very large number of systems are “boring” [11, 15]
@ Ways of finding flat outputs exists (feedback linearization)
© Almost always found as functions of the system configurations
© Independent planning in flat output dimensions
@ Plan for smoothness in ~y instead of explicitly enforcing x = f(x, u) in time.
Toy example v € C*(RY)
UGV (unconstrained) v € C3(R?)
UGV (constrained)  ~ € C?*(R?)
UAV ~ € C5(RY)

[11] G. Rigatos, “Nonlinear control and filtering using differential flatness approaches,” 2015.
[15] R. Murray et al., “Differential flatness of mechanical control systems,” 1995.
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Suitable parameterizations of the flat trajectories?

@ Sinusoids

@ Bezier curves

@ LP-filtered signals
@ Polynomials
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UGV (unconstrained) v € C3(R?)
UGV (constrained) v € C*(R?)
UAV v € C5(R%)

Suitable parameterizations of the flat trajectories?

@ Sinusoids

@ Bezier curves

@ LP-filtered signals
@ Polynomials

12/25



2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]
@ Consider n polynomial splines P (t), ..., P, (t) with deg(Py) = N, as

N
Pi(t) =Y prit' =p{pt®), tE€[0,T], P = [Pros-prn]”
i=0

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomial splines P (t), ..., P, (t) with deg(Py) = N

@ |Integral cost associated with sum of spline derivatives

J(Tk):Z/ kci
i=0 Y0

P (8) |12 7
dt =
a |, % =P QuwP®)

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomial splines P (t), ..., P, (t) with deg(P) = N
@ |Integral cost associated with sum of spline derivatives

@y Ty, (%)
dpP.”(t) T
T:) = 5 || —= dt =
J(Tk) ZO/O | =g ||, = P QuwPw)
Remark (Regarding the cost)
Spline Name Objective
Pi(t) Position Small/Large (often co = 0)
4o Pu(t) | Velocity | Small/Large (often ¢ = 0)
c‘f%Pk(t) Acceleration | Small (often ca > 0)
& Pu(t) Jerk Small (often ¢5 > 0)
%Pk(t) Snap Small (often c4 > 0)
Minimum snap: c4 > 0, ¢; = 0Vi # 4.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]
@ Consider n polynomial splines P (t), ..., P, (t) with deg(P) = N

@ |Integral cost associated with sum of spline derivatives

=3 [

2
G Pl QP )

dP (t)
dt

Remark (Regarding the smoothness)

If we need a function C* (R), add constraint

m dm
— P (T,) = — P =0,...M, k=1,..,.n—1 4
g De(Tk) = 3 Pea(0) Vm =0,..., M, s (4)

which is linear in p(x) and p(x+1) given Tk.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomial splines P (t), ..., P, (t) with deg(Py) = N

@ |Integral cost associated with sum of spline derivatives

Ty ]3(2 .
J(Tx) Z/ = P(x) Qr)P(x)
@ Sum cost over all splines with p = [p(1y, ..., P{n)]"
Minimize Z J(Tx) =  Minimize p’Qp

k=1

Subjectto Py(t) € CM(R) Vk=1,.,n = Subjectto Ap—b =0.

@ Do this independently for each flat dimension

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

—Z1 + X2 0
x=f(x)+gx)u, f(x)=|z1—az2—7173 |, g(X) = |1
T, + x129 — 273 0

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

1), 5a(t), 7a(t)]T vt ul(t x(t
[va(t), a(t) 'm(l] @ X ) u= a(x,v) (t) £(x) + g()u ®) [t
OB RO X0

(%)

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013. EE



2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

‘Waypoints in X

o x(t)
% 30 b . o m(t)
oyt
g 2 ° e .
=
T o1+ ° e )
g
- 0®
£
5 Ak ° .

4 I I i I i i i ]
4 6 8 10 12 14 16 18 20
Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Boundary conditions on the flat output and its derivatives

20 -
o (&)
15 - (o} o Alk)
o Ak
10 -
= 5F
2 [e]
< o °
ERL:S o 8
= @ o
= -5 5
o
10+ °
151
20 i i L L L | | ]
4 6 8 10 12 14 16 18 20
Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Found minimum snap trajectory using polynomials of order 10 in the QP-optimization

Flat output

4 6 8 10 12 14 16 18 20
Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Simulated system response in the flat output

Flat output

4 6 8 10 12 14 16 18 20
Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Applied control signal v(t)

o

Linear control

50 I I I I

10 12 14 16 18 20

Time [s]

] w104 Applied control signal u(t) = a(z,v)

=] T T T

g

5 g T~ -

g

= \/

R I I h I I

Z 4 6 8 10 12 14 16 18 20
Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Non-linear state trajectory
600

Non-linear system states x(¢)

Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Non-linear state waypoint set X and the state trajectory

4 L1y
71(t)
% 8 ra(1)
z5(t)
82 o ()
= o m(t)
ao o mlty) P
g
= 0
£
5
4 | | | | | | | |
4 6 8 10 12 12 16 18 20

Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Non-linear state trajectory
600

Non-linear system states x(¢)

Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives

@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Found minimum snap trajectory using polynomials of order 10 in the QP-optimization

Flat output

4 6 8 10 12 14 16 18 20
Time [s]

[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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2. Path Planning in Flat Output Space

Path planning with polynomials (CPO) [8]

@ Consider n polynomials Py (t), ..., Pn(t) with deg(Px) = N
@ Integral cost associated with sum of spline derivatives
@ Sum cost over all splines

@ What happens between the endpoints?

Reconsider the toy example

Found minimum snap trajectory using polynomials of order 10 in the QP-optimization

Flat output

Time [s]
[8] C. Richter, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments”, 2013.
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3. Time-warping transformation

Remark (Change the rate of time)

Let a trajectory v(7) be generated in terms of the time unit 7, relating
to a second time unit £ on which the system evolves, such that
a(7)dr = dt for some a(7) > 0.

T=0 T-timeline
e

t=20 t-timeline

15/25



3. Time-warping transformation

Optimization program to maximize «(7), enforcing smoothness [16]

15 I Infeasible region
— 10 [ Feasible region
©
T 5t .0 T Y M N 1 a(a(7),a U)( ),0,0) =
0 a(t) € C?
5 " a(r)=1
0 5 10 15 20 25 30
Time 7
5 I 1nfeasible region
= [ Feasible uﬂwu
SRRV AWAVAVAVAY/EE= o(a)(7),alf)(7),0,0) = 0
5 ) ——all(r) e C*
0 5 10 15 20 25 30
Time 7
20 I 1nfeasible region
= [ Feasible 1(‘ﬂmn
ER A i VA, VIR ARV R o(a(r)af? (7),0,0) =
—_—a® c?
20 (1) €
0 5 10 15 20 25 30
Time 7

[16] M. Greiff, “A Time-Warping Transformation for Time-Optimal Movement”, 2018.
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3. Formulating a QP

Given the maps {h, ¢, B} for a differentially flat system, and

@ A feasible flat trajectory (1) € CM
@ A smoothness constraint on a(7) € CM 1

minimize the time ¢y — t taken to traverse () by maximising o ()
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3. Formulating a QP

Given the maps {h, ¢, B} for a differentially flat system, and

@ A feasible flat trajectory (1) € CM
@ A smoothness constraint on a(7) € CM 1

minimize the time ¢y — t taken to traverse () by maximising o ()

Example: Consider a UGV, path in F generated by CPO, velocity constraints

&

B [5 + 2sin(r)} <M () < [5 + 2sin(r)} 7

5 + 2sin(7) 5 + 2sin(7)

17/25



3. Simulation Example - UGV

Simulation example D - UGV with and without time-warping

s
N
T2 A "\ —— optimal (*)

0 5 10 15 20 25
Time, t [s

—— nominal (u)
—— optimal (*)
tylar = 19.9

20 2

p(t) m]

Tine, ¢ [s]

Figure 1: A nominal ™ (7) = 1 V7 and optimal a(7) € C2(R) subject to sinusoidal constraints.
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file:///home/mgreiff/workspace/motion-planning-2020/movies/UGV_holconst.mp4

3. Simulation Example - UGV

\
7
-

5 0 5 10 5 0 5
Figure 1: The nominal trajectory 4™ (7) (blue) and simulated motion along the optimised flat output trajectory

~ ™ (t) with the S E(2) configured UGV (left) and the non-holonomically constrained UGV (right).

Example summary

@ Optimal warping found as the problem is convex

@ Same flat output trajectory, very different state-trajectories

@ Original dynamical system dim(x) = {5, 6}, dim(u) = 2

@ System in the warping MPC formulation dim(x) = 3, dim(us) = 1
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3. Formulating a SQP

Example: UAV dynamics, starting and finishing in (0) = 0,
performing a looping manoeuvre defined by the path

~(1) = —[sin(n7/4),sin(77/2), cos(n1/2), =1 /4] .

I
<L
0.8 - J- o
0.6
wl

R
Ujr //o
7—70—577' — Pi—— ,/'//

Figure 2: A looping manoeuvre with v(7) € C°°(R%).
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3. Formulating a SQP

Example: UAV dynamics, starting and finishing in (0) = 0,
performing a looping manoeuvre defined by the path

~(1) = —I[sin(n7/4),sin(n7/2), cos(mw7/2), —7rT/4]T.

Two main saturating constraints

@ Velocities:

5 v®(t) 5
- [51 < [vy(t)] < l5] [m/s] (Linear in )
5 v (t) 5

@ Rotor-speeds:

500 Qi (t) 2400

500 Qa(t) 2400 . N
500 < Q1) < 2400 [rad/s] (Highly nonlinear in c)
500 Qu(t) 2400
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3. Simulation Example - UAV

Simulation example E - Looping UAV with and without time-warping

ar
- nominal (n)
T optimal (*)
o . . . . . . . . . . ,
o 1 2 3 a 6 7 8 9 1 1
Titne, ¢ [s]
10r
S al nominal (n)
< optimal (*)
]
S T " . . . . . i . . )
o 1 2 3 4 5 6 7 8 s 1 1
Time, ¢ [s]
£ P
S —p(t)ln
9 10 1
z —— (1)
g ——P(t)a
s )
a . (1) ,
s 1 1
2500 -
Z 5000 — 0
£ 1500 Q).
< 1000 ()
S so0 1 : : 1 1 : ! . : ; ]
o 1 2 3 7 8 9 10 1

Figure 2: The nominal- (blue) and computed locally time-optimal trajectories (red) for the S E'(3)-configured
UAV during the looping manoeuvre with actuator constraints.
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3. Simulation Example - UAV

5T 7
B lz ol lé /
NG

Figure 2: Nominal and locally time-optimal solutions for a looping manoeuvre given actuator constraints.

Example summary

@ Locally optimal warping found (problem is now non-convex)
@ The posed constraints are close to saturated at almost all times
@ Original system dim(x) = {12,13}, dim(u) = 4

@ System in the SQP formulation dim(xq) = 5, dim(us) = 1
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3. Simulation Example - UAV

Figure 2: Nominal and locally time-optimal solutions for a looping manoeuvre given actuator constraints.
Example summary

@ Locally optimal warping found (problem is now non-convex)

@ The posed constraints are close to saturated at almost all times
@ Original system dim(x) = {12,13}, dim(u) = 4

@ System in the SQP formulation dim(xq) = 5, dim(us) = 1
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Summary

Two-step approach

@ Path planning of the flat outputs

@ Augment higher order derivatives through /(1)
Contents

@ Differential flatness

@ Polynomial path planning

@ Examples with QP and SQP time-warping
Examples

@ Toy example

@ UGV with nonholonomic constraints

@ UGV with no constraints

@ UAV with actuator constraints
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