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Purpose of this Lecture

 Provide an introduction (focus on usage of methods) to
some core methods in the field of learning for
autonomous vehicles:

 Neural networks,

» Reinforcement learning.
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Expected Take-Aways from this Lecture

Be familiar with how neural networks can be used for learning.

Have basic knowledge about the formalism of Markov decision
processes and basic methods for solving reinforcement-learning
problems in discrete time and finite state and action spaces.

Be familiar with how neural networks and reinforcement
learning can be combined to solve problems where the state
spaces are continuous.
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Literature Reading

The following book and article sections are the main reading material for this lecture. References to
further reading are provided throughout the slides and at the end of the lecture slides.

o Sections 11.2-11.8 in Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin:
The Elements of Statistical Learning: Data Mining, Inference and Prediction.
2nd Edition, Springer, 2005.

o Sections 1,4.1-4.4, and 6.1-6.5 in Sutton, R. S., & A. G. Barto:
Reinforcement learning: An introduction. MIT Press, 2018.

« Scan the content of Mnih, V., Kavukcuoglu, K., Silver, D. et al: “"Human-level
control through deep reinforcement learning”, Nature 518, 529-533, 2015.
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Outline of the Lecture

« Learning using neural networks.

* Introduction to reinforcement learning.
« Combining neural networks and reinforcement learning.

« Some software libraries for machine learning.
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Learning Using Neural Networks
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Introduction and Background (1/2)

 Historically: Inspiration from the human brain, with its neurons and
synapses (connections); activation of a neuron by a signal that reaches a
certain threshold.

« A neural network is a nonlinear function approximator (often with
multiple inputs and outputs), curve-fitting in high-dimensional spaces.

« Concept has been described several decades ago, and since ~10 years
a very active research area again because of much available data,
efficient algorithms, and efficient computational hardware platforms.
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Introduction and Background (2/2)

Input:
Time-series data,

Prediction of output,

Image,
Natural language,
Text, etc.

or class/category

Function parameterized using parameters in 6 (often high-dimensional
vector, with thousand, millions, or even billions of elements).

Often large amount of training data X = (x1,...,xn) with large V

to compute the parameters.

LINKOPING
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A Nonlinear Function Approximator
« A complex nonlinear relation between inputs and outputs can be
approximated using a parametric function.

« The parameters of the model are determined by fitting the parameters
to the training data.

« The model uses specific characteristics (often called features) of the
training data, ideally being informative and independent of each other
(e.g., specific measured or observed quantities).

« Separate validation data are then used to evaluate the fit of the model.
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Structure of a Single Hidden-Layer Neural Network

e A neural network consists of Zy = 0(gm +arX), m=1,..., M,
hidden layers and an output Ty = Box +BFYZ, k=1,... K,
layer. fr(X) = gi(T), k=1,....K

« The basic version contains a X — input data

single hidden layer. fr(X) — model output for input X
. . o(-) — activation function
« A (nonlinear) activation o, B — parameters
function acts on an affine Z =(Z1,2,...,2Z)

T=(T,Ts,...,Tk)

combination of the inputs. ge(-) — output fanction

II. LINKOPING Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2005.
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Some Example Activation Functions

* Linear combination of the inputs.

» Sigmoid (approximation of a step function):

o (v)

« Rectifier (Rectified Linear Unit — ReLU):

1+ exp(—v)

o(v) = max(0,v)

« Gaussian radial basis function (RBF):

o(v) = exp (—7||v — ¢|*)

11

Sigmoid
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Polynomial (4th order) Approximation

Choices of Output Function (1/2) ;4

« For regression problems (i.e., finding
relations between dependent ana |
independent variables), the output T e M
funCtion can be “ﬂear ) Neural Network Approximation

+ Data Points

9k (T) =1} l " o) Nowr

« Compare with least-squares
approximation of data points using
polynomials from previous courses. I T

II. LINKOPING Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2005.
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Choices of Output Function (2/2)

Classification Problem (4 Classes)

« For classification problems, ¢?
the output function can be o4
EXP (Tk ) ng 0.3}

Jk (T) — X
Zfil eXp(T’i) @ 0.2]

S}
» Consider example with 201
dimension four in the plot ;
to the right. Clase

II " LINKOPING Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2005.
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Example of a Neural Network

o (g, m + apX) Bok + Br Z
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Training of a Neural Network

« Use training data to determine Squared-error cost function (regression):
the parameters 0 of the model

(e.g., a, B in the example on the J(Q) — Z (yi,k — fk (CEZ))Q

previous slide). i K

« The parameters can be computed
by minimizing a cost function - an

optimization problem. J(g) — — Z Yi k log (fk (332))
i,k

Cross-entropy cost function (classification):

« Examples of cost functions.

II. LINKOPING Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2005.
UNIVERSITY
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Gradient Descent (1/2)

« Gradient descent is a method to find a local minimum to
a (differentiable) cost function using only first-order
derivatives.

« Recall from the courses in calculus that a function
decreases most rapidly when moving in the negative
direction of the gradient.

II LINKOPING
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Gradient Descent (2/2)

* lterative method for moving towards a local minimum:

‘9i—|—1 — (9@ — ”YVJ(QZ)

v — learning rate (pre-determined parameter) @

0y — initial guess for parameters O)

17
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Stochastic Gradient Descent (SGD)

« Computation of the gradient becomes a challenge when the number of data
points increases to large numbers or network output time-consuming to
compute.

« Stochastic gradient descent has been suggested to mitigate this:

« Randomly select a batch of the data points (in the limit only one) and
perform gradient descent. Idea for reducing size of parameter-

optimization problem:
N

Z (yz — f(-fz))z — Z (y@ — f(xz))Q , N N

1=1

« Repeat until a local minimum has been reached (termination condition).

II LINKOPING Goodfellow, I., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.
o UNIVERSITY



Backpropagation

e Recall the automatic differentiation method for
computing derivatives from Lecture 5.

« Neural networks are often trained using backpropagation,
which also utilizes the chain rule to compute the desired
derivatives efficiently and accurately (reverse-mode
automatic differentiation, see Lecture 5).

II LINKOPING Goodfellow, 1., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.
o UNIVERSITY
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Deep Neural Networks

« The neural networks considered so far only consist of one hidden layer.

« Deep neural networks comprise multiple hidden layers, where each
layer can be considered as an abstraction.

 |dea: Features in the training data captured by the neural network.

« Large variety of network structures (number of layers, how many
neurons in each, types of neurons, connectivity, etc.).

+ Typically a composition of layers of different network primitives.

II LINKOPING Goodfellow, I., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.
o UNIVERSITY
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Recurrent and Convolutional Neural Networks

« Arecurrent neural network also has internal feedback loops (modeling
a local memory).

A convolutional neural network comprises layers where convolution
operators act.

 Instead of fully connected layers, local spatial information is modeled
through the convolutions.

« Often used for neural networks involving inputs with a grid structure,
like a camera image or written text.

II LINKOPING Goodfellow, 1., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.
o UNIVERSITY
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Example Structure of Convolutional Neural Networks

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

LINKOPING Picture (c) by Aphex34, CC BY-SA 4.0 (via Wikipedia)
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Architectures for Neural Networks (1/2) .

: Input Cell
C) Backfed Input Cell
A Noisy Input Cell
@ Hidden cell
© rrobablistic Hidden Cell
‘ Spiking Hidden Cell
. Capsule Cell
' Output Cell
. Match Input Output Cell
. Recurrent Cell
. Memory Cell
. Gated Memory Cell
" Kernel

© Convolution or Pool

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)

A mostly complete chart of

Neural Networks o

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Perceptron (P) Feed Forward (FF)

o

=

Recurrent Neural Network (RNN)
. - 0O

, Y

Auto Encoder (AE)

Radial Basis Network (RBF) - ,’4 VY,
(X XK >

o

Long /Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
. ) ) . ) ()

Variational AE (VAE)

Restricted BM (RBM)
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S
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- Y

Denoising AE (DAE) Sparse AE (SAE)

Deep Belief Network (DBN)

O | 8|
e e
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Architectures for Neural Networks (2/2) ’
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
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Deep Residual Network (DRN) Differentiable Neural Computer (DNC)
) o

Attention Network (AN)

II " LINKOPING Picture from https://www.asimovinstitute.org/neural-network-zoo/
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Parameter Optimization

« Several extensions and variants of stochastic gradient
descent exist for improved performance (e.g., momentum
acceleration, Nesterov accelerated gradient, AdaGrad,

RMSProp, and Adam).

e Choice of initial values of model parameters in the
gradient descent.

II LINKOPING Goodfellow, I., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.
o UNIVERSITY
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Overtfitting of Model Parameters (1/3)

« Overtfitting of model parameters to training data is a
common challenge in any function approximation.

« With high-dimensional parameter vectors, it is easy to
obtain overtitting to the particular data used for training.

» For example, being sensitive to noise in the data and not
modeling the actual underlying function characteristics.

II LINKOPING Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2005.
® UNIVERSITY Goodfellow, 1., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.



Overfitting of Model Parameters (2/3)

Example: Fit a high-order polynomial
model (14th order) and a neural network
model (30 hidden neurons), respectively.

20 data points, where noise from a Normal
distribution with standard deviation 0.2 has
been added, from the function

rsin(x), x € |0, 5]

Clear overfitting in polynomial model.

27

Polynomial (14th order) Approximation

LINKOPING
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Overfitting of Model Parameters (3/3)

« Methods used for mitigating overfitting:
« Early termination in the SGD.
e Regularization terms in cost function, e.g., )\Z 07, \ weight parameter

« Empirical methods to avoid overfitting are, e.g.,

« Dropout (randomly disconnect a subset of the nodes in each phase
of the training and then re-connect them again).

« To avoid getting stuck in local minima in the optimization, training the
network with many different initial guesses of the parameters in SGD is
beneficial.

II LINKOPING Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2005.
® UNIVERSITY Goodfellow, 1., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.
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Imbalanced Learning

« Imbalance in the training data for a neural network aimed at
classification can result in a biased classifier.

« Example is when data from one or more classes are
overrepresented compared to other classes.

» One approach to remedy this is to weight underrepresented
classes when creating the training data set by sampling (with
replacement) from the actual data set.

II LINKOPING
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Imbalanced Learning — Example

« Example: Assume that the task is to predict
if a certain vehicle will change lane within
the next few seconds.

« |f the training data consist of 99 % cases (e .
driving forward, a model always predicting (m) —— m
moving forward would have an accuracy of TS ) | TS )

99 % for that data set.

« Clearly such a predictor is not satisfactory,
since the important lane-change situations
will never be predicted — imbalance in data.

LINKOPING Westny, T., Frisk, E., Olofsson, B: “Vehicle Behavior Prediction and Generalization Using Imbalanced Learning Techniques”,
I.“ UNIVERSITY IEEE International Intelligent Transportation Systems Conference, 2021



31

Example: Simple Neural Network for Regression

Neural Network Approximation

« Given 20 samples from the @

+ Data Points

nonlinear funCtion —— Neural Network
0+ |

y = xsin(x), x € [0, 5]

« A neural network
approximation with one

hidden layer with 30
neurons shown in red. 6

II LINKOPING
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Hand-in Exercise 5: Neural Network for Intent Prediction

e |In Hand-in Exercise 5, lane-
change predictions are
computed based on driver
data from the 1-80 highway
section in the U.S.

A neural network is trained
as a classifier using 41

teatures in 4 383 trajectories.

500 A

400 4

300 A

200 A

100 A

if the vehicle will change to the left within three seconds
1 if the vehicle will stay in lane for the next three seconds

2 if the vehicle will change to the right within three seconds

0 5 10 15 20

LINKOPING I-80 data set citation: U.S. Department of Transportation Federal Highway Administration. (2016). Next Generation Simulation (NGSIM) Vehicle Trajectories
I. UNIVERSITY and Supporting Data. [Dataset]. Provided by ITS DataHub through Data.transportation.gov. Accessed 2020-09-29 from http://doi.org/10.21949/1504477.



Introduction to Reinforcement Learning
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troduction to Reinforcement Learning (1/2)

In some environments or scenarios, it is difficult to explicitly model the
dynamics (e.g., an autonomous vehicle in an unstructured environment).

How to find control laws under uncertainty and (partially) unknown
dynamics, and in addition possibly uncertain state information?

In control engineering: system identification, control (e.g., adaptive and
stochastic), and observer design.

Reinforcement learning has successfully been used for various challenging
scenarios (computer games, chess, Go, robot control, etc.).

« Often scenarios with a closed world and, e.g., distinct rules like in games.

LINKOPING
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Introduction to Reinforcement Learning (2/2)

Learn how to act optimally in each state in the world model (a policy), by
interacting with the environment and maximize an accumulated

received reward signal.

Learn which actions to take in different situations by sequentially taking
actions and exploring the environment.

Trade-off between exploration and exploitation.

Uncertain environments, typically modeled using probability
distributions.

LINKOPING
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A First Example — K-Armed Bandit (1/4)

A classical first example in reinforcement learning is the so called k-
armed bandit problem.

« Consider choosing between k = 3 different actions at every time
step (corresponding to 3 different arms on a slot machine).

« Each action results in a reward according to an a priori
unknown normal distribution with constant mean and variance.

« The objective is to maximize the accumulated reward over a
specitied number of time steps.

II LINKOPING
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A First Example — K-Armed Bandit (2/4)

« Let us try to decide on the optimal action (policy) by interacting with the 3-
armed bandit, i.e., sequentially choosing and applying actions and
observing the rewards obtained.

* Introduce a function that measures the value of a particular action:

Qi(a) =

~ total number of times action a chosen

sum of rewards when action a chosen

« Actions chosen according to an epsilon-greedy policy, where a random
action is chosen with probability € (exploration) and else the currently greedy
action (exploitation) is chosen as

Agreedy — al'g IDELE}X Qt (a/)

II LINKOPING
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A First Example — K-Armed Bandit (3/4)

38
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A First Example — K-Armed Bandit (4/4)

« The actual parameters of the normal distributions of the 3-armed
bandit example are (mean and standard deviation):

Action 1: 1 = 5.5, 01 =1 Action 2: uo =5, 0o =1 Action 3: u3 =6, o3 =1
« The example introduces many key features of reinforcement learning:

« Exploration/exploitation to both gain and use information,
estimate value of an action by repeated interactions by the agent
with the environment, and stochastic uncertainty in the world.

* In this example, the reward is not dependent on a state. This will be
considered in the formal definition of a Markov decision process.

II LINKOPING
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The Agent-Environment Interaction Model °

e

JELan!
'

fRgent

>

St+1

Environment|«

« Searching for a policy (control law) on how to act in each state.

LINKOPING
UNIVERSITY
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Detinition of Concepts

Agent - the controller subject to learning.

Environment — the agent interacts with the surroundings
(controlled system).

Action A; € A(s) — control signal decided by the agent.
State S: € S - describes all relevant aspects of the environment.

Reward R; € R — numerical value given by the environment and
received by the agent as a result of the action taken.

LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
UNIVERSITY
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Markov Decision Process (MDP) (1/3)

« Markov decision processes (MDPs) are a mathematical
framework for sequential decision-making problems.

« Basis for formulation of many reinforcement learning
problems, here we consider finite MDPs.

 Maximize the (discounted) accumulated return

Gy = Ryp1 +vRiqpo + ’YQRHS + ... = Z’YthJrkH
k=0

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Markov Decision Process (MDP) (2/3)

 Policy defines action to be taken (updated sequentially)
a=m(s), or wu(als)=P(A;=al|S;=s)

» The state-value function defines expected return, given policy

,UT('(S) — EW(Gt|St — S) = E; (Z ’Vth+k+1|St — 8)

l( - / D k=0
* The action-value function defines the expected value of an

-action in a certain state B
Qﬂ'(87a’) — EW(Gt|St — SaAt — a) = K (Z ’yth+k+1|St — SaAt — CL)
| k=0

|

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY



44

Markov Decision Process (MDP) (3/3)

« The state transition resulting from an action described by
p(s',r|s,a) =P(S; =s', Ry = r|Si_1 =5, A:(—1 = a)

« The MDP consists of the following (finite) sets, reward
signal, and state-transition and reward probabilities

S, A, R, p(s',r|s,a)

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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State and Action-Value Functions — Example

v(s1)

v

=) D
Y20, U3 )
e )

LINKOPING
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The Markov Assumption

« The Markovian assumption implies that all information
needed is contained in the current state.

* In terms of probabilities, this can be expressed as
P(St7 Rt|At—17 St—17 SR 7A07 SO) — P(St7 Rt‘At—lv St—l)

 This assumption is fundamental in the formulation of the
MDP, since state and action-value functions depend only
on the current state.

46
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Partially Observable Markov Decision Process (POMDP)

e |nthe MDP formulation, it has so far been assumed that
the current state is fully observable.

« What if all states are not known, or cannot be measured?

« Partially observable MDP (POMDP) takes the uncertainty
in the state into account, by introduction of a belief state

that is updated based on observations.

Astrém, K. J.: "Optimal control of Markov processes with incomplete state information”, Journal of Mathematical Analysis and



Optimality

* In reinforcement learning, policies maximizing the total reward
are searched for

T, = argmax_v,(s)

« The optimal value function and optimal action-value function
are given by

Vs(8) = maxv,(s), ¢«(s,a)=maxq,(s,a)

« Must hold all for all states and all allowed state-action pairs.

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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he Bellman Optimality Equations

« The Bellman optimality equations define recursive
relationships for value function and action-value functions.

» Optimality equation for the value function (s — s)

() = max gr.(s,0) = max 3 p(s'rls,a)(r + y0.(s')

s’ r
» Optimality equation for the action-value function (s — s')
g«(s,a) = E <Rt—|—1 T ’YmaXCI*(StH,CL/)\St =5, Ay = a)

—Zp (s, 7ls, a) +’Vm%}XQ*(S/aCL/))

’ﬂ—w—w PR SRR R IR ORI Gios oo o

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Dynamic Programming in Reinforcement Learning

« Dynamic programming (DP) can be used to solve a problem
formulated as a finite MDP, given exact model knowledge.

 Basic idea: Search for optimal policies using the Bellman
optimality equations for the value or action-value functions.

« Two main variants: policy iteration (initialize, policy
evaluation, policy improvement, repeat) and value iteration
(next slide).

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Value lteration towards an Optimal Policy

Algorithm 1: Value Iteration

1 Initialize V(s) arbitrarily Vse S

2 repeat

3 A=0

4 foreach s € S: B o | |

5 v=V(s) 7 o Bellman optimality equation
6 | V(s) = max, ZS,,rp(s’, T8, a)(T + YV (8')) | < fmm——

7 ‘A =max(A, v —V(s)])

8 until A<e T

9 return policy 7w as:

10 n(s) = argmax, >,/ . p(s', 7ls, a)(r + 7V ("))

« After convergence, it holds that V(s) = v.(s).

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Unknown Environment and Exploration vs. Exploitation (1/2)
« Policy and value iterations rely on known state-transition
and reward probabilities.

* What if these are not known a priori and the environment
is unknown?

« Learn the characteristics of the environment by
interacting with it.

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY



53

Unknown Environment and Exploration vs. Exploitation (2/2)

« Leads to the question of trade-off between exploration
(test new actions to investigate the environment) and
exploitation (use the information acquired so far and act

according to best possible strategy).

« Epsilon-greedy exploration common choice:

l—e+ g, a= argmax, (s, a)

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Temporal Difterence (TD) Learning

« Temporal-difference methods try to learn optimal policies without
explicit knowledge of the environment and its dynamics.

« Concepts from dynamic programming and Monte Carlo methods used

and combined, by bootstrapping (update estimates based on other
learned estimates).

- Temporal-difference (TD) error: ATD = Rt+1 + 7V(St+1) V(St)

« Basic idea: successively update the value function as (Oz IS a parameter)

V(S) = V(S,) + aArp
« Common methods of this type are SARSA and Q-learning (next slide).

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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= = ——

Q-Learning lQ(s, a) ~ q.(s,a)

Algorithm 2: Q-Learning

1 Initialize Q(s,a) arbitrarily Vse S, a € A(s)

2 and initialize Q(St,:) =0V terminal states

3 repeat for K episodes

4 Initialize S to start state

5 repeat

6 Choose action A from state S using policy determined from Q@
7 Take action A, receive reward R, and get next state S’

8 Q(S, /}) = Q(S,A) + a(R + ymax, Q(S’,a) — Q(S, A))

9 S =9 AT E——.

10 until S is a terminal state Temporal-difference (TD) error

» Q-learning is called an off-policy TD method; SARSA is a
common on-policy method.

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY



56

Value-Function and Action-Value Approximations

« When the state and action spaces increase in dimension,
parameterized functions can be used to approximate the value
function or action-value function

Ve(8) = 0(s;0), q«(s,a) ~ {4(s,a;0), 6O parameters

« Common choices of functions are linear, polynomials, neural
networks, etc.

« Reformulate previous methods to update parameters instead of
value or action-value functions directly (e.g., using gradient
descent).

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Policy-Gradient Methods

« An alternative method to approximating the value or action-value
functions is to directly parameterize the policy (possibly along
with value function) as

m(al|s,0) = P(As = a|S; = 5,0, = 6)

+ Then update parameters 6 based on some performance
metric J () (compare with cost function from Lecture 5).

« Common methods in this category are REINFORCE and Actor-
Critic.

II LINKOPING Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Simulation as a Tool for Reinforcement Learning

« In some environments, it could be challenging to
iteratively interact with the environment by actual

experiments.

« A simulated environment can therefore be used to train
the algorithm (possibly also reducing the time to perform

the required experiments).

II LINKOPING
[ UNIVERSITY
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Reinforcement Learning in Hand-in Exercise 5

« Autonomous vehicle moves in rkF—-—F—-—F—F
a grid world from start to goal. ; | 4
« Stochastic winds might lead to I | < >
detour from intended action. | |
: . | v
« Cliffs should be avoided | .
. Possible
(negative reward).
actions

« Small negative reward for
states other than those in the

High negative
reward

lower row.

II LINKOPING Expanded version of Example 6.6 in Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.
o UNIVERSITY
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Introduction

« For cases where it is infeasible to use a tabular Q-function,
approximations using neural networks could be used.

- Consider, e.g., continuous states and actions, discretization often
results in very large tabular Q-functions.

« One example of such an approach is Deep Q-learning. Introduce the

q"(s,a) = Q(s,a;0)

» The parameter vector ) defines the neural-network model, could be
high-dimensional, but still significantly less than a tabular Q-function.

approximation

II LINKOPING Mnih, V., Kavukcuoglu, K., Silver, D. et al: “Human-level control through deep reinforcement learning”, Nature 518, 529-533, 2015.
o UNIVERSITY
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Deep Q-Learning (1/3)

Deep Q-learning builds on experience replay, let the agent interact
with the environment through several episodes (e.g., using an
epsilon-greedy strategy) and observe the results.

Record the outcome of the actions of the agent at each time step
as the tuple

(state, action, reward, next_state) = (S, As, Ry, Si11)

For increased stability of the method, two neural networks with the
same structure but different parameter vectors 6 and 6~ are used.

LINKOPING Mnih, V., Kavukcuoglu, K., Silver, D. et al: “Human-level control through deep reinforcement learning”, Nature 518, 529-533, 2015.
UNIVERSITY
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Deep Q-Learning (2/3)

 Recall the temporal-difference (TD) error. The parameter
vector are updated by minimizing the squared difference
between the target and the predlctlon as

Prediction .

2
Q(S1, Ay 9)) 3‘

T %ﬁmfl'arget |
(R +ymax Q(Sp41,a';07),

minimizey ;

« Gradient descent used to |terat|ve|y updatlng the
parameter vector 0 (typically performed sequentially).

II LINKOPING Mnih, V., Kavukcuoglu, K., Silver, D. et al: “Human-level control through deep reinforcement learning”, Nature 518, 529-533, 2015.
o UNIVERSITY
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Deep Q-Learning (3/3)

 After a pre-defined number of steps, the parameters of the

target neural network are updated to match the predictor
network

0" =06
* Double deep Q-learning separates the target and predictor

parts even further (not further discussed here).

 Error clipping between -1 and 1 further improves the method.

II LINKOPING Mnih, V., Kavukcuoglu, K., Silver, D. et al: “Human-level control through deep reinforcement learning”, Nature 518, 529-533, 2015.
o UNIVERSITY
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Example: Deep Q-Learning in Highway Scenario (1/3)

« Highway scenario used in extra assignment in Hand-in Exercise 5.

« Navigate through the lanes, with multiple vehicles driving, states
and actions are continuous variables.

« Even with a coarse discretization of the continuous variables, Q-
learning with a discrete, tabular Q-function would be infeasible.

LINKOPING
II." UNIVERSITY
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Example: Deep Q-Learning in Highway Scenario (2/3)

* Instead apply deep Q-learning using a neural-network approximation.

* Neural network has 73 753 parameters. Quite a lot, but still
significantly less than the size of a corresponding discretized table.

Output
Dense layer 1 Dense layer 2 Dense layer 3

Flatten (hidden) (hidden) e
]/ ]/ ] /W Q(s, ag)
Input

A

Q(sa a'l)
N 25 X 256 256 X 256 256 X b
1 R B RS
Yo X

Q(Sa a3)

\\\\\\ Q(S, 0,4)
\\.

LINKOPING
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Example: Deep Q-Learning in Highway Scenario (3/3)

« The agent chooses actions Episod cumulative rewards Exploration/Explotation
according to an epsilon-
greedy strategy during
training, gives a trade-oft
between exploration and
exploitation.
» Sequences of such phases e I R WO

during training.

II LINKOPING
[ UNIVERSITY



Software Libraries for Machine Learning

LINKOPING
II.“ UNIVERSITY



69

Some Tools for Neural Networks

« TensorFlow open-source library for machine learning, notably
neural networks with high-dimensional parameter vectors and
large amount of data.

 https://www.tensortlow.org, https://playground.tensortlow.org/
« Keras is a high-level intertface to TensorFlow.

« PyTorch is an open-source library for machine learning with
support for deep neural networks.

* http://pytorch.org/

II LINKOPING
[ UNIVERSITY



Toolkit for Reinforcement Learning

« OpenAl Gym toolkit for reinforcement learning (collection of
example problems and environments, and interfaces to other
libraries such as TensorFlow).

 https://gym.openai.com

« Environments for implementation and evaluation of
reinforcement-learning methods for traffic scenarios:

 https://github.com/eleurent/highway-env

70

II LINKOPING
[ UNIVERSITY



71

Reterences and Further Reading

All the following books and articles are not part of the reading assignments for the course, but cover
the topics studied during this lecture in more detail.

« Goodfellow, I., Y. Bengio, & A. Courville: Deep Learning. MIT Press, 2016.

« Hastie, T., R. Tibshirani, J. Friedman, & J. Franklin: The Elements of Statistical Learning: Data
Mining, Inference and Prediction. 2nd Edition, Springer, 2005.

« Sutton, R. S., & A. G. Barto: Reinforcement learning: An introduction. MIT Press, 2018.

« Mnih, V., Kavukcuoglu, K., Silver, D. et al: “"Human-level control through deep reinforcement
learning”, Nature 518, 529-533, 2015.

« Westny, T., Frisk, E., Olofsson, B: “Vehicle Behavior Prediction and Generalization Using Imbalanced
Learning Techniques”, IEEE International Intelligent Transportation Systems Conference, 2021.

o Astrém, K. J.: "Optimal control of Markov processes with incomplete state information”, Journal of
Mathematical Analysis and Applications, 10(1), 174-205, 1965.
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